Skip to main content

Advertisement

Log in

Mechanical Behaviors of Cold-Rolled and Subsequently Annealed Fe35Ni35Cr20Mn10 High-Entropy Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effects of cold rolling and subsequent annealing on the microstructure and mechanical behaviors of Fe35Ni35Cr20Mn10 (in at.%, unless otherwise stated) high-entropy alloys (HEAs) were investigated by microstructure observation and mechanical property testing. The cold rolling results in a significant rise in the strength of the prepared HEA but a great reduction in the fracture elongation. The dominant fine subgrain structure and much higher density of dislocations in the as-rolled sample are responsible for this phenomenon. The combined effects of the significantly decreased dislocation density, obviously coarsened recrystallization grains, and considerable reduction in the amount and significant coarsening in the size of the annealing twins with the annealing temperature decreased the yield strength, but the elongation improved significantly. The prepared Fe35Ni35Cr20Mn10 HEA annealed at 800 °C for 1 h after cold rolling has a good combination of strength and elongation, with a high yield strength of ~ 336 MPa, a high ultimate tensile strength of ~ 525 MPa, and an excellent elongation to fracture of ~ 44%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

Data Availability

No additional data are available.

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303.

    Article  CAS  Google Scholar 

  2. B. Cantor, I.T.H. Chang, P. Knight and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng., A, 2004, 375–377, p 213–218.

    Article  CAS  Google Scholar 

  3. W.Y. Huo, F. Fang, X.D. Liu, S.Y. Tan, Z.H. Xie and J.Q. Jiang, Fatigue Resistance of Nanotwinned High-Entropy Alloy Films, Mater. Sci. Eng., A, 2019, 739(2), p 26–30.

    Article  CAS  Google Scholar 

  4. M. Glienke, M. Vaidya, K. Gururaj, L. Daum, B. Tas, L. Rogal, K.G. Pradeep, S.V. Divinski and G. Wilde, Grain Boundary Diffusion in CoCrFeMnNi High Entropy Alloy: Kinetic Hints Towards a Phase Decomposition, Acta Mater., 2020, 195(15), p 304–316.

    Article  CAS  Google Scholar 

  5. R. Gawel, Ł Rogal, J. Dąbek, M. Wójcik-Bania and K. Przybylski, High Temperature Oxidation Behaviour of Non-equimolar AlCoCrFeNi High Entropy Alloys, Vacuum, 2021, 184, p 109969.

    Article  CAS  Google Scholar 

  6. N.D. Stepanov, D.G. Shaysultanov, M.S. Ozerov, S.V. Zherebtsov and G.A. Salishchev, Second Phase Formation in the CoCrFeNiMn High Entropy Alloy After Recrystallization Annealing, Mater. Lett., 2016, 185(15), p 1–4.

    Article  CAS  Google Scholar 

  7. Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka and D. Raabe, Design of a Twinning-Induced Plasticity High Entropy Alloy, Acta Mater., 2015, 94, p 124–133.

    Article  CAS  Google Scholar 

  8. P. Lu, T.W. Zhang, D. Zhao, S.G. Ma, Q. Li, T. Wang and Z.H. Wang, Effects of Stress States and Strain Rates on Mechanical Behavior and Texture Evolution of the CoCrFeNi High-Entropy Alloy: Experiment and Simulation, J. Alloys Compd., 2021, 851, p 156779.

    Article  CAS  Google Scholar 

  9. J.W. Qiao, S.G. Ma, E.W. Huang, C.P. Chuang, P.K. Liaw and Y. Zhang, Microstructural Characteristics and Mechanical Behaviors of AlCoCrFeNi High-Entropy Alloys at Ambient and Cryogenic Temperatures, Mater. Sci. Forum, 2011, 688, p 419–425.

    Article  CAS  Google Scholar 

  10. S.J. Zinkle and L.L. Snead, Designing Radiation Resistance in Materials for Fusion Energy, Annu. Rev. Mater. Res., 2014, 44(1), p 241–267.

    Article  CAS  Google Scholar 

  11. B.B. Bian, N. Guo, H.J. Yang, R.P. Guo, L. Yang, Y.C. Wu and J.W. Qiao, A Novel Cobalt-Free FeMnCrNi Medium-Entropy Alloy with Exceptional Yield Strength and Ductility at Cryogenic Temperature, J. Alloys Compd., 2020, 827, p 153981.

    Article  CAS  Google Scholar 

  12. J.G. Gigaxa, O. El-Atwani, Q. McCulloch, B. Aytuna, M. Efe, S. Fensin, S.A. Maloy and N. Li, Micro- and Mesoscale Mechanical Properties of an Ultra-Fine Grained CrFeMnNi High Entropy Alloy Produced by Large Strain Machining, Scr. Mater., 2020, 178, p 508–512.

    Article  CAS  Google Scholar 

  13. N.A.P. Kiran Kumar, C. Li, K.J. Leonard, H. Bei and S.J. Zinkle, Microstructural Stability and Mechanical Behavior of FeNiMnCr High Entropy Alloy Under Ion Irradiation, Acta Mater., 2016, 113, p 230–244.

    Article  CAS  Google Scholar 

  14. V.N. Voyevodin, S.A. Karpov, G.D. Tolstolutskaya, M.A. Tikhonovsky, A.N. Velikodnyi, I.E. Kopanets, G.N. Tolmachova, A.S. Kalchenko, R.L. Vasilenko and I.V. Kolodiy, Effect of Irradiation on Microstructure and Hardening of Cr-Fe-Ni-Mn High-Entropy Alloy and Its Strengthened Version, Philos. Mag., 2020, 100, p 822–836.

    Article  CAS  Google Scholar 

  15. Z. Wu, H. Bei, F. Otto, G.M. Pharr and E.P. George, Recovery, Recrystallization, Grain Growth and Phase Stability of a Family of FCC-Structured Multi-Component Equiatomic Solid Solution Alloys, Intermetallics, 2014, 46, p 131–140.

    Article  CAS  Google Scholar 

  16. V. Randle and G. Owen, Mechanisms of Grain Boundary Engineering, Acta Mater., 2006, 54, p 1777–1783.

    Article  CAS  Google Scholar 

  17. V. Randle, M. Coleman and M. Waterton, The Role of Σ9 Boundaries in Grain Boundary Engineering, Metall. Mater. Trans. A, 2011, 42(3), p 582–586.

    Article  CAS  Google Scholar 

  18. X.L. An, C.L. Chua, L. Zhou, J. Ji, B.L. Shen and P.K. Chu, Controlling the Corrosion Behavior of CoNiFe Medium Entropy Alloy by Grain Boundary Engineering, Mater. Charact., 2020, 164, p 110323.

    Article  CAS  Google Scholar 

  19. C.L. Hu, S. Xia, H. Li, T.G. Liu, B.G. Zhou, W.J. Chen and N. Wang, Improving the Intergranular Corrosion Resistance of 304 Stainless Steel by Grain Boundary Network Control, Corros. Sci., 2011, 53(5), p 1880–1886.

    Article  CAS  Google Scholar 

  20. Q. Deng, Y.J. Tang, Y.F. Tan, X.H. Tan, Y. Yang and H. Xu, Effect of Grain Boundary Character Distribution on Soft Magnetic Property of Face-Centered Cubic FeCoNiAl0.2 Medium-Entropy Alloy, Mater. Charact., 2020, 159, p 110028.

    Article  CAS  Google Scholar 

  21. X.J. Guan, F. Shi, H.M. Ji and X.W. Li, Gain Boundary Character Distribution Optimization of Cu-16at.%Al Alloy by Thermomechanical Process: Critical Role of Deformation Microstructure, Mater. Sci. Eng.: A, 2019, 765, p 138299.

    Article  CAS  Google Scholar 

  22. Y. Liu, Y. He and S.L. Cai, Gradient Recrystallization to Improve Strength and Ductility of Medium-Entropy Alloy, J. Alloys Compd., 2021, 853, p 157388.

    Article  CAS  Google Scholar 

  23. R.J. Vikram, S. Gaddam, R. Kalsar, S. Acharya and S. Suwas, A Fractal Approach to Predict the Oxidation and Corrosion Behavior of a Grain Boundary Engineered Low SFE High Entropy Alloy, Materialia, 2019, 7, p 100398.

    Article  CAS  Google Scholar 

  24. Y.X. He, H.X. Yang, C.D. Zhao, Y. Zhang, X.Y. Pan, J.S. Li and J. Wang, Enhancing Mechanical Properties of Al0.25CoCrFeNi High-Entropy Alloy Via Cold Rolling and Subsequent Annealing, J. Alloys Compd., 2020, 830, p 154645.

    Article  CAS  Google Scholar 

  25. P. Asghari-Rad, P. Sathiyamoorthi, N.T. Nguyen, J.W. Bae, H. Shahmir and H.S. Kim, Fine-Tuning of Mechanical Properties in V10Cr15Mn5Fe35Co10Ni25 High-Entropy Alloy Through High-Pressure Torsion and Annealing, Mater. Sci. Eng.: A, 2020, 771, p 138604.

    Article  CAS  Google Scholar 

  26. F. Shi, R.H. Gao, X.J. Guan, C.M. Liu and X.W. Li, Application of Grain Boundary Engineering to Improve Intergranular Corrosion Resistance in a Fe-Cr-Mn-Mo-N High-Nitrogen and Nickel-Free Austenitic Stainless Steel, Acta Metall. Sin. (Engl. Lett.), 2020, 33, p 789–798.

    Article  CAS  Google Scholar 

  27. T.G. Liu, S. Xia, D.H. Du, Q. Bai, L.F. Zhang and Y.H. Lu, Grain Boundary Engineering of Large-Size 316 Stainless Steel Via Warm-Rolling for Improving Resistance to Intergranular Attack, Mater. Lett., 2019, 234, p 201–204.

    Article  CAS  Google Scholar 

  28. C.L. Chen and M.J. Tan, Effect of Grain Boundary Character Distribution (GBCD) on the Cavitation Behaviour During Superplastic Deformation of Al7475, Mater. Sci. Eng.: A, 2002, 338(1–2), p 243–252.

    Article  Google Scholar 

  29. X. He, L. Liu, T. Zeng and Y. Yao, Micromechanical Modeling of Work Hardening for Coupling Micro-structure Evolution, Dynamic Recovery and Recrystallization: Application to High Entropy Alloys, Int. J. Mech. Sci., 2020, 177, p 105567.

    Article  Google Scholar 

  30. Y.N. Wu, C.M. Liu, H.C. Liao, J.H. Jiang and A.B. Ma, Joint Effect of Micro-sized Si Particles and Nano-sized Dispersoids on the Flow Behavior and Dynamic Recrystallization of Near-Eutectic Al-Si Based Alloys During Hot Compression, J. Alloys Compd., 2021, 856, p 158072.

    Article  CAS  Google Scholar 

  31. G.K. Williamson and R.E. Smallman III., Dislocation Densities in Some Annealed and Cold-Worked Metals from Measurements on the X-ray Debye–Scherrer Spectrum, Philos. Mag., 1956, 1(1), p 34–46.

    Article  CAS  Google Scholar 

  32. E.O. Hall, The Deformation and Ageing of Mild Steel: III Discussion of Results, Proc. Phys. Soc. Sect. B, 1951, 64, p 747–753.

    Article  Google Scholar 

  33. R.W. Armstrong, The (Cleavage) Strength of Pre-cracked Polycrystals, Eng. Fract. Mech., 1987, 28, p 529–538.

    Article  Google Scholar 

  34. N. Hansen, Hall–Petch Relation and Boundary Strengthening, Scr. Mater., 2004, 51, p 801–806.

    Article  CAS  Google Scholar 

  35. S.Y. Chen, K.K. Tseng, Y. Tong, W.D. Li, C.W. Tsai, J.W. Yeh and P.K. Liaw, Grain Growth and Hall–Petch Relationship in a Refractory HfNbTaZrTi High-Entropy Alloy, J. Alloy. Compd., 2019, 795, p 19–26.

    Article  CAS  Google Scholar 

  36. D. Liu, X. Jin, N. Guo, P.K. Liaw and J.W. Qiao, Non-equiatomic FeMnCrNiAl High-Entropy Alloys with Heterogeneous Structures for Strength and Ductility Combination, Mater. Sci. Eng.: A, 2021, 818, p 141386.

    Article  CAS  Google Scholar 

  37. H. Shahmir, T. Mousavi, J. He, Z.P. Lu, M. Kawasaki and T.G. Langdon, Microstructure and Properties of a CoCrFeNiMn High-Entropy Alloy Processed by Equal-Channel Angular Pressing, Mater. Sci. Eng., A, 2017, 705, p 411–419.

    Article  CAS  Google Scholar 

  38. J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An and Z.P. Lu, A Precipitation-Hardened High-Entropy Alloy with Outstanding Tensile Properties, Acta Mater., 2016, 102, p 187–196.

    Article  CAS  Google Scholar 

  39. M.J. Yao, K.G. Pradeep, C.C. Tasan and D. Raabe, A Novel, Single Phase, Non-equiatomic FeMnNiCoCr High-Entropy Alloy with Exceptional Phase Stability and Tensile Ductility, Scr. Mater., 2014, 72–73, p 5–8.

    Article  CAS  Google Scholar 

  40. P. Sathiyamoorthi, P. Asghari-Rad, J.W. Bae and H.S. Kim, Fine Tuning of Tensile Properties in CrCoNi Medium Entropy Alloy Through Cold Rolling and Annealing, Intermetallics, 2019, 113, p 106578.

    Article  CAS  Google Scholar 

  41. X.L. An, H. Zhao, T. Dai, H.G. Yua, Z.H. Huang, C. Guo, P.K. Chu and C.L. Chu, Effects of Heat Treatment on the Microstructure and Properties of Cold-Forged CoNiFe Medium Entropy Alloy, Intermetallics, 2019, 110, p 106477.

    Article  CAS  Google Scholar 

  42. X. Zhang, H. Wang, R.O. Scattergood, J. Narayan and C.C. Koch, Mechanical Properties of Cyromilled Nanocrystalline Zn Studied by the Miniaturized Disk Bend Test, Acta Mater., 2002, 50(13), p 3527–3533.

    Article  CAS  Google Scholar 

  43. N. Kamikawa, K. Sato, G. Miyamoto, M. Murayama, N. Sekido, K. Tsuzaki and T. Furuhara, Stress-Strain Behavior of Ferrite and Bainite with Nano-precipitation in Low Carbon Steels, Acta Mater., 2015, 83, p 383–396.

    Article  CAS  Google Scholar 

  44. L. Meng and I. Baker, Nitriding of a High Entropy FeNiMnAlCr Alloy, J. Alloy. Compd., 2015, 645, p 376–381.

    Article  CAS  Google Scholar 

  45. E. Bailey and P.B. Hirsch, The Dislocation Distribution, Flow Stress, and Stored Energy in Cold-Worked Polycrystalline Silver, Philos. Mag., 1960, 5(53), p 485–497.

    Article  CAS  Google Scholar 

  46. A. Hughes and N. Hansen, Microstructure and Strength of Nickel at Large Strains, Acta Mater., 2000, 48, p 2985–3004.

    Article  CAS  Google Scholar 

  47. J.Y. He, C. Zhu, D.Q. Zhou, W.H. Liu, T.G. Nieh and Z.P. Lu, Steady State Flow of the FeCoNiCrMn High Entropy Alloy at Elevated Temperatures, Intermetallics, 2014, 55, p 9–14.

    Article  CAS  Google Scholar 

  48. G. Laplanche, P. Gadaud, O. Horst, F. Otto, G. Eggeler and E.P. George, Temperature Dependencies of the Elastic Moduli and Thermal Expansion Coefficient of an Equiatomic, Single-Phase CoCrFeMnNi High-Entropy Alloy, J. Alloy. Compd., 2015, 623, p 348–353.

    Article  CAS  Google Scholar 

  49. S. Mahajan, Critique of Mechanisms of Formation of Deformation, Annealing and Growth Twins: Face-Centered Cubic Metals and Alloys, Scr. Mater., 2013, 68(2), p 95–99.

    Article  CAS  Google Scholar 

  50. Y.C. Xin, L.C. Lv, H.W. Chen, C. He, H.H. Yu and Q. Liu, Effect of Dislocation-Twin Boundary Interaction on Deformation by Twin Boundary Migration, Mater. Sci. Eng., A, 2016, 662, p 95–99.

    Article  CAS  Google Scholar 

  51. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George and R.O. Ritchie, A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications, Science, 2014, 345(6201), p 1153–1158.

    Article  CAS  Google Scholar 

  52. L. Lu, Z.S. You and K. Lu, Work Hardening of Polycrystalline Cu with Nanoscale Twins, Scr. Mater., 2012, 66(11), p 837–842.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by National Major Basic Research Project of China (Grant No.: 613321). The authors thank Dr. Aiqun Xu for TEM observation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hengcheng Liao.

Ethics declarations

Conflict of interest

The authors declare that: No conflict of interest exists in the submission of this manuscript, and manuscript is approved by all authors for publication. The work described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part. All the authors listed have approved the manuscript that is enclosed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Liao, H., Chen, H. et al. Mechanical Behaviors of Cold-Rolled and Subsequently Annealed Fe35Ni35Cr20Mn10 High-Entropy Alloy. J. of Materi Eng and Perform 30, 8145–8156 (2021). https://doi.org/10.1007/s11665-021-06016-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06016-4

Keywords

Navigation