Skip to main content
Log in

Organosilicon-group-derived silica-ionogel electrolyte for lithium ion batteries

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In order to avoid leakage problem caused by liquid electrolyte, a new ionogel electrolyte was developed by in situ immobilizing organosilicon-functionalized ionic liquid within a nanoporous silica matrix. The ionic liquid evenly coats on the surface of porous silica and fills in the silica framework pores with no strong chemical interaction. The ionogel electrolyte has the dual advantages of a silica solid support and a wide electrochemical stability window of ionic liquid (4.87 V vs. Li+/Li). The half-cells assembled with this electrolyte and LiFePO4 electrode have excellent performance at room temperature and 60 °C. The Li/SiO2-IGE/LiFePO4 cell displays a discharge capacity of 129.1 mAh·g−1 after 200 charge/discharge cycles at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gu J, Li B, Du Z, Zhang C, Zhang D, Yang S. Multi-atomic layers of metallic aluminum for ultralong life lithium storage with high volumetric capacity. Adv Funct Mater. 2017;27(27):1700840.

    Article  Google Scholar 

  2. Gu J, Du Z, Zhang C, Yang S. Pyridinic nitrogen-enriched carbon nanogears with thin teeth for superior lithium storage. Adv Energy Mater. 2016;6(18):1600917.

    Article  Google Scholar 

  3. Li B, Zhang G, Huang K, Qiao L, Pang H. One-step synthesis of CoSn(OH)6 nanocubes for high-performance all solid-state flexible supercapacitors. Rare Met. 2017;36(5):457.

    Article  Google Scholar 

  4. Sun J, Yang S, Li S, Cao B. Double-activated porous carbons for high-performance supercapacitor electrodes. Rare Met. 2017;36(5):449.

    Article  Google Scholar 

  5. Zhang L, Wu S, Wan Y, Huo Y, Luo Y, Yang M, Li M, Lu Z. Mn3O4/carbon nanotube nanocomposites recycled from waste alkaline Zn–MnO2 batteries as high-performance energy materials. Rare Met. 2017;36(5):442.

    Article  Google Scholar 

  6. Wu F, Zhu Q, Chen R, Chen N, Chen Y, Li L. Ionic liquid electrolytes with protective lithium difluoro(oxalate)borate for high voltage lithium-ion batteries. Nano Energy. 2015;13:546.

    Article  Google Scholar 

  7. Eftekhari A, Liu Y, Chen P. Different roles of ionic liquids in lithium batteries. J Power Sour. 2016;334:221.

    Article  Google Scholar 

  8. Chavan SN, Tiwari A, Nagaiah TC, Mandal D. Ether and siloxane functionalized ionic liquids and their mixtures as electrolyte for lithium-ion batteries. Phys Chem Chem Phys. 2016;18(24):16116.

    Article  Google Scholar 

  9. Giffin GA. Ionic liquid-based electrolytes for “beyond lithium” battery technologies. J Mater Chem A. 2016;4(35):13378.

    Article  Google Scholar 

  10. Wang Y, Zhong W-H. Development of electrolytes towards achieving safe and high-performance energy-storage devices: a review. ChemElectroChem. 2015;2(1):22.

    Article  Google Scholar 

  11. Chen R, Qu W, Qian J, Chen N, Dai Y, Guo C, Huang Y, Li L, Wu F. Zirconia-supported solid-state electrolytes for high-safety lithium secondary batteries in a wide temperature range. J Mater Chem A. 2017;5(47):24677.

    Article  Google Scholar 

  12. Wu F, Tan G, Chen R, Li L, Xiang J, Zheng Y. Novel solid-state Li/LiFePO(4) battery configuration with a ternary nanocomposite electrolyte for practical applications. Adv Mater. 2011;23(43):5081.

    Article  Google Scholar 

  13. Wu F, Chen N, Chen R, Zhu Q, Tan G, Li L. Self-regulative nanogelator solid electrolyte: a new option to improve the safety of lithium battery. Adv Sci (Weinh). 2016;3(1):1500306.

    Article  Google Scholar 

  14. Khodagholy D, Curto VF, Fraser KJ, Gurfinkel M, Byrne R, Diamond D, Malliaras GG, Benito-Lopez F, Owens RM. Organic electrochemical transistor incorporating an ionogel as a solid state electrolyte for lactate sensing. J Mater Chem. 2012;22(10):4440.

    Article  Google Scholar 

  15. Wang S, Hsia B, Carraro C, Maboudian R. High-performance all solid-state micro-supercapacitor based on patterned photoresist-derived porous carbon electrodes and an ionogel electrolyte. J Mater Chem A. 2014;2(21):7997.

    Article  Google Scholar 

  16. Le Bideau J, Ducros JB, Soudan P, Guyomard D. Solid-state electrode materials with ionic-liquid properties for energy storage: the lithium solid-state ionic-liquid concept. Adv Funct Mater. 2011;21(21):4073.

    Article  Google Scholar 

  17. Kumar A, Ramani VK. RuO2–SiO2 mixed oxides as corrosion-resistant catalyst supports for polymer electrolyte fuel cells. Appl Catal B. 2013;138–139:43.

    Article  Google Scholar 

  18. Zheng B, Li W, Liu L, Wang X, Chen C, Yu Z, Li H. Determination of phenols isomers in water by novel nanosilica/polydimethylsiloxane-coated stirring bar combined with high performance liquid chromatography-fourier transform infrared spectroscopy. Sci Reports. 2017;7(1):8697.

    Article  Google Scholar 

  19. Miao Z, Shi J, Hao J, Fan Q, Zhang Y, Zhang M. Effect of nano-TiO2 and nano-SiO2 addition on the morphological control of α-Al2O3 platelets via solid-state reaction. Ceram Int. 2016;42(1):1183.

    Article  Google Scholar 

  20. Rong M, Zhang M, Zheng Y, Zeng H, Friedrichc K. Improvement of tensile properties of nano-SiO2/PP composites in relation to percolation mechanism. Polym Commun. 2001;42(7):3301.

    Article  Google Scholar 

  21. Chattopadhyay DK, Webster DC. Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci. 2009;34(10):1068.

    Article  Google Scholar 

  22. Di Noto V, Lavina S, Giffin GA, Negro E, Scrosati B. Polymer electrolytes: present, past and future. Electrochim Acta. 2011;57:4.

    Article  Google Scholar 

  23. Afify ND, Dalba G, Mahendra Kumar Koppolu U, Armellini C, Jestin Y, Rocca F. XRD and EXAFS studies of crystallisation in films. And EXAFS studies of crystallisation in films. Mater Sci Semicond Process. 2006;9(6):1043.

    Article  Google Scholar 

  24. Chen X, Zhao J, Zhang J, Qiu L, Xu D, Zhang H, Han X, Sun B, Fu G, Zhang Y, Yan F. Bis-imidazolium based poly(ionic liquid) electrolytes for quasi-solid-state dye-sensitized solar cells. J Mater Chem. 2012;22(34):18018.

    Article  Google Scholar 

  25. Leones R, Costa CM, Machado AV, Esperança JMSS, Silva MM, Lanceros-Méndez S. Development of solid polymer electrolytes based on poly(vinylidene fluoride-trifluoroethylene) and the [N1 1 1 2(OH)][NTf2] ionic liquid for energy storage applications. Solid State Ionics. 2013;253:143.

    Article  Google Scholar 

  26. Li Z, Xia Q, Liu L, Lei G, Xiao Q, Gao D, Zhou X. Effect of zwitterionic salt on the electrochemical properties of a solid polymer electrolyte with high temperature stability for lithium ion batteries. Electrochim Acta. 2010;56(2):804.

    Article  Google Scholar 

  27. Yong T, Zhang L, Wang J, Mai Y, Yan X, Zhao X. Novel choline-based ionic liquids as safe electrolytes for high-voltage lithium-ion batteries. J Power Sour. 2016;328:397.

    Article  Google Scholar 

  28. Zhang P, Yang LC, Li LL, Ding ML, Wu YP, Holze R. Enhanced electrochemical and mechanical properties of P(VDF-HFP)-based composite polymer electrolytes with SiO2 nanowires. J Membr Sci. 2011;379(1–2):80.

    Article  Google Scholar 

  29. Ma P, Tan J, Cheng H, Fang Y, Wang Y, Dai Y, Fang S, Zhou X, Lin Y. Polyaniline-grafted silica nanocomposites-based gel electrolytes for quasi-solid-state dye-sensitized solar cells. Appl Surf Sci. 2018;427:458.

    Article  Google Scholar 

  30. Wu PW, Holm SR, Duong AT, Dunn B, Kaner RB. ChemInform Abstract: A sol-gel solid electrolyte with high lithium ion conductivity. Cheminform. 1997;28(27):1004.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2016YFB0100204), the National Natural Science Foundation of China (No. 51772030), the Joint Funds of the National Natural Science Foundation of China (No. U1564206), the Major Achievements Transformation Project for Central University in Beijing and the Science and Technology Project of State Grid Corporation of China (No. 15-JS-191).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Jiao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YJ., Guo, C., Yue, LS. et al. Organosilicon-group-derived silica-ionogel electrolyte for lithium ion batteries. Rare Met. 37, 504–509 (2018). https://doi.org/10.1007/s12598-018-1056-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1056-4

Keywords

Navigation