Skip to main content
Log in

On-chip integrated GeSe2/Si vdW heterojunction for ultraviolet-enhanced broadband photodetection, imaging, and secure optical communication

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Broadband photodetection, spanning from ultraviolet (UV) to infrared (IR), is pivotal in diverse technological domains including astronomy, remote sensing, environmental monitoring, and medical diagnostics. However, current commercially available broadband photodetectors, predominately based on conventional narrow-bandgap semiconductors, exhibit limited sensitivity in the UV region. This limitation, stemming from the significant energy disparity between the semiconductor bandgap and UV photon, narrows their application scope. Herein, we report an innovative approach involving the in-situ van der Waals (vdW) integration of two-dimensional (2D) GeSe2 layers onto a Si substrate. This process yields a high-quality GeSe2/Si vdW heterojunction device, which features a broad response range covering from UV to near-IR (NIR) with a greatly-enhanced sensitivity in the UV region. The device possesses high responsivities of 325 and 533.4 mA/W, large detectivities of 1.24 × 1013 and 2.57 × 1013 Jones, and fast response speeds of 20.6/82.1 and 17.7/81.0 µs under 360 and 980 nm, respectively. Notably, the broadband image sensing and secure invisible optical communication capabilities of the GeSe2/Si heterojunction device are demonstrated. Our work provides a viable approach for UV-enhanced broadband photodetection technology, opening up new possibilities and applications across various scientific and technological domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, J. X.; Ouyang, W. X.; Yang, W.; He, J. H.; Fang, X. S. Recent progress of heterojunction ultraviolet photodetectors: Materials, integrations, and applications. Adv. Funct. Mater. 2020, 30, 1909909.

    Article  CAS  Google Scholar 

  2. Zhang, Q.; Li, X.; He, Z. W.; Xu, M. X.; Jin, C. C.; Zhou, X. 2D semiconductors towards high-performance ultraviolet photodetection.. J. Phys. D. Appl. Phys. 2019, 52, 303002

    Article  CAS  Google Scholar 

  3. Jiang, K.; Sun, X. J.; Zhang, Z. H.; Ben, J. W.; Che, J. M.; Shi, Z. M.; Jia, Y. P.; Chen, Y.; Zhang, S. L.; Lv, W. et al. Polarization-enhanced AlGaN solar-blind ultraviolet detectors. Photonics Res. 2020, 8, 1243–1252.

    Article  CAS  Google Scholar 

  4. Chen, H. Y.; Yu, P. P.; Zhang, Z. Z.; Teng, F.; Zheng, L. X.; Hu, K.; Fang, X. S. Ultrasensitive self-powered solar-blind deep-ultraviolet photodetector based on all-solid-state polyaniline/MgZnO bilayer. Small 2016, 12, 5809–5816.

    Article  CAS  PubMed  Google Scholar 

  5. Wu, D.; Zhao, Z. H.; Lu, W.; Rogée, L.; Zeng, L. H.; Lin, P.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. Highly sensitive solar-blind deep ultraviolet photodetector based on graphene/PtSe2/β-Ga2O3 2D/3D Schottky junction with ultrafast speed. Nano Res. 2021, 14, 1973–1979.

    Article  CAS  Google Scholar 

  6. Lin, C. N.; Lu, Y. J.; Yang, X.; Tian, Y. Z.; Gao, C. J.; Sun, J. L.; Dong, L.; Zhong, F.; Hu, W. D.; Shan, C. X. Diamond-based allcarbon photodetectors for solar-blind imaging. Adv. Opt. Mater. 2018, 6, 1800068.

    Article  Google Scholar 

  7. Wang, Y. M.; Ding, K.; Sun, B. Q.; Lee, S. T.; Jie, J. S. Two-dimensional layered material/silicon heterojunctions for energy and optoelectronic applications. Nano Res. 2016, 9, 72–93.

    Article  CAS  Google Scholar 

  8. Zhu, H.; Chen, Y.; Zhao, Y.; Li, X.; Teng, Y.; Hao, X. J.; Liu, J. F.; Zhu, H.; Wu, Q. H.; Huang, Y. Growth and characterization of InGaAs/InAsSb superlattices by metal-organic chemical vapor deposition for mid-wavelength infrared photodetectors. Superlattices Microstruct. 2020, 146, 106655.

    Article  CAS  Google Scholar 

  9. Jiao, H. X.; Wang, X. D.; Chen, Y.; Guo, S. F.; Wu, S. Q.; Song, C. Y.; Huang, S. Y.; Huang, X. N.; Tai, X. C.; Lin, T. et al. HgCdTe/black phosphorus van der Waals heterojunction for high-performance polarization-sensitive midwave infrared photodetector. Sci. Adv. 2022, 8, eabn1811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shi, L.; Nihtianov, S. Comparative study of silicon-based ultraviolet photodetectors. IEEE Sens. J. 2012, 12, 2453–2459.

    Article  CAS  Google Scholar 

  11. Wang, P.; Xia, H.; Li, Q.; Wang, F.; Zhang, L. L.; Li, T. X.; Martyniuk, P.; Rogalski, A.; Hu, W. D. Sensing infrared photons at room temperature: From bulk materials to atomic layers. Small 2019, 15, 1904396.

    Article  CAS  Google Scholar 

  12. Wu, Y. P.; Wu, S. E.; Hei, J. J.; Zeng, L. H.; Lin, P.; Shi, Z. F.; Chen, Q. M.; Li, X. J.; Yu, X. C.; Wu, D. van der Waals integration inch-scale 2D MoSe2 layers on Si for highly-sensitive broadband photodetection and imaging. Nano Res. 2023, 16, 11422–11429

    Article  CAS  Google Scholar 

  13. Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

    Article  CAS  Google Scholar 

  14. Tsao, J. Y.; Chowdhury, S.; Hollis, M. A.; Jena, D.; Johnson, N. M.; Jones, K. A.; Kaplar, R. J.; Rajan, S.; Van de Walle, C. G.; Bellotti, E. et al. Ultrawide-bandgap semiconductors: Research opportunities and challenges. Adv. Electron. Mater. 2018, 4, 1600501.

    Article  Google Scholar 

  15. Long, M. S.; Wang, P.; Fang, H. H.; Hu, W. D. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 2019, 29, 1803807.

    Article  Google Scholar 

  16. Wang, J.; Han, J. Y.; Chen, X. Q.; Wang, X. R. Design strategies for two-dimensional material photodetectors to enhance device performance. InfoMat 2019, 1, 33–53.

    Article  CAS  Google Scholar 

  17. Zeng, L. H.; Wu, D.; Jie, J. S.; Ren, X. Y.; Hu, X.; Lau, S. P.; Chai, Y.; Tsang, Y. H. van der Waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 µm. Adv. Mater. 2020, 32, 2004412

    Article  Google Scholar 

  18. Jariwala, D.; Marks, T. J.; Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 2017, 16, 170–181.

    Article  CAS  PubMed  Google Scholar 

  19. Pan, S. Q.; Wu, S. E.; Hei, J.; Zhou, Z. W.; Zeng, L. H.; Xing, Y. K.; Lin, P.; Shi, Z. F.; Tian, Y. T.; Li, X. J. et al. Light trapping enhanced broadband photodetection and imaging based on MoSe2/pyramid Si vdW heterojunction. Nano Res. 2023, 16, 10552–10558.

    Article  CAS  Google Scholar 

  20. Yan, Y.; Xiong, W. Q.; Li, S. S.; Zhao, K.; Wang, X. T.; Su, J.; Song, X. H.; Li, X. P.; Zhang, S.; Yang, H. et al. Direct wide bandgap 2D GeSe2 monolayer toward anisotropic UV photodetection. Adv. Opt. Mater. 2019, 7, 1900622.

    Article  CAS  Google Scholar 

  21. Popović, Z. V.; Breitschwerdt, A. Optical absorption band edge of single crystal β-GeSe2. Phys. Lett. A 1985, 110, 426–428.

    Article  Google Scholar 

  22. Qiu, Q. X.; Huang, Z. M. Photodetectors of 2D materials from ultraviolet to terahertz waves. Adv. Mater. 2021, 33, 2008126.

    Article  CAS  Google Scholar 

  23. Liu, W. J.; Yu, Y. Y.; Peng, M.; Zheng, Z. H.; Jian, P. C.; Wang, Y.; Zou, Y. C.; Zhao, Y. M.; Wang, F.; Wu, F. et al. Integrating 2D layered materials with 3D bulk materials as van der Waals heterostructures for photodetections: Current status and perspectives. InfoMat 2023, 5, e12470.

    Article  CAS  Google Scholar 

  24. Zeng, L. H.; Han, W.; Ren, X. Y.; Li, X.; Wu, D.; Liu, S. J.; Wang, H.; Lau, S. P.; Tsang, Y. H.; Shan, C. X. et al. Uncooled mid-infrared sensing enabled by chip-integrated low-temperature-grown 2D PdTe2 dirac semimetal. Nano Lett. 2023, 23, 8241–8248.

    Article  CAS  PubMed  Google Scholar 

  25. Liu, C. Y.; Guo, J. S.; Yu, L. W.; Li, J.; Zhang, M.; Li, H.; Shi, Y. C.; Dai, D. X. Silicon/2D-material photodetectors: From near-infrared to mid-infrared. Light: Sci. Appl. 2021, 10, 123.

    Article  CAS  PubMed  Google Scholar 

  26. Wu, D.; Xu, M. M.; Zeng, L. H.; Shi, Z. F.; Tian, Y. Z.; Li, X. J.; Shan, C. X.; Jie, J. S. In situ fabrication of PdSe2/GaN Schottky junction for polarization-sensitive ultraviolet photodetection with high dichroic ratio. ACS Nano 2022, 16, 5545–5555

    Article  CAS  PubMed  Google Scholar 

  27. Wu, D.; Tian, R.; Lin, P.; Shi, Z. F.; Chen, X.; Jia, M. C.; Tian, Y. T.; Li, X. J.; Zeng, L. H.; Jie, J. S. Wafer-scale synthesis of wide bandgap 2D GeSe2 layers for self-powered ultrasensitive UV photodetection and imaging. Nano Energy 2022, 104, 107972.

    Article  CAS  Google Scholar 

  28. Zhuo, R. R.; Zeng, L. H.; Yuan, H. Y.; Wu, D.; Wang, Y. G.; Shi, Z. F.; Xu, T. T.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. In-situ fabrication of PtSe2/GaN heterojunction for self-powered deep ultraviolet photodetector with ultrahigh current on/off ratio and detectivity. Nano Res. 2019, 12, 183–189

    Article  CAS  Google Scholar 

  29. Zhuo, R. R.; Wu, D.; Wang, Y. G.; Wu, E. P.; Jia, C.; Shi, Z. F.; Xu, T. T.; Tian, Y. T.; Li, X. J. A self-powered solar-blind photodetector based on a MoS2/β-Ga2O3 heterojunction. J. Mater. Chem. C 2018, 6, 10982–10986.

    Article  CAS  Google Scholar 

  30. Xiang, D.; Han, C.; Hu, Z. H.; Lei, B.; Liu, Y. Y.; Wang, L.; Hu, W. P.; Chen, W. Surface transfer doping-induced, high-performance graphene/silicon Schottky junction-based, self-powered photodetector. Small 2015, 11, 4829–4836.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, L.; Jie, J. S.; Shao, Z. B.; Zhang, Q.; Zhang, X. H.; Wang, Y. M.; Sun, Z.; Lee, S. T. MoS2 /Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors. Adv. Funct. Mater. 2015, 25, 2910–2919.

    Article  CAS  Google Scholar 

  32. Jia, C.; Wu, D.; Wu, E. P.; Guo, J. W.; Zhao, Z. H.; Shi, Z. F.; Xu, T. T.; Huang, X. W.; Tian, Y. T.; Li, X. J. A self-powered high-performance photodetector based on a MoS2/GaAs heterojunction with high polarization sensitivity. J. Mater. Chem. C 2019, 7, 3817–3821.

    Article  CAS  Google Scholar 

  33. Lu, Z. J.; Xu, Y.; Yu, Y. Q.; Xu, K. W.; Mao, J.; Xu, G. B.; Ma, Y. M.; Wu, D.; Jie, J. S. Ultrahigh speed and broadband few-layer MoTe2/Si 2D–3D heterojunction-based photodiodes fabricated by pulsed laser deposition. Adv. Funct. Mater. 2020, 30, 1907951.

    Article  CAS  Google Scholar 

  34. Zhao, B.; Wang, F.; Chen, H. Y.; Zheng, L. X.; Su, L. X.; Zhao, D. X.; Fang, X. S. An ultrahigh responsivity (9.7 mA·W−1) self-powered solar-blind photodetector based on individual ZnO-Ga2O3 heterostructures. Adv. Funct. Mater. 2017, 27, 1700264.

    Article  Google Scholar 

  35. Henck, H.; Pierucci, D.; Chaste, J.; Naylor, C. H.; Avila, J.; Balan, A.; Silly, M. G.; Asensio, M. C.; Sirotti, F.; Johnson, A. T. C. et al. Electrolytic phototransistor based on graphene-MoS2 van der Waals p-n heterojunction with tunable photoresponse. Appl. Phys. Lett. 2016, 109, 113103.

    Article  Google Scholar 

  36. Deka Boruah, B.; Misra, A. Eneggy-efficient hydrogenated zinc oxide nanoflakes for high-performance self-powered ultraviolet photodetector. ACS Appl. Mater. Interfaces 2016, 8, 18182–18188.

    Article  CAS  PubMed  Google Scholar 

  37. Kim, D.; Park, K.; Lee, J. H.; Kwon, I. S.; Kwak, I. H.; Park, J. Anisotropic 2D SiAs for high-performance UV–visible photodetectors. Small 2021, 17, 2006310.

    Article  CAS  Google Scholar 

  38. Ning, J.; Zhou, Y.; Zhang, J. C.; Lu, W.; Dong, J. G.; Yan, C. C.; Wang, D.; Shen, X.; Feng, X.; Zhou, H. et al. Self-driven photodetector based on a GaSe/MoSe2 selenide van der Waals heterojunction with the hybrid contact. Appl. Phys. Lett. 2020, 117, 163104.

    Article  CAS  Google Scholar 

  39. Flemban, T. H.; Haque, M. A.; Ajia, I.; Alwadai, N.; Mitra, S.; Wu, T.; Roqan, I. S. A photodetector based on p-Si/n-ZnO nanotube heterojunctions with high ultraviolet responsivity. ACS Appl. Mater. Interfaces 2017, 9, 37120–37127.

    Article  CAS  PubMed  Google Scholar 

  40. Yin, S. Q.; Zhao, B. T.; Wan, J. J.; Wang, S. L.; Yang, J. Y.; Wang, X.; Zeng, L. H.; Han, W.; Chen, L. J.; Chen, J. W. et al. MXene-contact enhanced broadband photodetection in centimeter level GeS films. J. Phys. D: Appl. Phys. 2022, 55, 265105.

    Article  CAS  Google Scholar 

  41. Sun, M. X.; Xie, D.; Sun, Y. L.; Li, W. W.; Ren, T. L. Locally hydrazine doped WSe2 p-n junction toward high-performance photodetectors. Nanotechnology 2018, 29, 015203.

    Article  PubMed  Google Scholar 

  42. Luo, L. B.; Hu, H.; Wang, X. H.; Lu, R.; Zou, Y. F.; Yu, Y. Q.; Liang, F. X. A graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity. J. Mater. Chem. C 2015, 3, 4723–4728.

    Article  CAS  Google Scholar 

  43. Wu, E. P.; Wu, D.; Jia, C.; Wang, Y. G.; Yuan, H. Y.; Zeng, L. H.; Xu, T. T.; Shi, Z. F.; Tian, Y. T.; Li, X. J. In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared. ACS Photonics 2019, 6, 565–572

    Article  CAS  Google Scholar 

  44. Lu, Y.; Krishna, S.; Liao, C. H.; Yang, Z. Q.; Kumar, M.; Liu, Z. Y.; Tang, X.; Xiao, N.; Hassine, M. B.; Thoroddsen, S. T. et al. Transferable Ga2O3 membrane for vertical and flexible electronics via one-step exfoliation. ACS Appl. Mater. Interfaces 2022, 14, 47922–47930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jia, C.; Huang, X. W.; Wu, D.; Tian, Y. Z.; Guo, J. W.; Zhao, Z. H.; Shi, Z. F.; Tian, Y. T.; Jie, J. S.; Li, X. J. An ultrasensitive self-driven broadband photodetector based on a 2D-WS2/GaAs type-II Zener heterojunction. Nanoscale 2020, 12, 4435–4444.

    Article  CAS  PubMed  Google Scholar 

  46. Wu, D.; Wang, Y. G.; Zeng, L. H.; Jia, C.; Wu, E. P.; Xu, T. T.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. Design of 2D layered PtSe2 heterojunction for the high-performance, room-temperature, broadband, infrared photodetector. ACS Photonics 2018, 5, 3820–3827.

    Article  Google Scholar 

  47. Wu, D.; Guo, C. G.; Zeng, L. H.; Ren, X. Y.; Shi, Z. F.; Wen, L.; Chen, Q.; Zhang, M.; Li, X. J.; Shan, C. X. et al. Phase-controlled van der Waals growth of wafer-scale 2D MoTe2 layers for integrated high-sensitivity broadband infrared photodetection. Light: Sci. Appl. 2023, 12, 5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 62374149, U2004165, and U22A20138) and Key Research Project for Higher Education Institutions in Henan Province (No. 24B140010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Di Wu or Wei Han.

Electronic Supplementary Material

12274_2024_6564_MOESM1_ESM.pdf

Electronic Supplementary Material: On-chip integrated GeSe2/Si vdW heterojunction for ultraviolet-enhanced broadband photodetection, imaging, and secure optical communication

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Liu, K., Wu, D. et al. On-chip integrated GeSe2/Si vdW heterojunction for ultraviolet-enhanced broadband photodetection, imaging, and secure optical communication. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6564-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6564-x

Keywords

Navigation