Skip to main content
Log in

Effects of total dose irradiation on the threshold voltage of H-gate SOI NMOS devices

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

This work researched the impact of total dose irradiation on the threshold voltage of N-type metal oxide semiconductor field effect transistors (nMOSFETs) in silicon-on-insulator (SOI) technology. Using the subthreshold separation technology, the factor causing the threshold voltage shift was divided into two parts: trapped oxide charges and interface states, the effects of which are presented under irradiation. Furthermore, by analyzing the data, the threshold voltage shows a negative shift at first and then turns to positive shift when irradiation dose is lower. Additionally, the influence of the dose rate effects on threshold voltage is discussed. The research results show that the threshold voltage shift is more significant in low dose rate conditions, even for a low dose of 100 krad(Si). The degeneration value of threshold voltage is 23.4 % and 58.0 % for the front-gate and the back-gate at the low dose rate, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.R. Schwank, M.R. Shaneyfelt, D.M. Fleetwood et al., Radiation effects in MOS oxides. IEEE Trans. Nucl. Sci. 2008(55), 1833–1853 (2001). doi:10.1109/TNS.2008.040

    Google Scholar 

  2. J.R. Schwank, V. Ferlet-Cavrois, M.R. Shaneyfelt et al., Radiation effects in SOI technologies. IEEE Trans. Nucl. Sci. 2003(55), 522–537 (2003). doi:10.1109/TNS.812930

    Article  Google Scholar 

  3. O. Flament, A. Torres, V. Ferlet-Cavrois, Bias dependence of FD transistor response to total dose irradiation. IEEE Trans Nucl. Sci. 50, 2316–2321 (2003). doi:10.1109/TNS.2003.822594

    Article  Google Scholar 

  4. X. Wu, W. Lu, X. Wang et al., Influence of channel length and layout on TID for 0.18 μm NMOS transistors. Nucl. Sci. Tech. 24, 060202–060206 (2013). doi:10.13538/j.1001-8042/nst.2013.06.019

    Google Scholar 

  5. K. Potter, K. Morgan, C. Shaw et al., Total ionizing dose response of fluorine implanted silicon-on-insulator buried oxide. Microelectron. Reliab. 54, 2339–2343 (2014). doi:10.1016/j.microrel.2014.07.018

    Article  Google Scholar 

  6. P. Paillet, J.R. Schwank, M.R. Shaneyfelt et al., Total dose hardness assurance testing using laboratory radiation sources. IEEE Trans. Nucl. Sci. 50, 2310–2315 (2003). doi:10.1109/TNS.2003.821392

    Article  Google Scholar 

  7. J. Liu, J.C. Zhou, H.W. Luo et al., Total-dose-induced edge effect in SOI NMOS transistors with different layouts. Microelectron. Reliab. 50, 45–47 (2010). doi:10.1016/j.microrel.2009.09.003

    Article  Google Scholar 

  8. S. Mattiazzo, M. Battaglia, D. Bisello et al., Total dose effects on a FD-SOI technology for monolithic pixel sensors. IEEE Trans. Nucl. Sci. 57, 2135–2141 (2010). doi:10.1109/TNS.2009.2038378

    Article  Google Scholar 

  9. H.X. Huang, D.W. Bi, M. Chen et al., Improving total dose tolerance of buried oxides in SOI wafers by multiple-step Si+ implantation. IEEE Trans. Nucl. Sci. 61, 1400–1406 (2014). doi:10.1109/TNS.2014.2316017

    Article  Google Scholar 

  10. F. Faccio, E.H.M. Heijine, P. Jarron et al., Study of device parameters for analog IC design in a 1.2 μm CMOS-SOI technology after 10 Mrad. IEEE Trans. Nucl. Sci. 39, 1739–1746 (1992). doi:10.1109/23.211361

    Article  Google Scholar 

  11. D.M. Fleetwood, H.A. Eisen, Total-dose radiation hardness assurance. IEEE Trans. Nucl. Sci. 50, 552–564 (2003). doi:10.1109/TNS.2003.813130

    Article  Google Scholar 

  12. B. Gao, G. Liu, L.X. Wang et al., Research on enhanced low dose rate sensitivity effect for PMOSFET used in space dosimeter. Atomic Energy Sci. Technol. 47, 848–853 (2013). doi:10.7538/yzk.2013.47.05.0848

    Google Scholar 

  13. P.J. McWhorter, P.S. Winokur, Simple technique for separating the effects of interface traps and trapped oxide charge in metal-oxide-semiconductor transistors. Appl. Phys. Lett. 48, 133–135 (1986). doi:10.1063/1.96974

    Article  Google Scholar 

  14. B.P. He, Z.B. Yao, J.K. Sheng, Study of the dose rate effect of 180 nm nMOSFETs. Chin Phys C 39(1–5), 016004 (2015). doi:10.1088/1674-1137/39/1/016004

    Article  Google Scholar 

  15. P.H. Harold, L.P. Ronald, C.W. Steven et al., Mechanisms for radiation dose-rate sensitivity of bipolar transistors. IEEE Trans. Nucl. Sci. 50, 1901–1909 (2003). doi:10.1109/TNS.2003.821803

    Article  Google Scholar 

  16. H.P. Hjalmarson, R.L. Pease, C.E. Hembree et al., Dose-rate dependence of radiation-induced interface trap density in silicon bipolar transistors. Nucl. Instrum. Methods Phys. Res. B 2006(250), 269–273 (2006). doi:10.1016/j.nimb.04.122

    Article  Google Scholar 

  17. X.J. Chen, H.J. Barnaby, R.D. Schrimpf et al., Nature of interface defect buildup in gate bipolar devices under low dose rate irradiation. IEEE Trans. Nucl. Sci. 53, 3649–3654 (2006). doi:10.1109/TNS.2006.885375

    Article  Google Scholar 

  18. J. Boch, F. Saigné, R.D. Schrimpf et al., Physical model for the low-dose-rate effect in bipolar devices. IEEE Trans. Nucl. Sci. 53, 3655–3660 (2006). doi:10.1109/TNS.2006.886008

    Article  Google Scholar 

  19. E.H. Poindexter, MOS interface states: overview and physicochemical perspective. Semicond. Sci. Technol. 4, 961–969 (1984). doi:10.1088/0268-1242/4/12/001

    Article  Google Scholar 

  20. N.S. Saks, R.B. Klein, D.L. Griscom, Formation of interface traps in MOSFETs during annealing following low temperature irradiation. IEEE Trans. Nucl. Sci. 35, 1234–1240 (1988). doi:10.1109/23.25445

    Article  Google Scholar 

  21. J. Alvarado, E. Boufouss, V. Kilchytska et al., Compact model for single event transients and total dose effects at high temperatures for partially depleted SOI MOSFETs. Microelectron. Reliab. 50, 1852–1856 (2010). doi:10.1016/j.microrel.2010.07.040

    Article  Google Scholar 

  22. B.P. He, Y.J. Yao, H.L. Peng et al., Effects of temperature and dose rates on mobility of NMOS devices. Microelectronics 30, 179–181 (2000). doi:10.3969/j.issn.1004-3365.2000.03.012

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Yao Zhi-Bin and Dr. He Bao-Ping at the Northwest Institute of Nuclear Technology, who provided help in setting up 60Co Source Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Xia Liu.

Additional information

This work is supported by the Project of National Natural Science Foundation of China (Grant Nos. 61376099, 11235008, 61434007) and the Specialized Research Fund for the Doctoral Program of High Education (Grant No. 20130203130002).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, QQ., Liu, HX., Chen, SP. et al. Effects of total dose irradiation on the threshold voltage of H-gate SOI NMOS devices. NUCL SCI TECH 27, 117 (2016). https://doi.org/10.1007/s41365-016-0110-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0110-x

Keywords

Navigation