Skip to main content

Advertisement

Log in

Carbon shell coated hollow NiCoSex composite as high-performance anode for lithium storage

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Hollow NiCoSex (H-NiCoSex) nanospheres encapsulated with carbon shell were prepared via one-step easy solvothermal method followed by the carbon coating process. H-NiCoSex@C has large interior void with the uniform dimension around 350 nm and the thickness of carbon shell around 20–30 nm. Coupling with the large interior void as well as robust protective carbon shell, H-NiCoSex@C can retain the reversible capacity of 805.6 mAh·g−1 after 100 cycles at 200 mA·g−1. In particular, H-NiCoSex@C delivers large reversible capacity of 1532.2 mAh·g−1 upon cycling for 1000 loops at 1000 mA·g−1 with the capacity retention as high as 128.2% upon long period of activation. Even at the high rate of 3000 mA·g−1, its specific capacity still retains up to 659.3 mAh·g−1. The superior lithium storage performances for H-NiCoSex@C profit from its robust hollow core-shell structure as well as enhanced electrical conductivity and ion transport.

摘要

通过一步简单的溶剂热及后续的碳包覆过程制备了碳壳封装的中空 NiCoSex (H-NiCoSex) 纳米球。H-NiCoSex@C 内部空隙较大并且平均尺寸大概 350 nm, 碳壳厚度约 20-30 nm 较大的内部空隙与坚固的保护碳壳相耦合, H-NiCoSex@C 在 200 mA g−1 循环 100 圈后, 仍然可保持 805.6 mAh·g−1 的可逆容量。尤其是经过长时间的活化, H-NiCoSex@C 在1000 mA·g−1循环 1000 次后, 实现了 1532.2 mAh·g−1 的大可逆容量, 并且容量保持率高达 128.2% 即使在3000 mA·g-1的高倍率下, 其比容量仍然保持在 659.3 mAh·g−1。H-NiCoSex@C 优越的锂存储性能得益于其坚固的空心核壳结构以及增强的电导率和离子传输。

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Choi J, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater. 2016;1:16013.

    Article  CAS  Google Scholar 

  2. Yi JN, Li XP, Hu SJ, Li WS, Zeng RH, Fu Z, Chen L. TiO2-coated SnO2 hollow spheres as anode materials for lithium ion batteries. Rare Met. 2011;30(6):589.

    Article  CAS  Google Scholar 

  3. Xie QS, Lin L, Ma YT, Yang JR, Huang J, Wang LS, Peng DL. Facile fabrication of ZnO–CuO porous hybrid microspheres as lithium ion battery anodes with enhanced cyclability. Rare Met. 2017;36(5):403.

    Article  CAS  Google Scholar 

  4. Li YJ, Guo C, Yue LS, Qu WJ, Chen N, Dai YJ, Chen RJ, Wu F. Organosilicon-group-derived silica-ionogel electrolyte for lithium ion batteries. Rare Met. 2018;37(6):504.

    Article  CAS  Google Scholar 

  5. Yu P, Wang L, Liu X, Fu HG, Yu HT. CoWO4 nanopaticles wrapped by RGO as high capacity anode material for lithium ion batteries. Rare Met. 2017;36(5):411.

    Article  CAS  Google Scholar 

  6. Zhang SL, Yao F, Yang L, Zhang FZ, Xu SL. Sulfur-doped mesoporous carbon from surfactant-intercalated layered double hydroxide precursor as high-performance anode nanomaterials for both Li-ion and Na-ion batteries. Carbon. 2015;93:143.

    Article  CAS  Google Scholar 

  7. Tan CL, Cao XH, Wu XJ, He QY, Yang J, Zhang X, Chen JZ, Zhao W, Han SK, Nam GH, Sindoro M, Zhang H. Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chem Rev. 2017;117(9):6225.

    Article  CAS  Google Scholar 

  8. Lu HH, Shi CS, Zhao NQ, Liu EZ, He CN, He F. Carbon and few-layer MoS2 nanosheets co-modified TiO2 nanosheets with enhanced electrochemical properties forlithium storage. Rare Met. 2018;37(2):107.

    Article  CAS  Google Scholar 

  9. Simon P. Two-dimensional MXene with controlled interlayer spacing for electrochemical energy storage. ACS Nano. 2017;11(3):2393.

    Article  CAS  Google Scholar 

  10. Wang Q, Wang FC, Cheng XW. Electrochemical performance of aluminum niobium oxide as anode for lithium-ion batteries. Rare Met. 2016;35(3):256.

    Article  CAS  Google Scholar 

  11. Zhang MM, Chen JY, Li H, Wang CR. Recent progress in Li-ion batteries with TiO2 nanotube anodes grown by electrochemical anodization. Rare Met. 2021;40(2):249.

    Article  CAS  Google Scholar 

  12. Li JB, Yan D, Lu T, Yao YF, Pan LK. An advanced CoSe embedded within porous carbon polyhedra hybrid for high performance lithium-ion and sodium-ion batteries. Chem Eng J. 2017;325:14.

    Article  CAS  Google Scholar 

  13. Yuan CZ, Wu HB, Xia Y, Lou XW. ChemInform abstract: mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed. 2014;53(6):1488.

    Article  CAS  Google Scholar 

  14. Hou LR, Shi YY, Wu C, Zhang YR, Ma YZ, Sun X, Sun JF, Zhang XG, Yuan CZ. Monodisperse metallic NiCoSe2 hollow sub-microspheres: formation process, intrinsic charge-storage mechanism, and appealing pseudocapacitance as highly conductive electrode for electrochemical supercapacitors. Adv Funct Mater. 2018;28(13):1705921.

    Article  Google Scholar 

  15. Chen HC, Fan MQ, Li C, Tian GL, Lv CJ, Chen D, Shu KY, Jiang JJ. One-pot synthesis of hollow NiSe-CoSe nanoparticles with improved performance for hybrid supercapacitors. J Power Sources. 2016;329(15):314.

    Article  CAS  Google Scholar 

  16. Chen HC, Chen S, Fan MQ, Li C, Chen D, Shu KY, Jiang JJ. Bimetallic nickel cobalt selenides: a new kind of electroactive material for high-power energy storage. J Mater Chem A. 2015;3:23653.

    Article  CAS  Google Scholar 

  17. Liu XL, Chen YX, Liu HB, Liu ZQ. SiO2@C hollow sphere anodes for lithium-ion batteries. J Mater Sci Technol. 2017;33(3):239.

    Article  CAS  Google Scholar 

  18. Zheng SQ, Wu ZH, Wang JT, Zhang XJ. Performance of high capacity silicon/carbon anodes with different pore structures. Chin J Rare Met. 2020;44(3):225.

    Google Scholar 

  19. Hou LR, Sun X, Guo LZ, Meng XT, Wei JX, Yuan CZ. An aqueous battery-pseudocapacitor hybrid capacitor based on conductive core-shell NiCoSe2@Co9Se8 hollow nanospheres hybridized with nanoscale Ru0.41In0.59Oy. Energy Technol. 2020;8(3):1901319.

    Article  CAS  Google Scholar 

  20. Zhang X, Yang YX, Guo SQ, Hu FZ, Liu L. Mesoporous Ni0.85Se nanospheres grown in situ on graphene with high performance in dye-sensitized solar cells. ACS Appl Mater Interfaces. 2015;7(16):8457.

    Article  CAS  Google Scholar 

  21. Xu PM, Zhang JM, Ye ZF, Liu YY, Cen TL, Yuan DS. Co doped Ni0.85Se nanoparticles on RGO as efficient electrocatalysts for hydrogen evolution reaction. Appl Surf Sci. 2019;494(15):749.

    Article  CAS  Google Scholar 

  22. Fu HY, Chen YJ, Ren ZY, Xiao YT, Liu YY, Zhang X, Tian GH. Highly dispersed of Ni0.85Se nanoparticles on nitrogen-doped graphene oxide as efficient and durable electrocatalyst for hydrogen evolution reaction. Electrochim Acta. 2018;262(1):107.

    Article  CAS  Google Scholar 

  23. Wang XF, Kong DZ, Huang ZX, Wang Y, Yang HY. Nontopotactic reaction in highly reversible sodium storage of Ultrathin Co9Se8/rGO hybrid nanosheets. Small. 2017;13(24):1603980.

    Article  Google Scholar 

  24. Zhang P, Xu BH, Gao CX, Chen GL, Gao MZ. Facile synthesis of Co9Se8 quantum dots as charge traps for flexible organic resistive switching memory device. ACS Appl Mater Interfaces. 2016;8(44):2.

    Google Scholar 

  25. Wu F. Zhang, Bai Y, Wang XR, Dong RQ, Wu C, Lotus seedpod-derived hard carbon with hierarchical porous structure as stable anode for sodium-ion batteries. ACS Appl Mater Interfaces. 2019;11(13):12554.

    Article  CAS  Google Scholar 

  26. Fu H, Chen Y, Ren Z, Xiao Y, Liu Y, Zhang X, Tian G. Highly dispersed of Ni0.85Se nanoparticles on nitrogen-doped graphene oxide as efficient and durable electrocatalyst for hydrogen evolution reaction. Electrochim Acta. 2018;262(1):107.

    Article  CAS  Google Scholar 

  27. Jia M, Jin YH, Zhao PZ, Zhao CC, Jia MQ, Wang L, He XM. Hollow NiCoSe2 microspheres@N-doped carbon as high-performance pseudocapacitive anode materials for sodium ion batteries. Electrochim Acta. 2019;310(1):230.

    Article  CAS  Google Scholar 

  28. Hu H, Zhang J, Guan B, Lou XW. Unusual formation of CoSe@carbon nanoboxes, which have an inhomogeneous shell, for efficient lithium storage. Angew Chem Int Ed. 2016;55(33):9514.

    Article  CAS  Google Scholar 

  29. Sun Y, Hu X, Luo W, Xia F, Huang Y. Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv Funct Mater. 2013;23(19):2436.

    Article  CAS  Google Scholar 

  30. Yu H, Fan H, Yadian B, Tan H, Liu W, Huang Y, Yan Q. General approach for MOF-derived porous spinel AFe2O4 hollow structures and their superior lithium storage properties. ACS Appl Mater Interfaces. 2015;7(48):26751.

    Article  CAS  Google Scholar 

  31. Yang T, Liu YG, Yang DX, Deng BB, Huang ZH, Ling CD, Liu H, Wang GX, Guo ZP, Zheng RK. Bimetallic metal-organic frameworks derived Ni-Co-Se@C hierarchical bundle-like nanostructures with high-rate pseudocapacitive lithium ion storage. Energy Storage Mater. 2019;17:374.

    Article  Google Scholar 

  32. Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu XL, Zhang WX, Huang YH. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater. 2012;24(15):2047.

    Article  Google Scholar 

  33. Luo JS, Xia XH, Luo YS, Guan C, Liu JL, Qi XY, Yu T, Zhang H, Fan HJ. Rationally designed hierarchical TiO2@Fe2O3 hollow nanostructures for improved lithium ion storage. Adv Energy Mater. 2013;3(6):737.

    Article  CAS  Google Scholar 

  34. Yi Z, Lin N, Xu TJ, Qian YT. TiO2 coated Si/C interconnected microsphere with stable framework and interface for high-rate lithium storage. Chem Eng J. 2018;347:214.

    Article  CAS  Google Scholar 

  35. Sun RM, Wei Q, Sheng J, Shi C, An Q, Liu S, Mai LQ. Novel layer-by-layer stacked VS2 nanosheets with intercalation pseudocapacitance for high-rate sodium ion charge storage. Nano Energy. 2017;35:396.

    Article  CAS  Google Scholar 

  36. Zhang K, Park M, Zhou L, Lee GH, Li W, Kang YM, Chen J. Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Adv Funct Mater. 2016;26:6728.

    Article  CAS  Google Scholar 

  37. Muller GA, Cook JB, Kim HS, Tolbert SH, Dunn B. High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett. 2015;15(3):1911.

    Article  CAS  Google Scholar 

  38. Cook JB, Kim HS, Yan Y, Ko JS, Robbennolt S, Dunn B, Tolbert SH. Mesoporous MoS2 as a transition metal dichalcogenide exhibiting pseudocapacitive Li and Na-ion charge storage. Adv Energy Mater. 2016;6(9):1501937.

    Article  Google Scholar 

  39. Lou SF, Cheng XQ, Wang L, Gao JL, Li Q, Ma YL, Gao YZ, Zuo PJ, Du CY, Yin GP. High rate capability of three-dimensionally ordered macroporous T-Nb2O5 through Li+ intercalation pseudocapacitance. J Power Sources. 2017;361(1):80.

    Article  CAS  Google Scholar 

  40. Min J, Wang KY, Liu J, Yao Y, Wang WJ, Yang LY, Zhang RZ, Lei M. Facile synthesis of uniform MoO2/Mo2CTx heteromicrospheres as high-performance anode materials for lithium-ion batteries. J Power Sources. 2017;363(30):392.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51772133), the Natural Science Foundation of Shandong Province (No. ZR2017JL022), the Project of “20 Items of University” of Jinan (No. 2018GXRC001), and the Case-by-Case Project for Top Outstanding Talents of Jinan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Qing Wang or Cai-Xia Xu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 673 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, ZZ., Hou, JG., Zhou, J. et al. Carbon shell coated hollow NiCoSex composite as high-performance anode for lithium storage. Rare Met. 40, 3185–3194 (2021). https://doi.org/10.1007/s12598-021-01748-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01748-7

Keywords

Navigation