Skip to main content
Log in

X-ray irradiation-induced degradation in Hf0.5Zr0.5O2 fully depleted silicon-on-insulator n-type metal oxide semiconductor field-effect transistors

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The n-type ultrathin fully depleted silicon-on-insulator (FDSOI) metal–oxide–semiconductor field-effect transistors (MOSFETs), with a Hf0.5Zr0.5O2 high dielectric permittivity (high-k) dielectric as gate insulator, were fabricated. The total ionizing dose effects were investigated, and an X-ray radiation dose up to 1500 krad(Si) was applied for both long- and short-channel devices. The short-channel devices (0.025–0.100 μm) exhibited less irradiation sensitivity compared with the long-channel devices (0.35–16 μm), leading to a 71% reduction in the irradiation-induced drain current growth and a 26% decrease in the shift of the threshold voltage. It was experimentally demonstrated that the OFF mode is the worst case among the three working conditions (OFF, ON and All0) for short-channel devices. Also, the determined effective electron mobility was enhanced by 38% after X-ray irradiation, attributed to the different compensations for charges triggered by radiation between the high-k dielectric and buried oxide. By extracting the carrier mobility, gate length modulation, and source/drain (S/D) parasitic resistance, the degradation mechanism on X-ray irradiation was revealed. Finally, the split capacitance–voltage measurements were used to validate the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Navarro C, Bawedin M, Andrieu F, Sagnes B, Cristolovcanu S. Why are SCE overestimated in FD-SOI MOSFETs? In: 2013 Proceedings of the European Solid-State Device Research Conference (ESSDERC). Bucharest, Romania. 2013:304.

  2. Shahidi GG, Ning TH, Dennard RH, Davari B. SOI for low-voltage and high-speed CMOS. In: Extended Abstracts of the 1994 International Conference on Solid State Devices and Materials. Yokohama, Japan. 1994:265.

  3. Flandre D, Colinge JP, Chen J, De Ceuster D, Eggermont JP, Ferreira L, Gentinne B, Jespers PGA, Viviani A, Gillon R, Raskin JP, Vander Vorst A, Vanhoenacker-Janvier D, Silveira F. Fully-depleted SOI CMOS technology for low-voltage low-power mixed digital/analog/microwave circuits. Analog Integr Circ Sig Process. 1999;21:213.

    Article  Google Scholar 

  4. Majumdar A, Ren Z, Koester SJ, Haensch W. Undoped-body extremely thin SOI MOSFETs with back gates. IEEE Trans Electron Dev. 2009;56(10):2270.

    Article  CAS  Google Scholar 

  5. Triyoso DH, Carter R, Kluth J, Hempel K, Gribelyuk M, Kang L, Kumar A, Mulfinger B, Javorka P, Punchihewa K, Child A, McArdle T, Holt J, Straub S, Sporer R, Chen P. Extending HKMG scaling on CMOS with FDSOI: Advantages and integration challenges. In: 2016 International Conference on IC Design and Technology (ICICDT). Ho Chi Minh City, Vietnam. 2016.1.

  6. Tseng HH. The progress and challenges of applying high-k/metal-gated devices to advanced CMOS technologies. Solid State Circuits Technologies, Jacobus W. Swart, IntechOpen. 2010.157.

  7. Ando T. Ultimate scaling of high-κ gate dielectrics: higher-κ or interfacial layer scavenging? Mater. 2012;5(12):478.

    Article  CAS  Google Scholar 

  8. Yang MM, Tu HL, Du J, Wei F, Xiong YH, Zhao HB, Zhang XQ. Energy band alignment of HfO2 on p-type (100)InP. Rare Met. 2014;36(3):198.

    Article  CAS  Google Scholar 

  9. He L, Zhao P, Liu J, Su Y, Chen H, Jia X, Arimura H, Mitard J, Witters L, Horiguchi N, Claeys C, Simoen E, Collaert N. Gate metal and cap layer effects on Ge nMOSFETs low-frequency noise behavior. IEEE Trans Electron Dev. 2018;66(2):1050.

    Article  Google Scholar 

  10. Salahuddin S, Datta S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 2008;8(2):405.

    Article  CAS  Google Scholar 

  11. Müller J, Böscke TS, Schröder U, Mueller S, Bräuhaus D, Böttger U, Frey L, Mikolajick T. Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett. 2012;12(8):4318.

    Article  Google Scholar 

  12. Sharma P, Tapily K, Saha AK, Zhang J, Shaughnessy A, Aziz A, Snider GL, Gupta S, Clark RD, Datta S. Impact of total and partial dipole switching on the switching slope of gate-last negative capacitance FETs with ferroelectric hafnium zirconium oxide gate stack. In: 2017 Symposium on VLSI Technology. Kyoto, Japan. 2017. T154.

  13. Li YR, Liu XZ, Zhu J, Zhang JH, Qian LX, Zhang WL. Dielectric thin films for GaN-based high-electron-mobility transistors. Rare Met. 2015;34(6):371.

    Article  CAS  Google Scholar 

  14. Zhang Z, Xu G, Zhang Q, Hou Z, Li J, Kong Z, Zhang Y, Xiang J, Xu Q, Wu Z, Zhu H, Yin H, Wang W, Ye T. FinFET with improved subthreshold swing and drain current using 3 nm ferroelectric Hf0.5Zr0.5O2. IEEE Electron Device Lett. 2019;40(3):367.

  15. Gaillardin M, Martinez M, Paillet P, Andrieu F, Girard S, Raine M, Marcandella C, Duhamel O, Richard N, Faynot O. Impact of SOI substrate on the radiation response of ultrathin transistors down to the 20 nm node. IEEE Trans Nucl Sci. 2013;60(4):2583.

    Article  CAS  Google Scholar 

  16. Liu R, Evans A, Chen L, Li YQ, Glorieux M, Wong R, Wen SJ, Cunha J, Summerer L, Ferlet-Cavrois V. Single event transient and TID study in 28 nm UTBB FDSOI technology. IEEE Trans Nucl Sci. 2017;64(1):113.

    Article  CAS  Google Scholar 

  17. Adell PC, Barnaby HJ, Schrimpf RD, Vermeire B. Band-to-band tunneling (BBT) induced leakage current enhancement in irradiated fully depleted SOI devices. IEEE Trans Nucl Sci. 2007;54(6):2174.

    Article  CAS  Google Scholar 

  18. Gaillardin M, Raine M, Paillet P, Martinez M, Marcandella O, Girard S, Duhamel O, Richard N, Andrieu F, Barraud S, Faynot O. Radiation effects in advanced SOI devices: New insights into Total Ionizing Dose and Single-Event Effects. IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), Monterey, CA, USA. 2013. 1.

  19. Yang L, Zhang Q, Huang Y, Zheng Z, Li B, Li B, Zhang X, Zhu H, Yin H, Guo Q, Luo J, Han Z. Total ionizing dose response and annealing behavior of bulk nFinFETs with ON-state bias irradiation. IEEE Trans Nucl Sci. 2018;65(8):1503.

    Article  CAS  Google Scholar 

  20. Felix JA, Schwank JR, Fleetwood DM, Shaneyfelt MR, Gusev EP. Effects of radiation and charge trapping on the reliability of high-k gate dielectrics. Microelectron Reliab. 2004;44(4):563.

    Article  CAS  Google Scholar 

  21. Fleetwood DM. Evolution of total ionizing dose effects in MOS devices with Moore’s Law scaling. IEEE Trans Nucl Sci. 2017;65(8):1465.

    Article  Google Scholar 

  22. Mattiazzo S, Bagatin M, Bisello D, Gerardin S, Marchioro A, Paccagnella A, Pantano D, Pezzotta A, Zhang CM, Baschirotto A. Total ionizing dose effects on a 28 nm Hi-K metal-gate CMOS technology up to 1 Grad. J Instrum. 2017;12(2):C02003.

    Article  Google Scholar 

  23. Zhou XJ, Fleetwood DM, Tsetseris L, Schrimpf RD, Pantelides ST. Effects of switched-bias annealing on charge trapping in HfO2 gate dielectrics. IEEE Trans Nucl Sci. 2006;53(6):3636.

    Article  CAS  Google Scholar 

  24. Tang Z, Tang B, Zhao L, Wang G, Xu J, Xu Y, Wang H, Wang D, Li J, Lin F, Yan J, Zhao C, Ye T. Impacts of back gate bias S12tressing on device characteristics for extremely thin SoI (ETSoI) MOSFETs. IEEE Electron Device Lett. 2014;35(3):303.

    Article  CAS  Google Scholar 

  25. Zhang Q, Yin H, Luo J, Yang H, Meng L, Li Y, Wu Z, Zhang Y, Zhang Y, Qin C, Li J, Gao J, Wang G, Xiong W, Xiang J, Zhou Z, Mao S, Xu G, Liu J, Qu Y, Yang T, Li J, Xu Q, Yan J, Zhu H, Zhao C, Ye T. FOI FinFET with ultra-low parasitic resistance enabled by fully metallic source and drain formation on isolated bulk-fin. In: 2016 IEEE International Electron Devices Meeting (IEDM). 2016.

  26. Zhang Q, Tu H, Yin H, Wei F, Zhao H, Zhang Z, Gao J, Wei Q, Zhang X, Zhou Z, Fan Y, Yan J. First observation of Pt3Si phase at Ni0.86Pt0.14 and Si silicide reactions. In: 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). Qingdao. 2018. 1.

  27. Ghibaudo G. New method for the extraction of MOSFET parameters. Electron Lett. 1988;24(9):543.

    Article  Google Scholar 

  28. Trojman L, Ragnarsson LÅ, Collaert N. Mobility extraction for short channel UTBB-FDSOI MOSFETs under back bias using an accurate inversion charge density model. Solid State Electron. 2019;154:24.

    Article  CAS  Google Scholar 

  29. Kurachi I, Kobayashi K, Kasai H, Mochizuki M, Okihara M, Hatsui T, Hara K, Arai Y. X-ray radiation hardness of fully-depleted SOI MOSFETs and its improvement. 2015; arXiv preprint arXiv:1506.08510.

  30. Terada K, Muta H. A new method to determine effective MOSFET channel length. Jpn J Appl Phys. 1979;18(5):953.

    Article  CAS  Google Scholar 

  31. Kurachi I, Kobayashi K, Okihara M, Kasai H, Hatsui T, Hara K, Miyoshi T, Arai Y. Analysis of effective gate length modulation by X-ray irradiation for fully depleted SOI p-MOSFETs. IEEE Trans Electron Dev. 2015;62(8):2371.

  32. Bhuyian MNU, Poddar S, Misra D, Tapily K, Clark RD, Consiglio S, Wajda CS, Nakamura G, Leusink GJ. Impact of cyclic plasma treatment on oxygen vacancy defects in TiN/HfZrO/SiON/Si gate stacks. Appl Phys Lett. 2015;106(19):193508.

    Article  Google Scholar 

  33. Ryan JT, Lenahan PM, Kang AY, Conley JF, Bersuker G, Lysaght P. Identification of the atomic scale defects involved in radiation damage in HfO2 based MOS devices. IEEE Trans Nucl Sci. 2005;52(6):2272.

    Article  CAS  Google Scholar 

  34. Paillet P, Gaillardin M, Ferlet-Cavrois V, Torres A, Faynot O, Jahan C, Tosti L, Cristoloveanu S. Total ionizing dose effects on deca-nanometer fully depleted SOI devices. IEEE Trans Nucl Sci. 2005;52(6):2345.

    Article  CAS  Google Scholar 

  35. Liu X, Cai L, Liu B, Yang X, Cui H, Li C. Total ionizing dose hardening of 45 nm FD-SOI MOSFETs using body-tie biasing. IEEE Access. 2019;7:51276.

    Article  Google Scholar 

  36. Chen J, Solomon R, Chan TY, Ko Ping K, Hu C. Threshold voltage and CV characteristics of SiO2 MOSFETs related to Si film thickness variations on SIMOX wafers. IEEE T Electron Dev. 1992;39(10):2346.

    Article  CAS  Google Scholar 

  37. Ohata A, Cassé M, Cristoloveanu S. Front- and back-channel mobility in ultrathin SOI-MOSFETs by front-gate split CV method. Solid-State Electron. 2007;51(2):245.

    Article  CAS  Google Scholar 

  38. Mileusnic S, Zivanov M, Habas P(n.d.). MOS transistors characterization by split C-V method. 2001 International Semiconductor Conference. In: CAS 2001 Proceedings (Cat. No.01TH8547). 2001;2:503.

  39. Terman LM. An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes. Solid-State Electron. 1962;5(5):285.

    Article  CAS  Google Scholar 

  40. Deen DA, Champlain JG. High frequency capacitance-voltage technique for the extraction of interface trap density of the heterojunction capacitor: Terman’s method revised. Appl Phys Lett. 2011;99(5):053501.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 61874135, 61904194 and 11905287), the National Major Project of Science and Technology of China (No. 2017ZX02315001), the Youth Innovation Promotion Association, CAS (No. Y9YQ01R004) and the Opening Project of Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, CAS (No. Y9YS05X002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fan-Yu Liu or Bo Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YD., Zhang, QZ., Liu, FY. et al. X-ray irradiation-induced degradation in Hf0.5Zr0.5O2 fully depleted silicon-on-insulator n-type metal oxide semiconductor field-effect transistors. Rare Met. 40, 3299–3307 (2021). https://doi.org/10.1007/s12598-020-01586-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01586-z

Keywords

Navigation