Skip to main content
Log in

Effect of Warm Rolling on the Structure and Tensile Properties of a Metastable Fe-Based Medium Entropy Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The present study investigates the impact of warm rolling on the microstructure and tensile properties of Fe60(CoNi)30Cr10 Fe-based medium entropy alloy (Fe-MEA). Warm rolling is performed above room temperature but below the recrystallization temperature. The experimental procedures involve comparing the microstructure and mechanical properties of the warm-rolled specimen with a cold-rolled and subsequently annealed specimen. Microstructural analysis reveals coarse elongated face-centered cubic grains, deformation-induced martensite, and a high density of dislocations in the warm-rolled sample. Tensile tests conducted at ambient and cryogenic temperatures demonstrate that the warm-rolled Fe-MEA exhibits enhanced strength and a similar level of elongation compared to the annealed sample. The improved mechanical properties are attributed to the transformation-induced plasticity resulting from the high dislocation density by warm rolling. This study provides valuable insights into the potential of warm rolling as a processing technique to enhance the mechanical properties of Fe-MEA, offering possibilities for broader applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructure development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375-377, 213–218 (2004). https://doi.org/10.1016/j.msea.2003.10.257

    Article  CAS  Google Scholar 

  2. Z. Li, K.G. Pradeep, Y. Deng, C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227–230 (2016). https://doi.org/10.1038/nature17981

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Y.A. Alshataif, S. Sivasankaran, F.A. Al-Mufadi, A.S. Alaboodi, H.R. Ammar, Manufacturing methods, microstructural and mechanical properties evolutions of high-entropy alloys: a review. Met. Mater. Int. 26, 1099–1133 (2020). https://doi.org/10.1007/s12540-019-00565-z

    Article  Google Scholar 

  4. B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H. Bei, Z. Wu, E.P. George, Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 7, 10602 (2016). https://doi.org/10.1038/ncomms10602

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. L. Xia, Q. Wu, K. Zhou, F. He, Z. Wang, Concurrent recrystallization and precipitation for combination of superior precipitation and grain boundary hardening in Co37Cr20Ni37Ti3Al3 high-entropy alloy. Met. Mater. Int. 28, 2863–2873 (2022). https://doi.org/10.1007/s12540-022-01178-9

  6. H. Zhou, Y. Lin, F. Chen, O. Shen, Effect of precipitation behavior on mechanical properties of a Nb-containing CoCrNi-based high-entropy alloy. Met. Mater. Int. 29, 674–692 (2023). https://doi.org/10.1007/s12540-022-01265-x

    Article  CAS  Google Scholar 

  7. G.T. Lee, J.W. Won, K.R. Lim, M. Kang, H.J. Kwon, Y.S. Na, Y.J. Choi, Effect of microstructural features on the high-cycle fatigue behavior of CoCrFeMnNi high-entropy alloys deformed at room and cryogenic temperatures. Met. Mater. Int. 27, 593–602 (2021). https://doi.org/10.1007/s12540-020-00786-7

    Article  CAS  Google Scholar 

  8. Y.B. Kang, S.H. Shim, K.H. Lee, S.I. Hong, Dislocation creep behavior of CoCrFeMnNi high entropy alloy at intermediate temperatures. Mater. Res. Lett. 6, 689–695 (2018). https://doi.org/10.1080/21663831.2018.1543731

    Article  CAS  Google Scholar 

  9. S. Son, S. Kim, J. Kwak, G.H. Gu, D.S. Hwang, Y.-T. Kim, H.S. Kim, Superior antifouling properties of a CoCrFeMnNi high-entropy alloy. Mater. Lett. 300, 130130 (2021). https://doi.org/10.1016/j.matlet.2021.130130

    Article  CAS  Google Scholar 

  10. N.T.-C. Nguyen, P. Asghari-Rad, P. Sathiyamoorthi, A. Zargaran, C.S. Lee, H.S. Kim, Ultrahigh high-strain-rate superplasticity in a nanostructured high-entropy alloy. Nat. Commun. 11, 2736 (2020). https://doi.org/10.1038/s41467-020-16601-1

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. S.S. Nene, K. Liu, S. Sinha, M. Frank, S. Williams, R.S. Mishra, Superplasticity in fine grained dual phase high entropy alloy. Mater. 9, 100521 (2020). https://doi.org/10.1016/j.mtla.2019.100521

    Article  CAS  Google Scholar 

  12. H. Park, N.T.-C. Nguyen, P. Sathiyamoorthi, S. Son, J. Moon, H.S. Kim, Superplastic behavior of Al15(CuFeMn)85 immiscible medium-entropy alloy. Intermetallics 157, 107883 (2023). https://doi.org/10.1016/j.intermet.2023.107883

    Article  CAS  Google Scholar 

  13. J.W. Bae, J.B. Seol, J. Moon, S.S. Sohn, M.J. Jang, H.Y. Um, B.-J. Lee, H.S. Kim, Exceptional phase-transformation strengthening of ferrous medium-entropy alloys at cryogenic temperatures. Acta Mater. 161, 388–399 (2018). https://doi.org/10.1016/j.actamat.2018.09.057

    Article  ADS  CAS  Google Scholar 

  14. J.W. Bae, H.S. Kim, Towards ferrous medium-entropy alloys with low-cost and high-performance. Scr. Mater. 186, 169–173 (2020). https://doi.org/10.1016/j.scriptamat.2020.05.030

    Article  CAS  Google Scholar 

  15. D.G. Kim, Y.H. Jo, J. Yang, W.-M. Choi, H.S. Kim, B.-J. Lee, S.S. Sohn, S. Lee, Ultrastrong duplex high-entropy alloy with 2 GPa cryogenic strength enabled by an accelerated martensitic transformation. Scr. Mater. 171, 67–72 (2019). https://doi.org/10.1016/j.scriptamat.2019.06.026

    Article  CAS  Google Scholar 

  16. H.D. Park, J.W. Won, J. Moon, H.S. Kim, H. Sung, J.B. Seol, J.W. Bae, J.G. Kim, Fe55Co17.5Ni10Cr12.5Mo5 high-entropy alloy with outstanding cryogenic mechanical properties driven by deformation-induced phase transformation behavior. Met. Mater. Int. 29, 95–107 (2023). https://doi.org/10.1007/s12540-022-01215-7

    Article  CAS  Google Scholar 

  17. H. Kwon, S. Harjo, T. Kawasaki, W. Gong, S.G. Jeong, E.S. Kim, P. Sathiyamoorthi, H. Kato, H.S. Kim, Work hardening behavior of hot-rolled metastable Fe50Co25Ni10Al5Ti5Mo5 medium-entropy alloy: in situ neutron diffraction analysis. Sci. Technol. Adv. Mater. 23, 579–586 (2022). https://doi.org/10.1080/14686996.2022.2122868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. F. Haftlang, P. Asghari-Rad, J. Moon, S. Lee, H. Kato, H.S. Kim, Superior phase transformation-assisted mechanical properties of a metastable medium-entropy ferrous alloy with heterogeneous microstructure. Mater. Lett. 302, 130391 (2021). https://doi.org/10.1016/j.matlet.2021.130391

    Article  CAS  Google Scholar 

  19. J.W. Bae, J. Lee, A. Zargaran, H.S. Kim, Enhanced cryogenic tensile properties with multi-stage strain hardening through partial recrystallization in a ferrous medium-entropy alloy. Scr. Mater. 194, 113653 (2021). https://doi.org/10.1016/j.scriptamat.2020.113653

    Article  CAS  Google Scholar 

  20. J. Lee, J.W. Bae, P. Asghari-Rad, H.S. Kim, Double-humped strain hardening in a metastable ferrous medium-entropy alloy by cryogenic pre-straining and subsequent heat treatment. Scr. Mater. 211, 114511 (2022). https://doi.org/10.1016/j.scriptamat.2022.114511

    Article  CAS  Google Scholar 

  21. D.G. Kim, Y.H. Jo, J.M. Park, W.-M. Choi, H.S. Kim, B.-J. Lee, S.S. Sohn, S. Lee, Effects of annealing temperature on microstructures and tensile properties of a single FCC phase CoCuMnNi high-entropy alloy. J. Alloys Compd. 812, 152111 (2020). https://doi.org/10.1016/j.jallcom.2019.152111

    Article  CAS  Google Scholar 

  22. J. Yang, Y.H. Jo, D.W. Kim, W.-M. Choi, H.S. Kim, B.-J. Lee, S.S. Sohn, S. Lee, Effects of transformation-induced plasticity (TRIP) on tensile property improvement of Fe45Co30Cr10V10Ni5-xMnx high-entropy alloys. Mater. Sci. Eng. A 772, 138809 (2020). https://doi.org/10.1016/j.msea.2019.138809

    Article  CAS  Google Scholar 

  23. M. Harivandi, M. Malekan, S.A. Seyyed Ebrahimi, Soft magnetic high entropy FeCoNiCuMn alloy with excellent ductility and high electrical resistance. Met. Mater. Int. 28, 556–564 (2022). https://doi.org/10.1007/s12540-021-01111-6

  24. Y.A. Alshataif, S. Sivasankaran, F.A. Al-Mufadi, A.S. Alaboodi, H.R. Ammar, Synthesis, microstructures and mechanical behaviour of Cr0.21Fe0.20Al0.41Cu0.18 and Cr0.14Fe0.13Al0.26Cu0.11Si0.25Zn0.11 nanocrystallite entropy alloys prepared by mechanical alloying and hot-pressing. Met. Mater. Int. 27, 139–155 (2021). https://doi.org/10.1007/s12540-020-00660-6

    Article  CAS  Google Scholar 

  25. S. Liu, K. Luo, H. Gu, H. Gao, C. Kong, H. Yu, Phase reversion-induced heterogeneous structure in a ferrous medium-entropy alloy via cryorolling and annealing. Scr. Mater. 222, 115004 (2023). https://doi.org/10.1016/j.scriptamat.2022.115004

    Article  CAS  Google Scholar 

  26. N. Stepanov, M. Tikhonovsky, N. Yurchenko, D. Zyabkin, M. Klimova, S. Zherebtsov, A. Efimov, G. Salishchev, Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy. Intermetallics 59, 8–17 (2015). https://doi.org/10.1016/j.intermet.2014.12.004

    Article  CAS  Google Scholar 

  27. J. Hou, M. Zhang, S. Ma, P.K. Liaw, Y. Zhang, J. Qiao, Strengthening in Al05CoCrFeNi high-entropy alloys by cold rolling. Mater. Sci. Eng. A 707, 593–601 (2017). https://doi.org/10.1016/j.msea.2017.09.089

    Article  CAS  Google Scholar 

  28. E. Povolyaeva, S. Mironov, D. Shaysultanov, N. Stepanov, S. Zherebtsov, Outstanding cryogenic strength-ductility properties of a cold-rolled medium- entropy TRIP Fe65(CoNi)25Cr9·5C0.5 alloy. Mater. Sci. Eng. A 836, 142720 (2022). https://doi.org/10.1016/j.msea.2022.142720

    Article  CAS  Google Scholar 

  29. J. Yi, L. Yang, L. Wang, L. Liu, Equiatomic, Cu‐containing CrCuFeTiV 3d transition metal high entropy alloy with an enhanced strength and hardness synergy. Met. Mater. Int. 28, 227–236 (2022). https://doi.org/10.1007/s12540-021-00990-z

  30. A. Shabani, M.R. Toroghinejad, A. Shafyei, P. Cavaliere, Effect of cold-rolling on microstructure, texture and mechanical properties of an equiatomic FeCrCuMnNi high entropy alloy. Mater. 1, 175–184 (2018). https://doi.org/10.1016/j.mtla.2018.06.004

    Article  CAS  Google Scholar 

  31. J. Saha, G. Ummethala, S.R.K. Malladi, P.P. Bhattacharjee, Severe warm-rolling mediated microstructure and texture of equiatomic CoCrFeMnNi high entropy alloy: A comparison with cold-rolling. Intermetallics 129, 107029 (2021). https://doi.org/10.1016/j.intermet.2020.107029

    Article  CAS  Google Scholar 

  32. L. Wang, Z. Feng, H. Niu, O. Gao, M. Xu, L. Yang, J. Yi. Study on microstructure and mechanical properties of CrCuFeNiV multi principal element alloy. Met. Mater. Int. 28, 2987–2996 (2022). https://doi.org/10.1007/s12540-022-01196-7

  33. G. Sun, L. Du, J. Hu, B. Zhang, R.D.K. Misra, On the influence of deformation mechanism during cold and warm rolling on annealing behavior of a 304 stainless steel. Mate. Sci. Eng. A 746, 341–355 (2019). https://doi.org/10.1016/j.msea.2019.01.020

    Article  CAS  Google Scholar 

  34. K.-Y. Tsai, M.-H. Tsai, J.-W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 61, 4887–4897 (2013). https://doi.org/10.1016/j.actamat.2013.04.058

    Article  ADS  CAS  Google Scholar 

  35. J.W. Yeh, S.J. Lin, T.-S. Chin, J.-Y. Gan, S.-K. Chen, T.-T. Shun, C.-H. Tsau, S.-Y. Chou, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metall. Mater. Trans. A 35, 2533–2536 (2004). https://doi.org/10.1007/s11661-006-0234-4

    Article  Google Scholar 

  36. Z.F. He, N. Jia, D. Ma, H.L. Yan, Z.M. Li, D. Raabe, Joint contribution of transformation and twinning to the high strength-ductility combination of a FeMnCoCr high entropy alloy at cryogenic temperatures. Mater. Sci. Eng. A 759, 437–447 (2019). https://doi.org/10.1016/j.msea.2019.05.057

    Article  CAS  Google Scholar 

  37. Z. Li, C.C. Tasan, K.G. Pradeep, D. Raabe, A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior. Acta Mater. 131, 323–335 (2017). https://doi.org/10.1016/j.actamat.2017.03.069

    Article  ADS  CAS  Google Scholar 

  38. Y. Song, W. Peterson, Theoretical study for dynamic strain aging in niobium: effect of temperature and strain rate on the flow stress. Met. Mater. Int. 28, 589–602 (2022). https://doi.org/10.1007/s12540-020-00902-7

  39. G.B. Olson, M. Cohen, A mechanism for the strain-induced nucleation of martensitic transformations. J. Less-Common Met. 28, 107–118 (1972). https://doi.org/10.1016/0022-5088(72)90173-7

    Article  CAS  Google Scholar 

  40. M.R. Gilbert, P. Schuck, B. Sadigh, J. Marian, Free energy generalization of the Peierls potential in iron. Phys. Rev. Lett. 111, 095502 (2013). https://doi.org/10.1103/PhysRevLett.111.095502

    Article  ADS  CAS  PubMed  Google Scholar 

  41. T.S. Byun, N. Hashimoto, K. Farrell, Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels. Acta Mater. 52, 3889–3899 (2004). https://doi.org/10.1016/j.actamat.2004.05.003

    Article  ADS  CAS  Google Scholar 

  42. G.E. Dieter, Mechanical Metallurgy, 3rd edn. (McGra-Hill, New York, 1986)

    Google Scholar 

  43. J.M. Park, P. Asghari-Rad, A. Zargaran, J.W. Bae, J. Moon, H. Kwon, H.S. Kim, Nano-scale heterogeneity-driven metastability engineering in ferrous medium-entropy alloy induced by additive manufacturing. Acta Mater. 221, 117426 (2021). https://doi.org/10.1016/j.actamat.2021.117426

    Article  CAS  Google Scholar 

  44. A.V. Podolskiy, Y.O. Shapovalov, E.D. Tabachnikova, A.S. Tortika, M.A. Tikhonovsky, B. Joni, E. Ódor, T. Ungar, S. Maier, C. Rentenberger, M.J. Zehetbauer, E. Schafler, Anomalous evolution of strength and microstructure of high-entropy Alloy CoCrFeNiMn after high-pressure torsion at 300 and 77 K. Adv. Eng. Mater. 22, 1900752 (2020). https://doi.org/10.1002/adem.201900752

    Article  CAS  Google Scholar 

  45. J.G. Kim, N.A. Enikeev, J.B. Seol, M.M. Abramova, M.V. Karavaeva, R.Z. Valiev, C.G. Park, H.S. Kim, Superior strength and multiple strengthening mechanisms in nanocrystalline TWIP steel. Sci. Rep. 8, 11200 (2018). https://doi.org/10.1038/s41598-018-29632-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. H. Singh, D. Kumar, Validation of novel geometrically necessary dislocations calculation model using nanoindentation of the metal matrix nanocomposite. Metall. Mater. Trans. A 51, 6700–6705 (2020). https://doi.org/10.1007/s11661-020-06016-4

    Article  CAS  Google Scholar 

  47. Y.H. Jo, D.W. Kim, H.S. Kim, S. Lee, Effects of grain size on body-centered-cubic martensitic transformation in metastable Fe46Co30Cr10Mn5Si7V2 high-entropy alloy. Scr. Mater. 194, 113620 (2021). https://doi.org/10.1016/j.scriptamat.2020.11.005

    Article  CAS  Google Scholar 

  48. J. Liu, C. Chen, Q. Feng, X. Fang, H. Wang, F. Liu, J. Lu, D. Raabe, Dislocation activities at the martensite phase transformation interface in metastable austenitic stainless steel: An in-situ TEM study. Mater. Sci. Eng. A 703, 236–243 (2017). https://doi.org/10.1016/j.msea.2017.06.107

    Article  CAS  Google Scholar 

  49. D.A. Porter, K.E. Easterling, M.A. Sherif, Phase Transformations in Metals and Alloys, 3rd edn. (CRC Press, New York, 2009)

    Google Scholar 

  50. I. Tamura, Deformation-induced martensitic transformation and transformation-induced plasticity in steels. Met. Sci. J. 16(5), 245–253 (1982). https://doi.org/10.1179/030634582790427316

    Article  CAS  Google Scholar 

  51. J. Zhang, Y. Jiang, C. Hu, G. Ji, C. Song, O. Zhai. Effect of Cr on phase transformation behavior of austenite in Fe-20Mn-9Al-1.2C-xCr low-density steels during isothermal aging. Met. Mater. Int. 28, 2583–2595 (2022). https://doi.org/10.1007/s12540-022-01167-y

Download references

Author information

Authors and Affiliations

Authors

Contributions

HP: Conceptualization, methodology, investigation, writing–original draft, and writing–review and editing. JL: validation, formal analysis, and writing–review and editing. REK: conceptualization. SS: methodology. SYA: methodology. HSK: supervision, project administration, funding acquisition, and writing–review and editing.

Corresponding author

Correspondence to Hyoung Seop Kim.

Ethics declarations

Competing Interests

The authors declare that one of the authors (H. S. Kim) is the editor of Metals and Materials International.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3619 KB)

Supplementary file2 (MP4 1447 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, H., Lee, J., Kim, R.E. et al. Effect of Warm Rolling on the Structure and Tensile Properties of a Metastable Fe-Based Medium Entropy Alloy. Met. Mater. Int. 30, 585–592 (2024). https://doi.org/10.1007/s12540-023-01532-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01532-5

Keywords

Navigation