Skip to main content
Log in

Dielectric thin films for GaN-based high-electron-mobility transistors

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The effects of dielectric thin films on the performance of GaN-based high-electron-mobility transistors (HEMTs) were reviewed in this work. Firstly, the nonpolar dielectric thin films which act as both the surface passivation layers and the gate insulators of the high-frequency GaN-based high-electron-mobility transistors were presented. Furthermore, the influences of dielectric thin films on the electrical properties of two-dimensional electron gas (2DEG) in the AlGaN/GaN hetero-structures were analyzed. It was found that the additional in-plane biaxial tensile stress was another important factor besides the change in surface potential profile for the device performance improvement of the AlGaN/GaN HEMTs with dielectric thin films as both passivation layers and gate dielectrics. Then, two kinds of polar gate dielectric thin films, the ferroelectric LiNbO3 and the fluorinated Al2O3, were compared for the enhancement-mode GaN-based HEMTs, and an innovative process was proposed. At last, high-permittivity dielectric thin films were adopted as passivation layers to modulate the electric field and accordingly increase the breakdown voltage of GaN-based HEMTs. Moreover, the polyimide embedded with Cr particles effectively increased the breakdown voltage of GaN-based HEMTs. Finally, the effects of high-permittivity dielectric thin films on the potential distribution in the drift region were simulated, which showed an expanded electric field peak at the drain-side edge of gate electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hong M, Mannaerts JP, Bower JE, Kwo J, Passlack M, Hwang WY, Tu LW. Novel Ga2O3(Gd2O3) passivation techniques to produce low D it oxide-GaAs interfaces. J Cryst Growth. 1997;175–176:422.

    Article  Google Scholar 

  2. Ren F, Kuo JM, Hong M, Hobson WS, Lothian JR, Lin J, Tsai HS, Mannaerts JP, Kwo J, Chu SNG, Chen YK, Cho AY. Ga2O3(Gd2O3)/InGaAs enhancement-mode n-channel MOSFET’s. IEEE Electron Device Lett. 1998;19(8):309.

    Article  Google Scholar 

  3. Hong M, Kwo J, Kortan AR, Mannaerts JP, Sergent AM. Epitaxial cubic gadolinium oxide as a dielectric for gallium arsenide passivation. Science. 1999;283(5409):1897.

    Article  Google Scholar 

  4. Kwo J, Hong M, Busch B, Muller DA, Chabal YJ, Kortan AR, Mannaerts JP, Yang B, Ye P, Gossmann H, Sergent AM, Ng KK, Bude J, Schulte WH, Garfunkel E, Gustafsson T. Advances in high kappa gate dielectrics for Si and III–V semiconductors. J Cryst Growth. 2003;251(1–4):645.

    Article  Google Scholar 

  5. Kwo J, Hong M. Research advances on III–V MOSFET electronics beyond Si CMOS. J Cryst Growth. 2009;311(7):1944.

    Article  Google Scholar 

  6. Shin B, Weber JR, Long RD, Hurley PK, Van de Walle CG, McIntyre PC. Origin and passivation of fixed charge in atomic layer deposited aluminum oxide gate insulators on chemically treated InGaAs substrates. Appl Phys Lett. 2010;96(15):152908.

    Article  Google Scholar 

  7. Wang WK, Hwang JCM, Xuan Y, Ye PD. Analysis of electron mobility in inversion-mode Al2O3/In x Ga1−x As MOSFETs. IEEE Trans Electron Devices. 2011;58(7):1972.

    Article  Google Scholar 

  8. Bernat J, Gregusova D, Heidelberger G, Fox A, Marso M, Luth H, Kordos P. SiO2/AlGaN/GaN MOSHFET with 0.7 μm gate-length and f max/f T of 40/24 GHz. Electron Lett. 2005;41(11):667.

    Article  Google Scholar 

  9. Liu C, Chor EF, Tan LS, Dong Y. Structural and electrical characterizations of the pulsed-laser-deposition-grown Sc2O3 /GaN hetero-structure. Appl Phys Lett. 2006;88(22):222113.

    Article  Google Scholar 

  10. Chang YC, Lee YJ, Chiu YN, Lin TD, Wu SY, Chiu HC, Kwo J, Wang YH, Hong M. MBE grown high kappa dielectrics Ga2O3(Gd2O3) on GaN. In: Proceedings of the 14th International Conference on Molecular Beam Epitaxy (MBE XIV). Tokyo, Japan. J Cryst Growth. 2007; 301:390.

  11. Chang YC, Chiu HC, Lee YJ, Huang ML, Lee KY, Hong M, Chiu YN, Kwo J, Wang YH. Structural and electrical characteristics of atomic layer deposited high k HfO2 on GaN. Appl Phys Lett. 2007;90(23):232904.

    Article  Google Scholar 

  12. Maeda N, Hiroki M, Watanabe N, Oda Y, Yokoyama H, Yagi T, Makimoto T, Enoki T, Kobayashi T. Systematic study of insulator deposition effect (Si3N4, SiO2, AlN, and Al2O3) on electrical properties in AlGaN/GaN hetero-structures. Jpn J Appl Phys. 2007;46(2):547.

    Article  Google Scholar 

  13. Liu ZH, Ng GI, Arulkumaran S, Maung YKT, Teo KL, Foo SC, Sahmuganathan V. Improved two-dimensional electron gas transport characteristics in AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor with atomic layer-deposited Al2O3 as gate insulator. Appl Phys Lett. 2009;95(22):223501.

    Article  Google Scholar 

  14. Hu X, Koudymov A, Simin G, Yang J, Khan MA, Tarakji A, Shur MS, Gaska R. Si3N4/AlGaN/GaN–metal–insulator–semiconductor hetero-structure field-effect transistors. Appl Phys Lett. 2001;79(17):2832.

    Article  Google Scholar 

  15. Hsiao CY, Shih CF, Chien CH, Huang CL. Textured magnesium titanate as gate oxide for GaN-based metal–oxide–semiconductor capacitor. J Am Ceram Soc. 2011;94(4):1005.

    Article  Google Scholar 

  16. Quah HJ, Cheong KY, Hassan Z, Lockman Z. Effect of post-deposition annealing in oxygen ambient on gallium-nitride-based MOS capacitors with cerium oxide gate. IEEE Trans Electron Devices. 2011;58(1):122.

    Article  Google Scholar 

  17. Hashizume T, Kotani J, Hasegawa H. Leakage mechanism in GaN and AlGaN Schottky interfaces. Appl Phys Lett. 2004;84(24):4884.

    Article  Google Scholar 

  18. Hashizume T, Ootomo S, Hasegawa H. Suppression of current collapse in insulated gate AlGaN/GaN hetero-structure field-effect transistors using ultrathin Al2O3 dielectric. Appl Phys Lett. 2003;83(14):2952.

    Article  Google Scholar 

  19. Chini A, Wittich J, Heikaman S, Keller S, DenBaars SP, Mishra UK. Power and linearity characteristics of GaN MISFETs on sapphire substrate. IEEE Electron Device Lett. 2004;25(2):55.

    Article  Google Scholar 

  20. Kuzmik J, Pozzovivo G, Abermann S, Franc J, Carlin O, Gonschorek M, Feltin E, Grandjean N, Bertagnolli E, Strasser G, Pogany D. Technology and performance of InAlN/AlN/GaN HEMTs with gate insulation and current collapse suppression using ZrO2 or HfO2. IEEE Trans Electron Devices. 2008;55(3):937.

    Article  Google Scholar 

  21. Simin G, Adivarahan V, Yang J, Koudymov A, Rai S, Asif Khan M. Stable 20 W/mm AlGaN-GaN MOSHFET. Electron Lett. 2005;41(13):774.

    Article  Google Scholar 

  22. Chumbes E, Smart J, Prunty T, Shealy J. Microwave performance of AlGaN/GaN metal insulator semiconductor field effect transistors on sapphire substrates. IEEE Trans Electron Devices. 2010;48(3):416.

    Article  Google Scholar 

  23. Maeda N, Wang C, Enoki T, Makimoto T, Tawara T. High drain current density and reduced gate leakage current in channel-doped AlGaN/GaN hetero-structure field-effect transistors with Al2O3/Si3N4 gate insulator. Appl Phys Lett. 2005;87(7):073504.

    Article  Google Scholar 

  24. Maeda N, Makimura T, Maruyama T, Wang C, Hiroki M, Yokoyama Y, Makimoto T, Kobayashi T, Enoki T. RF and DC characteristics in Al2O3/Si3N4 insulated-gate AlGaN/GaN hetero-structure field-effect transistors with regrown ohmic structure. Phys Status Solidi A. 2006;203(7):1861.

    Article  Google Scholar 

  25. Maeda N, Makimura T, Maruyama T, Wang C, Hiroki M, Yokoyama H, Makimoto T, Kobayashi T, Enoki T. DC and RF characteristics in Al2O3/Si3N4 insulated-gate AlGaN/GaN hetero-structure field-effect transistors. Jpn J Appl Phys. 2005;44(21):L646.

    Article  Google Scholar 

  26. Wang C, Maeda N, Hiroki M, Tawara T, Saitoh T, Makimoto T, Kobayashi T, Enoki T. Comparison of AlGaN/GaN insulated gate hetero-structure field-effect transistors with ultrathin Al2O3/Si3N4 bilayer and Si3N4 single layer. Jpn J Appl Phys. 2005;44(4B):2735.

    Article  Google Scholar 

  27. Wang CX, Maeda N, Hiroki M, Yokoyama H, Watanbe N, Makimoto T, Enoki T, Kobayashi T. Mechanism of superior suppression effect on gate current leakage in ultrathin Al2O3/Si3N4 bilayer-based AlGaN/GaN insulated gate hetero-structure field-effect transistors. Jpn J Appl Phys. 2006;45(1A):40.

    Article  Google Scholar 

  28. Koudymov A, Shur MS, Simin G, Chu K, Chao PC, Lee C, Jimenez J, Balistreri A. Analytical HFET I–V model in presence of current collapse. IEEE Trans Electron Devices. 2008;55(3):712.

    Article  Google Scholar 

  29. Vetury R, Zhang NQ, Keller S, Mishra UK. The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs. IEEE Trans Electron Devices. 2001;48(3):560.

    Article  Google Scholar 

  30. Kim KW, Jung SD, Kim DS, Im KS, Kang HS, Lee JH, Bae Y, Kwon DH, Cristoloveanu S. Charge trapping and interface characteristics in normally-off Al2O3/GaN-MOSFETs. Microelectron Eng. 2011;88(7):1225.

    Article  Google Scholar 

  31. Tian BL, Chen C, Zhang J-H, Li Y-R, Chen YF, Liu X-Z, Zhou JJ, Li L, Chen C. Structure and electrical characteristics of AlGaN/GaN MISHFET with Al2O3 thin film as both surface passivation and gate dielectric. Semicond Sci Technol. 2011;26(8):085023.

    Article  Google Scholar 

  32. Chang WH, Chang P, Lee WC, Lai TY, Kwo J, Hsu CH, Hong JM, Hong M. Epitaxial stabilization of a monoclinic phase in Y2O3 films on c-plane GaN. J Cryst Growth. 2011;323:107.

    Article  Google Scholar 

  33. Gila BP, Hlad M, Onstine AH, Frazier R, Thaler GT, Herrero A, Lambers E, Abernathy CR, Pearton SJ. Improved oxide passivation of AlGaN/GaN high electron mobility transistors. Appl Phys Lett. 2005;87(16):163503.

    Article  Google Scholar 

  34. Koehler AD, Nepal N, Anderson TJ, Tadjer MJ, Hobart KD, Eddy CR, Kub FJ. Atomic layer epitaxy AlN for enhanced AlGaN/GaN HEMT passivation. IEEE Electron Device Lett. 2013;34(9):1115.

    Article  Google Scholar 

  35. Hoffman J, Pan X, Reiner JW, Walker FJ, Han JP, Ahn CH, Ma TP. Ferroelectric field effect transistors for memory applications. Adv Mater. 2010;22(26–27):2957.

    Article  Google Scholar 

  36. McCartney CL, Mitchell C, Hunta M, Ho FD. Design and testing of a 1T-1C dynamic random access memory cell utilizing a ferroelectric transistor. Integr Ferroelectr. 2014;157(1):1.

    Article  Google Scholar 

  37. Wu YR, Singh J. Polar heterostructure for multifunction devices: theoretical studies. IEEE Trans Electron Devices. 2005;52(2):284.

    Article  Google Scholar 

  38. Chen C, Liu XZ, Tian BL, Shu P, Chen YF, Zhang WL, Jiang HC, Li YR. Fabrication of enhancement-mode AlGaN/GaN MISHEMTs by using fluorinated Al2O3 as gate dielectrics. IEEE Electron Device Lett. 2011;32(10):1373.

    Article  Google Scholar 

  39. Chen C, Liu XZ, Zhang JH, Tian BL, Jiang HC, Zhang WL, Li YR. Threshold voltage modulation mechanism of AlGaN/GaN metal–insulator–semiconductor high-electron mobility transistors with fluorinated Al2O3 as gate dielectrics. Appl Phys Lett. 2012;100(13):133507.

    Article  Google Scholar 

  40. Hao LZ, Zhu J, Liu YJ, Liao XW, Wang SL, Zhou JJ, Kong C, Zeng HZ, Zhang Y, Zhang WL, Li YR. Normally-off characteristics of LiNbO3/AlGaN/GaN ferroelectric field-effect transistor. Thin Solid Films. 2012;520(19):6313.

    Article  Google Scholar 

  41. Hao LZ, Li YR, Zhu J, Wu ZP, Deng J, Zeng HZ, Zhang JH, Liu XZ, Zhang WL. Enhancing electrical properties of LiNbO3/AlGaN/GaN transistors by using ZnO buffers. J Appl Phys. 2013;114(2):027022.

    Article  Google Scholar 

  42. Zhang JH, Yang CR, Liu Y, Zhang M, Chen HW, Zhang WL, Li YR. Can we enhance two-dimensional electron gas from ferroelectric/GaN heterostructures. J Appl Phys. 2010;108(8):084501.

    Article  Google Scholar 

  43. Liu XZ, Chen C, Zhu J, Zhang WL, Li YR. The modulation effects of charged dielectric thin films on two-dimensional electron gas in AlGaN/GaN heterostructure. J Appl Phys. 2013;114(2):027003.

    Article  Google Scholar 

  44. Xing HL, Dora Y, Chini A, Heikman S, Keller S, Mishra UK. High breakdown voltage AlGaN–GaN HEMTs achieved by multiple field plates. IEEE Electron Device Lett. 2004;25(4):161.

    Article  Google Scholar 

  45. Chen XB. Lateral high-voltage semiconductor devices with surface covered by thin film of dielectric material with high permittivity. US Patent; 6936907.2005.

  46. Chu FT. Vapor deposition polymerized polyimide thin films for miniaturized electronic devices. Chengdu: University of Electronic Science and Technology of China; 2014. 101.

    Google Scholar 

  47. Chu FT, Chen C, Zhou W, Liu XZ. Improved breakdown voltage in AlGaN/GaN high electron mobility transistorsby employing polyimide/chromium composite thin films as surface passivation and high-permittivity field plates. Chin Phys Lett. 2013;30(9):097303.

    Article  Google Scholar 

  48. Li JH, Li P, Huo WR, Zhang GJ, Zhai YH, Chen XB. Analysis and fabrication of an LDMOS with high-permittivity dielectric. IEEE Electron Device Lett. 2011;32(9):1266.

    Article  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the National Nature Science Foundation of China (No. 50932002) and the Research Foundation for the Doctoral Program of Higher Education of China (No. 2012018530003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Rong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YR., Liu, XZ., Zhu, J. et al. Dielectric thin films for GaN-based high-electron-mobility transistors. Rare Met. 34, 371–380 (2015). https://doi.org/10.1007/s12598-015-0451-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0451-3

Keywords

Navigation