Skip to main content
Log in

Effect of Precipitation Behavior on Mechanical Properties of a Nb-Containing CoCrNi-Based High-Entropy Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This paper reports systematic studies on precipitation behavior of a solid-solution treated single-phase Nb-containing CoCrNi-based face-centered-cubic high-entropy alloy, CoCrNi1.5Nb0.2, at a series of aging temperatures of 660–960 °C for different aging times of 1–48 h, and on the effect of precipitation behavior on tensile strength and ductility. Aging at 660 °C for 1–48 h produced disc-shaped coherent γ"-(Ni,Co,Cr)3(Nb,Cr) precipitates of nanometric diameter and thickness with the D022 superlattice, offering precipitation strengthening via dislocation shear mechanism. The diameter monotonically increases with increasing aging time, and the thickness increases with increasing aging time from 1 to 18 h but essentially remains unchanged with aging time of 18–48 h; the volume fraction of γ" precipitates constantly increases with increasing aging time. Consequently, yield strength (YS) and ultimate tensile strength (UTS) of CoCrNi1.5Nb0.2 increase with increasing aging time due to increased volume fraction and dimensions of γ" precipitates. Uniform elongation (UE) of CoCrNi1.5Nb0.2 decreases with increasing aging time due to increased strength of CoCrNi1.5Nb0.2 and dimensions of γ" precipitates. Aging at 760 °C for 1 h yielded dimensions of γ" precipitates similar to, but volume fraction of γ" precipitates lower than, those during aging at 660 °C for 48 h, leading to lower YS and UTS and higher UE than those in CoCrNi1.5Nb0.2 aged at 660 °C for 48 h. Unlike aging at 660 °C for 1–48 h and at 760 °C for 1 h, aging at 860 and 960 °C for 1 h generated semi-coherent lath-shaped ε-(Ni,Co,Cr)3(Nb,Cr) precipitates of submicrometric to micrometric length and submicrometric width with the D019 structure, changing precipitation strengthening mechanism to Orowan dislocation bypass mechanism. Submicrometric to micrometric ε precipitates provide limited precipitation strengthening, only attaining modest YS and UTS. Despite submicrometric to micrometric length of ε precipitates, CoCrNi1.5Nb0.2 still exhibits a relatively high UE due to strength-ductility tradeoff.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Adv. Eng. Mater. 6, 299–303 (2004)

    Article  CAS  Google Scholar 

  2. J. Chen, X. Zhou, W. Wang, B. Liu, Y. Lv, W. Yang, D. Xu, Y. Liu, J. Alloy. Compd. 760, 15–30 (2018)

    Article  CAS  Google Scholar 

  3. Z. Li, S. Zhao, R.O. Ritchie, M.A. Meyers, Prog. Mater. Sci. 102, 296–345 (2019)

    Article  CAS  Google Scholar 

  4. B. Cantor, Prog. Mater. Sci. 120, 100754 (2021)

    Article  CAS  Google Scholar 

  5. W. Li, D. Xie, D. Li, Y. Zhang, Y. Gao, P.K. Liaw, Prog. Mater. Sci. 118, 100777 (2021)

    Article  CAS  Google Scholar 

  6. M. Naeem, H. He, S. Harjo, T. Kawasaki, F. Zhang, B. Wang, S. Lan, Z. Wu, Y. Wu, Z. Lu, C.T. Liu, X.-L. Wang, Scripta Mater. 188, 21–25 (2020)

    Article  CAS  Google Scholar 

  7. G.D. Sathiaraj, C.W. Tsai, J.W. Yeh, M. Jahazi, P.P. Bhattacharjee, J. Alloy. Compd. 688, 752–761 (2016)

    Article  CAS  Google Scholar 

  8. F. Otto, A. Dlouhy, C. Somsen, H. Bei, G. Eggeler, E.P. George, Acta Mater. 61, 5743–5755 (2013)

    Article  CAS  Google Scholar 

  9. P.T. Hung, M. Kawasaki, J.-K. Han, J.L. Lábár, J. Gubicza, Mater. Charact. 168, 110550 (2020)

    Article  CAS  Google Scholar 

  10. N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, R.R. Chen, Y.Q. Su, J.J. Guo, H.Z. Fu, Mater. Sci. Eng. A 651, 698–707 (2016)

    Article  CAS  Google Scholar 

  11. C.-H. Tu, Y.-C. Lai, S.-K. Wu, Y.-H. Lin, Mater. Lett. 303, 130526 (2021)

    Article  CAS  Google Scholar 

  12. Y.J. Zhao, J.W. Qiao, S.G. Ma, M.C. Gao, H.J. Yang, M.W. Chen, Y. Zhang, Mater. Design. 96, 10–15 (2016)

    Article  CAS  Google Scholar 

  13. M.C. Gao, B. Zhang, S.M. Guo, J.W. Qiao, J.A. Hawk, Metall. Mater. Trans. A 47, 3322–3332 (2016)

    Article  CAS  Google Scholar 

  14. T.W. Zhang, S.G. Ma, D. Zhao, Y.C. Wu, Y. Zhang, Z.H. Wang, J.W. Qiao, Int. J. Plasticity 124, 226–246 (2020)

    Article  CAS  Google Scholar 

  15. B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H. Bei, Z. Wu, E.P. George, R.O. Ritchie, Nat. Commun. 7, 10602 (2016)

    Article  CAS  Google Scholar 

  16. S.-Q. Xia, W. Zhen, T.-F. Yang, Y. Zhang, J. Iron. Steel. Res. Int. 22, 879–884 (2015)

    Article  Google Scholar 

  17. P. Wu, K. Gan, D. Yan, Z. Fu, Z. Li, Corros. Sci. 183, 109341 (2021)

    Article  CAS  Google Scholar 

  18. Q.Q. Ding, Y. Zhang, X. Chen, X.Q. Fu, D.K. Chen, S.J. Chen, L. Gu, F. Wei, H.B. Bei, Y.F. Gao, M.R. Wen, J.X. Li, Z. Zhang, T. Zhu, R.O. Ritchie, Q. Yu, Nature 574, 223–227 (2019)

    Article  CAS  Google Scholar 

  19. Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Nature 534, 227–230 (2016)

    Article  CAS  Google Scholar 

  20. J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, Acta Mater. 62, 105–113 (2014)

    Article  CAS  Google Scholar 

  21. F. He, Z. Wang, M. Zhu, J. Li, Y. Dang, J. Wang, Mater. Design. 85, 1–6 (2015)

    Article  CAS  Google Scholar 

  22. L. Jiang, Y. Lu, Y. Dong, T. Wang, Z. Cao, T. Li, Intermetallics 44, 37–43 (2014)

    Article  Google Scholar 

  23. N. Park, I. Watanabe, D. Terada, Y. Yokoyama, P.K. Liaw, N. Tsuji, Metall. Mater. Trans. A 46, 1481–1487 (2015)

    Article  CAS  Google Scholar 

  24. F. Průša, M. Cabibbo, A. Šenková, V. Kučera, Z. Veselka, A. Školáková, D. Vojtěch, J. Cibulková, J. Čapek, J. Alloy. Compd. 835, 155308 (2020)

    Article  Google Scholar 

  25. J. Wang, S. Wu, S. Fu, S. Liu, , M. Yan, Q. Lai, S. Lan, H. Hahn, T. Feng, Scripta Mater. 187, 335–339 (2020)

    Article  CAS  Google Scholar 

  26. P. Asghari-Rad, P. Sathiyamoorthi, N. Thi-Cam Nguyen, A. Zargaran, T.S. Kim, H.S. Kim, Scripta Mater. 190, 69–74 (2021)

    Article  Google Scholar 

  27. L. Zhang, X. Du, L. Zhang, W. Li, Y. Liang, J. Yu, N. Zou, G. Wan, Y. Tang, G. Duan, B. Wu, Vacuum 188, 110169 (2021)

    Article  CAS  Google Scholar 

  28. E. Jumaev, S.H. Hong, J.T. Kim, H.J. Park, Y.S. Kim, S.C. Mun, J.-Y. Park, G. Song, J.K. Lee, B.H. Min, T. Lee, K.B. Kim, J. Alloy. Compd. 777, 828–834 (2019)

    Article  CAS  Google Scholar 

  29. W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu, C.T. Liu, Intermetallics 60, 1–8 (2015)

    Article  Google Scholar 

  30. L. Wang, L. Wang, S. Zhou, Q. Xiao, Y. Xiao, X. Wang, T. Cao, Y. Ren, Y.-J. Liang, L. Wang, Y. Xue, Acta Mater. 216, 117121 (2021)

    Article  CAS  Google Scholar 

  31. Y. Pan, A. Dong, Y. Zhou, D. Du, D. Wang, G. Zhu, B. Sun, Mater. Sci. Eng. A 816, 141289 (2021)

    Article  CAS  Google Scholar 

  32. S.G. Ma, Y. Zhang, Mater. Sci. Eng. A 532, 480–486 (2012)

    Article  CAS  Google Scholar 

  33. Y.L. Zhao, T. Yang, J.H. Zhu, D. Chen, Y. Yang, A. Hu, C.T. Liu, J.-J. Kai, Scripta Mater. 148, 51–55 (2018)

    Article  CAS  Google Scholar 

  34. J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater. 102, 187–196 (2016)

    Article  CAS  Google Scholar 

  35. F. He, D. Chen, B. Han, Q. Wu, Z. Wang, S. Wei, D. Wei, J. Wang, C.T. Liu, J.-J. Kai, Acta Mater. 167, 275–286 (2019)

    Article  CAS  Google Scholar 

  36. D. Chen, F. He, B. Han, Q. Wu, Y. Tong, Y. Zhao, Z. Wang, J. Wang, J.-J. Kai, Intermetallics 110, 106476 (2019)

    Article  CAS  Google Scholar 

  37. J.M. Oblak, D.F. Paulonis, D.S. Duvall, Metall. Trans. Trans. B 5, 143–153 (1974)

    Article  CAS  Google Scholar 

  38. R.T. Dehoff, F.N. Rhines, Quantitative Microscopy (McGraw-Hill Publishing, New York, 1968)

    Google Scholar 

  39. W.F. Gale, T.C. Totemeier, Smithells Metals Reference Book, 8th edn. (Elsevier, Amsterdam, 2004)

    Google Scholar 

  40. F. He, Z. Wang, J. Wang, Q. Wu, D. Chen, B. Han, J. Li, J. Wang, J.J. Kai, Scripta Mater. 146, 281–285 (2018)

    Article  CAS  Google Scholar 

  41. G.H. Xia, Z.L. Ma, Z.Q. Xu, M. Wang, X.W. Cheng, H.N. Cai, Scripta Mater. 199, 113893 (2021)

    Article  CAS  Google Scholar 

  42. K.E. Knipling, D.C. Dunand, D.N. Seidman, Acta Mater. 56, 1182–1195 (2008)

    Article  CAS  Google Scholar 

  43. Z. Wu, H. Bei, F. Otto, G.M. Pharr, E.P. George, Intermetallics 46, 131–140 (2014)

    Article  CAS  Google Scholar 

  44. T.H. Courtney, Mechanical Behavior of Materials, 2nd edn. (Waveland Press, Long Grove, 2005)

    Google Scholar 

  45. A.S. Argon, Strengthening Mechanisms in Crystal Plasticity (Oxford University Press, Oxford, 2008)

    Google Scholar 

  46. C.-C. Juan, K.-K. Tseng, W.-L. Hsu, M.-H. Tsai, C.-W. Tsai, C.-M. Lin, S.-K. Chen, S.-J. Lin, J.-W. Yeh, Mater. Lett. 175, 284–287 (2016)

    Article  CAS  Google Scholar 

  47. I. Toda-Caraballo, P.E. Rivera-Díaz-del-Castillo, Acta Mater. 85, 14–23 (2015)

    Article  CAS  Google Scholar 

  48. H. Wen, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, Acta Mater. 61, 2769–2782 (2013)

    Article  CAS  Google Scholar 

  49. K. Ma, H. Wen, H. Tao, T.D. Topping, J.M. Schoenung, Acta Mater. 62, 141–155 (2014)

    Article  CAS  Google Scholar 

  50. A.J. Ardell, Metall. Trans. A 16, 2131–2165 (1985)

    Article  Google Scholar 

  51. S. Jiang, H. Wang, Y. Wu, X. Liu, H. Chen, M. Yao, B. Gault, D. Ponge, D. Raabe, A. Hirata, M. Chen, Y. Wang, Z. Lu,  Nature 544, 460–464 (2017)

    Article  CAS  Google Scholar 

  52. J.M. Oblak, D.S. Duvall, D.F. Paulonis, Mater. Sci. Eng. 13, 51–56 (1974)

    Article  CAS  Google Scholar 

  53. Y.C. Lin, S.-C. Luo, M.-S. Chen, D.-G. He, C.-Y. Zhao, J. Alloy. Compd. 688, 285–293 (2016)

    Article  CAS  Google Scholar 

  54. B. Cai, M. Yang, J. Liu, J. Li, B. Liu, Sci. China Technol. Sci. 61, 1829–1838 (2018)

    Article  CAS  Google Scholar 

  55. A.K. Singh, R. Sankarasubramanian, T.K. Nandy, Bull. Mater, Sci. 36, 677–686 (2013)

    CAS  Google Scholar 

  56. M. Sundararaman, P. Mukhopadhyay, S. Banerjee, Acta Metall. 36, 847–864 (1988)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present study was financially supported by the research funding from Wuhan University of Technology, China, for Newly Recruited Distinguished Professors (Grant Number: 101-40120281), the National Key Research and Development Program of China (Grant Number 2018YFB0905600), and Key Program of the National Natural Science Foundation of China (Grant Number: 51932006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaojun Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Lin, Y., Chen, F. et al. Effect of Precipitation Behavior on Mechanical Properties of a Nb-Containing CoCrNi-Based High-Entropy Alloy. Met. Mater. Int. 29, 674–692 (2023). https://doi.org/10.1007/s12540-022-01265-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01265-x

Keywords

Navigation