Skip to main content

Advertisement

Log in

Porous current collector enables carbon superior electrochemical performance for K-ion capacitors

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The current collector is an indispensable component in potassium-ion hybrid capacitors, which not only provides mechanical support to load electrode materials, but also collects and outputs the current generated. Herein, we investigate the effect of three different current collectors on the electrochemical properties of potassium ion capacitors using carbon black anode as a demonstration. Because of better adhesion and lower charge transfer resistance, the specific capacity of half-cells assembled using three-dimensional (3D) porous copper foil (PCu) and copper as current collector is better than that of Al foil, which stabilizes at 138.2 and 132.8 mAh·g−1 after 100 cycles at 0.05 A·g−1. The potassium-ion capacitor assembled using PCu exhibits an excellent energy/power density of 86.1 Wh·kg−1 and 4000 W·kg−1, respectively. This work will boost the rational design and provide an effective strategy to improve the performance of potassium-ion capacitors.

Graphical abstrct

摘要

集流体是钾离子混合电容器不可或缺的组成部分, 它不仅承载电极活性材料, 而且起着连接外部电路与内部电化学反应的重要作用。本文使用炭黑材料为负极, 研究了三种不同集流体 (多孔铜PCu、Cu箔、Al箔) 对钾离子电容器电化学性能的影响。结果表明, 由于更好的附着力和更低的电荷转移阻抗, 使用多孔铜箔作为集流体组装的半电池的电化学性能更优; 使用 PCu 组装的钾离子电容器的能量密度和功率密度分别为 86.1 Wh·kg−1 和 4000 W·kg−1。这项工作将为钾离子电容器的合理设计及性能提升提供一种有效策略。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liang HJ, Gu ZY, Zheng XY, Li WH, Zhu LY, Sun ZH, Meng YF, Yu HY, Hou XK, Wu XL. Tempura-like carbon/carbon composite as advanced anode materials for K-ion batteries. J Energy Chem. 2021;59:589. https://doi.org/10.1016/j.jechem.2020.11.039.

    Article  CAS  Google Scholar 

  2. Ji B, Zhang F, Song X, Tang Y. A novel potassium-ion-based dual-ion battery. Adv Mater. 2017;29(19):1700519. https://doi.org/10.1002/adma.201700519.

    Article  CAS  Google Scholar 

  3. Zhang W, Yin J, Wang W, Bayhan Z, Alshareef HN. Status of rechargeable potassium batteries. Nano Energy. 2021;83: 105792. https://doi.org/10.1016/j.nanoen.2021.105792.

    Article  CAS  Google Scholar 

  4. Ge J, Fan L, Rao AM, Zhou J, Lu B. Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries. Nat Sustain. 2022;5:225. https://doi.org/10.1038/s41893-021-00810-7.

    Article  Google Scholar 

  5. Luo XX, Li WH, Liang HJ, Zhang HX, Du KD, Wang XT, Liu XF, Zhang JP, Wu XL. Covalent organic framework with highly accessible carbonyls and π-cation effect for advanced potassium-ion batteries. Angew. Chem., Int. Ed. 2022;134(10): e202117661. https://doi.org/10.1002/ange.202117661.

  6. Wei C, Gong D, Xie D, Tang Y. The free-standing alloy strategy to improve the electrochemical performance of potassium-based dual-ion batteries. ACS Energy Lett. 2021;6(12):4336. https://doi.org/10.1021/acsenergylett.1c02092.

    Article  CAS  Google Scholar 

  7. Pan Q, Tong Z, Su Y, Qin S, Tang Y. Energy storage mechanism, challenge and design strategies of metal sulfides for rechargeable sodium/potassium-ion batteries. Adv Funct Mater. 2021;31(37):2103912. https://doi.org/10.1002/adfm.202103912.

    Article  CAS  Google Scholar 

  8. Xu YS, Guo SJ, Tao XS, Sun YG, Ma J, Liu C, Cao AM. High-Performance cathode materials for potassium-ion batteries: structural design and electrochemical properties. Adv Mater. 2021;33(36):2100409. https://doi.org/10.1002/adma.202100409.

    Article  CAS  Google Scholar 

  9. Liu M, Chang L, Le Z, Jiang J, Li J, Wang H, Zhao C, Xu T, Nie P, Wang L. Emerging potassium-ion hybrid capacitors. Chemsuschem. 2020;13(22):5837. https://doi.org/10.1002/cssc.202000578.

    Article  CAS  Google Scholar 

  10. Ding J, Hu W, Paek E, Mitlin D. Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem Rev. 2018;118(14):6457. https://doi.org/10.1021/acs.chemrev.8b00116.

    Article  CAS  Google Scholar 

  11. Yu F, Pang L, Wang HX. Preparation of mulberry-like RuO2 electrode material for supercapacitors. Rare Met. 2021;40(2):440. https://doi.org/10.1007/s12598-020-01561-8.

    Article  CAS  Google Scholar 

  12. Qin P, Zhang SQ, Yung KKL, Huang ZF, Gao B. Disclosure of charge storage mechanisms in molybdenum oxide nanobelts with enhanced supercapacitive performance induced by oxygen deficiency. Rare Met. 2021;40(9):2447. https://doi.org/10.1007/s12598-021-01722-3.

  13. Zhao S, Liu Z, Xie G, Guo X, Guo Z, Song F, Li G, Chen C, Xie X, Zhang N, Sun B, Guo S, Wang G. Achieving high-performance 3D K+-pre-intercalated Ti3C2Tx MXene for potassium-ion hybrid capacitors via regulating electrolyte solvation structure. Angew. Chem., Int. Ed. 2021;60(50):26246. https://doi.org/10.1002/anie.202112090.

  14. Geng S, Zhou T, Jia M, Shen X, Gao P, Tian S, Zhou P, Liu B, Zhou J, Zhuo S, Li F. Carbon-coated WS2 nanosheets supported on carbon nanofibers for high-rate potassium-ion capacitors. Energy Environ Sci. 2021;14(5):3184. https://doi.org/10.1039/D1EE00193K.

    Article  CAS  Google Scholar 

  15. Liu S, Kang L, Zhang J, Jun SC, Yamauchi Y. Carbonaceous anode materials for non-aqueous sodium- and potassium-ion hybrid capacitors. ACS Energy Lett. 2021;6(11):4127. https://doi.org/10.1021/acsenergylett.1c01855.

    Article  CAS  Google Scholar 

  16. Xia J, Liu Z, Li D, Lu Z, Zhou S. Effect of current collector on electrochemical performance of alloy anodes of lithium ion batteries. Rare Met. 2011;30(S1):48. https://doi.org/10.1007/s12598-011-0235-3.

    Article  CAS  Google Scholar 

  17. Heidarian A, Cheung SCP, Ojha R, Rosengarten G. Effects of current collector shape and configuration on charge percolation and electric conductivity of slurry electrodes for electrochemical systems. Energy. 2022;239:122313. https://doi.org/10.1016/j.energy.2021.122313.

    Article  CAS  Google Scholar 

  18. Solmaz R, Karahan BD. Modification of the Cu current collector by magnetron sputtering to improve the cycle performance of MxOy (M: Ni, Mn, Co) anodes for lithium ion batteries. J Alloys Compd. 2021;872:159594. https://doi.org/10.1016/j.jallcom.2021.159594.

    Article  CAS  Google Scholar 

  19. Liu S, Tang S, Zhang X, Wang A, Yang QH, Luo J. Porous Al current collector for dendrite-free Na metal anodes. Nano Lett. 2017;17(9):5862. https://doi.org/10.1021/acs.nanolett.7b03185.

    Article  CAS  Google Scholar 

  20. Fan X, Sun R, Zhu Y, Zhang S, Gou L, Lu L, Li D. Controllable 3D porous Ni current collector coupled with surface phosphorization enhances na storage of Ni3S2 nanosheet arrays. Small. 2022;18(8):2106161. https://doi.org/10.1002/smll.202106161.

    Article  CAS  Google Scholar 

  21. Kim HJ, Voronina N, Yashiro H, Myung ST. High-voltage stability in KFSI nonaqueous carbonate solutions for potassium-ion batteries: current collectors and coin-cell components. ACS Appl Mater Interfaces. 2020;12(38):42723. https://doi.org/10.1021/acsami.0c10471.

    Article  CAS  Google Scholar 

  22. Jiao X, Yuan X, Yin J, Boorboor Ajdari F, Feng Y, Gao G, Song J. Multiple network binders via dual cross-linking for silicon anodes of lithium-ion batteries. ACS Appl Energy Mater. 2021;4(9):10306. https://doi.org/10.1021/acsaem.1c02231.

    Article  CAS  Google Scholar 

  23. Hamon Y, Brousse T, Jousse F, Topart P, Buvat P, Schleich DM. Aluminum negative electrode in lithium ion batteries. J Power Sources. 2001;97–98:185. https://doi.org/10.1016/S0378-7753(01)00616-4.

    Article  Google Scholar 

  24. Jiang J, Nie P, Ding B, Wu W, Chang Z, Wu Y, Dou H, Zhang X. Effect of graphene modified cu current collector on the performance of Li4Ti5O12 anode for lithium-ion batteries. ACS Appl Mater Interfaces. 2016;8(45):30926. https://doi.org/10.1021/acsami.6b10038.

    Article  CAS  Google Scholar 

  25. Xie D, Zhang M, Wu Y, Xiang L, Tang Y. A flexible dual-ion battery based on sodium-ion quasi-solid-state electrolyte with long cycling life. Adv Funct Mater. 2020;30(5):1906770. https://doi.org/10.1002/adfm.201906770.

    Article  CAS  Google Scholar 

  26. Liang HJ, Hou BH, Li WH, Ning QL, Yang X, Gu ZY, Nie XJ, Wang G, Wu XL. Staging Na/K-ion de-/intercalation of graphite retrieved from spent Li-ion batteries: in operando X-ray diffraction studies and an advanced anode material for Na/K-ion batteries. Energy Environ Sci. 2019;12(12):3575. https://doi.org/10.1039/C9EE02759A.

    Article  CAS  Google Scholar 

  27. Liu P, Hao H, Celio H, Cui J, Ren M, Wang Y, Dong H, Chowdhury AR, Hutter T, Perras FA, Nanda J, Watt J, Mitlin D. Multifunctional separator allows stable cycling of potassium metal anodes and of potassium metal batteries. Adv Mater. 2022;34(7):2105855. https://doi.org/10.1002/adma.202105855.

    Article  CAS  Google Scholar 

  28. Gu ZY, Guo JZ, Cao JM, Wang XT, Zhao XX, Zheng XY, Li WH, Sun ZH, Liang HJ, Wu XL. Advanced high-entropy fluorophosphate cathode for sodium-ion batteries with increased working voltage and energy density. Adv Mater. 2022;34(14):2110108. https://doi.org/10.1002/adma.202110108.

    Article  CAS  Google Scholar 

  29. Tang W, Jian J, Chen G, Bian W, Yu J, Wang H, Zhou M, Ding D, Luo H. Carbon nanotube supported amorphous MoS2 via microwave heating synthesis for enhanced performance of hydrogen evolution reaction. Energy Mater. Adv. 2021; 2021: 8140964. Doi: https://doi.org/10.34133/2021/8140964.

  30. Li P, Chen G, Zhang N, Ma R, Liu X. β-cyclodextrin as lithium-ion diffusion channel with enhanced kinetics for stable silicon anode. Energy Environ Mater. 2020;4(1):72. https://doi.org/10.1002/eem2.12092.

    Article  CAS  Google Scholar 

  31. Xiang Y, Tao M, Zhong G, Liang Z, Zheng G, Huang X, Liu X, Jin Y, Xu N, Armand M, Zhang JG, Xu K, Fu R, Yang Y. Quantitatively analyzing the failure processes of rechargeable Li metal batteries. Sci. Adv. 2021;7(46):eabj3423. https://doi.org/10.1126/sciadv.abj3423.

  32. Steiger J, Richter G, Wenk M, Kramer D, Mönig R. Comparison of the growth of lithium filaments and dendrites under different conditions. Electrochem Commun. 2015;50:11. https://doi.org/10.1016/j.elecom.2014.11.002.

    Article  CAS  Google Scholar 

  33. Hundekar P, Basu S, Fan X, Li L, Yoshimura A, Gupta T, Sarbada V, Lakhnot A, Jain R, Narayanan S, Shi Y, Wang C, Koratkar N. In situ healing of dendrites in a potassium metal battery. Proc Natl Acad Sci U S A. 2020;117(11):201915470. https://doi.org/10.1073/pnas.1915470117.

    Article  CAS  Google Scholar 

  34. Fang C, Lu B, Pawar G, Zhang M, Cheng D, Chen S, Ceja M, Doux J-M, Musrock H, Cai M, Liaw B, Meng YS. Pressure-tailored lithium deposition and dissolution in lithium metal batteries. Nat Energy. 2021;6:987. https://doi.org/10.1038/s41560-021-00917-3.

    Article  CAS  Google Scholar 

  35. Zhang R, Wen S, Wang N, Qin K, Liu E, Shi C, Zhao N. N-doped graphene modified 3D porous Cu current collector toward microscale homogeneous Li deposition for Li metal anodes. Adv Energy Mater. 2018;8(23):1800914. https://doi.org/10.1002/aenm.201800914.

    Article  CAS  Google Scholar 

  36. Liu P, Wang Y, Gu Q, Nanda J, Watt J, Mitlin D. Dendrite-free potassium metal anodes in a carbonate electrolyte. Adv Mater. 2020;32(7):1906735. https://doi.org/10.1002/adma.201906735.

    Article  CAS  Google Scholar 

  37. Zhang Z, Zhang Z, Wang X, Li J, Lai Y. Enhanced electrochemical performance of sulfur cathode by incorporation of a thin conductive adhesion layer between the current collector and the active material layer. J Appl Electrochem. 2014;44:607. https://doi.org/10.1007/s10800-014-0660-8.

    Article  CAS  Google Scholar 

  38. Liu P, Wang Y, Hao H, Basu S, Feng X, Xu Y, Boscoboinik JA, Nanda J, Watt J, Mitlin D. Stable potassium metal anodes with an all-aluminum current collector through improved electrolyte wetting. Adv Mater. 2020;32(49):2002908. https://doi.org/10.1002/adma.202002908.

    Article  CAS  Google Scholar 

  39. Yang W, Zhou J, Wang S, Zhang W, Wang Z, Lv F, Wang K, Sun Q, Guo S. Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy Environ Sci. 2019;12(5):1605. https://doi.org/10.1039/C9EE00536F.

    Article  CAS  Google Scholar 

  40. Iwakura C, Fukumoto Y, Inoue H, Ohashi S, Kobayashi S, Tada H, Abe M. Electrochemical characterization of various metal foils as a current collector of positive electrode for rechargeable lithium batteries. J Power Sources. 1997;68:301. https://doi.org/10.1016/S0378-7753(97)02538-X.

    Article  CAS  Google Scholar 

  41. Yang M, Kong Q, Feng W, Yao W. N/O double-doped biomass hard carbon material realizes fast and stable potassium ion storage. Carbon. 2021;176:71. https://doi.org/10.1016/j.carbon.2021.01.114.

    Article  CAS  Google Scholar 

  42. Liu M, Chang L, Wang J, Li J, Jiang J, Pang G, Wang H, Nie P, Zhao C, Xu T, Wang L. Hierarchical N-doped carbon nanosheets submicrospheres enable superior electrochemical properties for potassium ion capacitors. J Power Sources. 2020;469:228415. https://doi.org/10.1016/j.jpowsour.2020.228415.

    Article  CAS  Google Scholar 

  43. Li J, Rui B, Wei W, Nie P, Chang L, Le Z, Liu M, Wang H, Wang L, Zhang X. Nanosheets assembled layered MoS2/MXene as high performance anode materials for potassium ion batteries. J Power Sources. 2020;449:227481. https://doi.org/10.1016/j.jpowsour.2019.227481.

    Article  CAS  Google Scholar 

  44. Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci. 2014;7(5):1597. https://doi.org/10.1039/C3EE44164D.

    Article  CAS  Google Scholar 

  45. Kung CH, Sow PK, Zahiri B, Mérida W. Assessment and interpretation of surface wettability based on sessile droplet contact angle measurement: challenges and opportunities. Adv Mater Interfaces. 2019;6(18):1900839. https://doi.org/10.1002/admi.201900839.

    Article  CAS  Google Scholar 

  46. Sun Y, Guo Z. Recent advances of bioinspired functional materials with specific wettability: from nature and beyond nature. Nanoscale Horiz. 2019;4(1):52. https://doi.org/10.1039/C8NH00223A.

    Article  CAS  Google Scholar 

  47. Zhang S, Huang J, Chen Z, Yang S, Lai Y. Liquid mobility on superwettable surfaces for applications in energy and the environment. J Mater Chem A. 2019;7(1):38. https://doi.org/10.1039/C8TA09403A.

    Article  CAS  Google Scholar 

  48. Kim M, Xu F, Lee JH, Jung C, Hong SM, Zhang QM, Koo CM. A fast and efficient pre-doping approach to high energy density lithium-ion hybrid capacitors. J Mater Chem A. 2014;2(26):10029. https://doi.org/10.1039/C4TA00678J.

    Article  CAS  Google Scholar 

  49. Sun C, Zhang X, Li C, Wang K, Sun X, Ma Y. Recent advances in prelithiation materials and approaches for lithium-ion batteries and capacitors. Energy Storage Materials. 2020;32:497. https://doi.org/10.1016/j.ensm.2020.07.009.

    Article  Google Scholar 

  50. Jiang J, Nie P, Ding B, Zhang Y, Xu G, Wu L, Dou H, Zhang X. Highly stable lithium ion capacitor enabled by hierarchical polyimide derived carbon microspheres combined with 3D current collectors. J Mater Chem A. 2017;5(44):23283. https://doi.org/10.1039/C7TA05972H.

    Article  CAS  Google Scholar 

  51. Jiang JM, Nie P, Dong SY, Wu YT, Zhang XG. Effect of pre-punched current collector for lithiation on the electrochemical performance of lithium-ion capacitor. Acta Phys. Chim. Sin. 2017;33(4):780. https://doi.org/10.3866/PKU.WHXB201612291.

  52. Aravindan V, Gnanaraj J, Lee YS, Madhavi S. Insertion-type electrodes for nonaqueous Li-ion capacitors. Chem Rev. 2014;114(23):11619. https://doi.org/10.1021/cr5000915.

    Article  CAS  Google Scholar 

  53. Sun Y, Zheng J, Tong Y, Wu Y, Liu X, Niu L, Li H. Construction of three-dimensional nitrogen doped porous carbon flake electrodes for advanced potassium-ion hybrid capacitors. J Colloid Interface Sci. 2022;606:1940. https://doi.org/10.1016/j.jcis.2021.09.143.

    Article  CAS  Google Scholar 

  54. Xu M, Feng Y, Chen B, Meng R, Xia M, Gu F, Yang D, Zhang C, Yang J. Armoring black phosphorus anode with stable metal–organic-framework layer for hybrid K-ion capacitors. Nano-Micro Lett. 2021;13:42. https://doi.org/10.1007/s40820-020-00570-7.

    Article  CAS  Google Scholar 

  55. Zong W, Chui N, Tian Z, Li Y, Yang C, Rao D, Wang W, Huang J, Wang J, Lai F, Liu T. Ultrafine MoP nanoparticle splotched nitrogen-doped carbon nanosheets enabling high-performance 3D-printed potassium-ion hybrid capacitors. Adv Sci. 2021;8(7):2004142. https://doi.org/10.1002/advs.202004142.

    Article  CAS  Google Scholar 

  56. Zhao S, Dong L, Sun B, Yan K, Zhang J, Wan S, He F, Munroe P, Notten PHL, Wang G. K2Ti2O5@C microspheres with enhanced k+ intercalation pseudocapacitance ensuring fast potassium storage and long-term cycling stability. Small. 2020;16(4):e1906131. https://doi.org/10.1002/smll.201906131.

    Article  CAS  Google Scholar 

  57. Dong S, Li Z, Xing Z, Wu X, Ji X, Zhang X. Novel potassium-ion hybrid capacitor based on an anode of K2Ti6O13 microscaffolds. ACS Appl Mater Interfaces. 2018;10(18):15542. https://doi.org/10.1021/acsami.7b15314.

    Article  CAS  Google Scholar 

  58. Moussa M, Al-Bataineh SA, Losic D, Dubal DP. Engineering of high-performance potassium-ion capacitors using polyaniline-derived N-doped carbon nanotubes anode and laser scribed graphene oxide cathode. Appl Mater Today. 2019;16:425. https://doi.org/10.1016/j.apmt.2019.07.003.

    Article  Google Scholar 

  59. Chang CH, Chen KT, Hsieh YY, Chang CB, Tuan HY. Crystal facet and architecture engineering of metal oxide nanonetwork anodes for high-performance potassium ion batteries and hybrid capacitors. ACS Nano. 2022;16(1):1486. https://doi.org/10.1021/acsnano.1c09863.

    Article  CAS  Google Scholar 

  60. Yi Y, Zeng Z, Lian X, Dou S, Sun J. Homologous nitrogen-doped hierarchical carbon architectures enabling compatible anode and cathode for potassium-ion hybrid capacitors. Small. 2022;18(13):e2107139. https://doi.org/10.1002/smll.202107139.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2017YFE0198100), the National Natural Science Foundation of China (Nos. 52072145 and 51802111), the Research Program on Science and Technology from the Education Department of Jilin Province (Nos. JJKH20220439KJ and JJKH20210450KJ), Jilin Talent Development Funding (No. 2021Y027), the Funding of Jilin Province Development and Reform Commission (No. 2020C026-2) and Special Projects of the Central Government in Guidance of Local Science and Technology Development (No. 202002017JC). M. Liu would like to acknowledge Funding of JLNU Innovation Program for Graduate Education (No. 202016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Min Chang or Ping Nie.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 459 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, MQ., Li, HM., Le, ZY. et al. Porous current collector enables carbon superior electrochemical performance for K-ion capacitors. Rare Met. 42, 134–145 (2023). https://doi.org/10.1007/s12598-022-02111-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02111-0

Keywords

Navigation