Skip to main content
Log in

Two-dimensional layered material/silicon heterojunctions for energy and optoelectronic applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As one of the most important semiconductor materials, silicon (Si) has been widely used in current energy and optoelectronic devices, such as solar cells and photodetectors. However, the traditional Si p–n junction solar cells need complicated fabrication processes, leading to the high cost of Si photovoltaic devices. The wide applications of Si-based photodetectors are also hampered by their low sensitivity to ultraviolet and infrared light. Recently, two-dimensional (2D) layered materials have emerged as a new material system with tremendous potential for future energy and optoelectronic applications. The combination of Si with 2D layered materials represents an innovative approach to construct high-performance optoelectronic devices by harnessing the complementary advantages of both materials. In this review, we summarize the recent advances in 2D layered material/Si heterojunctions and their applications in photovoltaic and optoelectronic devices. Finally, the outlook and challenges of 2D layered material/Si heterojunctions for high-performance device applications are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Masuko, K.; Shigematsu, M.; Hashiguchi, T.; Fujishima, D.; Kai, M.; Yoshimura, N.; Yamaguchi, T.; Ichihashi, Y.; Mishima, T.; Matsubara, N. et al. Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J. Photovolt. 2014, 4, 1433–1435.

    Article  Google Scholar 

  2. Warabisako, T.; Uematsu, T.; Muramatsu, S.; Tsutsui, K.; Ohtsuka, H.; Nagata, Y.; Sakamoto, M. Optimization of thermal processing and device design for high-efficiency c-Si solar cells. Sol. Energy. Mat. Sol. C. 1997, 48, 137–143.

    Article  Google Scholar 

  3. Zhang, F. T.; Han, X. Y.; Lee, S. T.; Sun, B. Q. Heterojunction with organic thin layer for three dimensional high performance hybrid solar cells. J. Mater. Chem. 2012, 22, 5362–5368.

    Article  Google Scholar 

  4. Zhang, F. T.; Song, T.; Sun, B. Q. Conjugated polymersilicon nanowire array hybrid Schottky diode for solar cell application. Nanotechnology 2012, 23, 194006.

    Article  Google Scholar 

  5. Zhang, Y. F.; Zu, F. S.; Lee, S. T.; Liao, L. S.; Zhao, N.; Sun, B. Q. Heterojunction with organic thin layers on silicon for record efficiency hybrid solar cells. Adv. Energy Mater. 2014, 4, 1300923.

    Google Scholar 

  6. Liu, R. Y.; Lee, S. T.; Sun, B. Q. 13.8% efficiency hybrid Si/organic heterojunction solar cells with MoO3 film as antireflection and inversion induced layer. Adv. Mater. 2014, 26, 6007–6012.

    Article  Google Scholar 

  7. Wang, H. P.; Lin, T. Y.; Hsu, C. W.; Tsai, M. L.; Huang, C. H.; Wei, W. R.; Huang, M. Y.; Chien, Y. J.; Yang, P. C.; Liu, C. W. et al. Realizing high-efficiency omnidirectional n-type Si solar cells via the hierarchical architecture concept with radial junctions. ACS Nano 2013, 7, 9325–9335.

    Google Scholar 

  8. Liu, Q. M.; Ishikawa, R.; Funada, S.; Ohki, T.; Ueno, K.; Shirai, H. Highly efficient solution-processed poly(3,4-ethylenedio-xythiophene): Poly(styrenesulfonate)/crystalline–silicon heterojunction solar cells with improved light-induced stability. Adv. Energy Mater. 2015, 5, 1500744.

    Google Scholar 

  9. Peng, L.; Hu, L. F.; Fang, X. S. Low-dimensional nanostructure ultraviolet photodetectors. Adv. Mater. 2013, 25, 5321–5328.

    Article  Google Scholar 

  10. Sang, L. W.; Liao, M. Y.; Sumiya, M. A comprehensive review of semiconductor ultraviolet photodetectors: From thin film to one-dimensional nanostructures. Sensors 2013, 13, 10482–10518.

    Article  Google Scholar 

  11. Chen, H. Y.; Liu, K. W.; Hu, L. F.; Al-Ghamdi, A. A.; Fang, X. S. New concept ultraviolet photodetectors. Mater. Today 2015, 18, 493–502.

    Article  Google Scholar 

  12. Soci, C.; Zhang, A.; Bao, X. Y.; Kim, H.; Lo, Y.; Wang, D. L. Nanowire photodetectors. J. Nanosci. Nanotechnol. 2010, 10, 1430–1449.

    Article  Google Scholar 

  13. Tian, W.; Lu, H.; Li, L. Nanoscale ultraviolet photodetectors based on onedimensional metal oxide nanostructures. Nano Res. 2015, 8, 382–405.

    Article  Google Scholar 

  14. Rogalski, A. Material considerations for third generation infrared photon detectors. Infrared Phys. Techn. 2007, 50, 240–252.

    Article  Google Scholar 

  15. Rogalski, A. Recent progress in infrared detector technologies. Infrared Phys. Techn. 2011, 54, 136–154.

    Article  Google Scholar 

  16. Miao, J. S.; Hu, W. D.; Guo, N.; Lu, Z. Y.; Liu, X. Q.; Liao, L.; Chen, P. P.; Jiang, T.; Wu, S. W.; Ho, J. C. et al. Highresponsivity graphene/InAs nanowire heterojunction nearinfrared photodetectors with distinct photocurrent on/off ratios. Small 2015, 11, 936–942.

    Article  Google Scholar 

  17. Wang, J.; Lee, S. Ge-photodetectors for Si-based optoelectronic integration. Sensors 2011, 11, 696–718.

    Article  Google Scholar 

  18. Hall, D. J.; Buckle, L.; Gordon, N. T.; Giess, J.; Hails, J. E.; Cairns, J. W.; Lawrence, R. M.; Graham, A.; Hall, R. S.; Maltby, C. et al. High-performance long-wavelength HgCdTe infrared detectors grown on silicon substrates. Appl. Phys. Lett. 2004, 85, 2113–2115.

    Article  Google Scholar 

  19. Sellai, A.; Dawson, P. Yield in inhomogeneous PtSi–n-Si Schottky photodetectors. Nucl. Instrum. Meth. A 2006, 567, 372–375.

    Article  Google Scholar 

  20. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  21. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  Google Scholar 

  22. Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899–907.

    Article  Google Scholar 

  23. Gupta, A.; Sakthivel, T.; Seal, S. Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 2015, 73, 44–126.

    Article  Google Scholar 

  24. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    Article  Google Scholar 

  25. Wang, H.; Yu, L. L.; Lee, Y. H.; Shi, Y. M.; Hsu, A.; Chin, M. L.; Li, L. J.; Dubey, M.; Kong, J.; Palacios, T. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 2012, 12, 4674–4680.

    Article  Google Scholar 

  26. Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74–80.

    Article  Google Scholar 

  27. Pesin, D.; MacDonald, A. H. Spintronics and pseudospintronics in graphene and topological insulators. Nat. Mater. 2012, 11, 409–416.

    Article  Google Scholar 

  28. Li, X. M.; Zhu, H. W.; Wang, K. L.; Cao, A. Y.; Wei, J. Q.; Li, C. Y.; Jia, Y.; Li, Z.; Li, X.; Wu, D. H. Graphene-on-silicon Schottky junction solar cells. Adv. Mater. 2010, 22, 2743–2748.

    Article  Google Scholar 

  29. Tsai, M. L.; Su, S. H.; Chang, J. K.; Tsai, D. S.; Chen, C. H.; Wu, C. I.; Li, L. J.; Chen, L. J.; He, J. H. Monolayer MoS2 heterojunction solar cells. ACS Nano 2014, 8, 8317–8322.

    Article  Google Scholar 

  30. An, X. H.; Liu, F. Z.; Jung, Y. J.; Kar, S. Tunable graphenesilicon heterojunctions for ultrasensitive photodetection. Nano Lett. 2013, 13, 909–916.

    Article  Google Scholar 

  31. Serrano, W.; Pinto, N. J.; Naylor, C. H.; Kybert, N. J.; Johnson, A. T. C., Jr. Facile fabrication of a ultraviolet tunable MoS2/p-Si junction diode. Appl. Phys. Lett. 2015, 106, 193504.

    Article  Google Scholar 

  32. Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

    Article  Google Scholar 

  33. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Largescale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

    Article  Google Scholar 

  34. Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308.

    Article  Google Scholar 

  35. Li, X. S.; Zhu, Y. W.; Cai, W. W.; Borysiak, M.; Han, B. Y.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009, 9, 4359–4363.

    Article  Google Scholar 

  36. Xie, C.; Zhang, X. Z.; Wu, Y. M.; Zhang, X. J.; Zhang, X. W.; Wang, Y.; Zhang, W. J.; Gao, P.; Han, Y. Y.; Jie, J. S. Surface passivation and band engineering: A way toward high efficiency graphene-planar Si solar cells. J. Mater. Chem. A 2013, 1, 8567–8574.

    Article  Google Scholar 

  37. Song, Y.; Li, X. M.; Mackin, C.; Zhang, X.; Fang, W. J.; Palacios, T.; Zhu, H. W.; Kong, J. Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells. Nano Lett. 2015, 15, 2104–2110.

    Article  Google Scholar 

  38. Jiao, K. J.; Wang, X. L.; Wang, Y.; Chen, Y. F. Graphene oxide as an effective interfacial layer for enhanced graphene/ silicon solar cell performance. J. Mater. Chem. C 2014, 2, 7715–7721.

    Article  Google Scholar 

  39. Miao, X. C.; Tongay, S.; Petterson, M. K.; Berke, K.; Rinzler, A. G.; Appleton, B. R.; Hebard, A. F. High efficiency graphene solar cells by chemical doping. Nano Lett. 2012, 12, 2745–2750.

    Article  Google Scholar 

  40. Xie, C.; Zhang, X. J.; Ruan, K. Q.; Shao, Z. B.; Dhaliwal, S. S.; Wang, L.; Zhang, Q.; Zhang, X. W.; Jie, J. S. Highefficiency, air stable graphene/Si micro-hole array Schottky junction solar cells. J. Mater. Chem. A 2013, 1, 15348–15354.

    Article  Google Scholar 

  41. Zhang, X. Z.; Xie, C.; Jie, J. S.; Zhang, X. W.; Wu, Y. M.; Zhang, W. J. High-efficiency graphene/Si nanoarray Schottky junction solar cells via surface modification and graphene doping. J. Mater. Chem. A 2013, 1, 6593–6601.

    Article  Google Scholar 

  42. Luo, L. B.; Xie, C.; Wang, X. H.; Yu, Y. Q.; Wu, C. Y.; Hu, H.; Zhou, K. Y.; Zhang, X. W.; Jie, J. S. Surface plasmon resonance enhanced highly efficient planar silicon solar cell. Nano Energy 2014, 9, 112–120.

    Article  Google Scholar 

  43. Shi, E. Z.; Li, H. B.; Yang, L.; Zhang, L. H.; Li, Z.; Li, P. X.; Shang, Y. Y.; Wu, S. T.; Li, X. M.; Wei, J. Q. et al. Colloidal antireflection coating improves graphene-silicon solar cells. Nano Lett. 2013, 13, 1776–1781.

    Google Scholar 

  44. Ruan, K. Q.; Ding, K.; Wang, Y. M.; Diao, S. L.; Shao, Z. B.; Zhang, X. J.; Jie, J. S. Flexible graphene/silicon heterojunction solar cells. J. Mater. Chem. A 2015, 3, 14370–14377.

    Article  Google Scholar 

  45. Gao, P.; Ding, K.; Wang, Y.; Ruan, K. Q.; Diao, S. L.; Zhang, Q.; Sun, B. Q.; Jie, J. S. Crystalline Si/graphene quantum dots heterojunction solar cells. J. Phys. Chem. C 2014, 118, 5164–5171.

    Article  Google Scholar 

  46. Hao, L. Z.; Gao, W.; Liu, Y. J.; Han, Z. D.; Xue, Q. Z.; Guo, W. Y.; Zhu, J.; Li, Y. R. High-performance n-MoS2/i-SiO2/p-Si heterojunction solar cells. Nanoscale 2015, 7, 8304–8308.

    Article  Google Scholar 

  47. Lv, P.; Zhang, X. J.; Zhang, X. W.; Deng, W.; Jie, J. S. High-sensitivity and fast-response graphene/crystalline silicon Schottky junction-based near-IR photodetectors. IEEE Electr. Device L. 2013, 34, 1337–1339.

    Article  Google Scholar 

  48. Zeng, L. H.; Xie, C.; Tao, L. L.; Long, H.; Tang, C. Y.; Tsang, Y. H.; Jie, J. S. Bilayer graphene based surface passivation enhanced nano structured self-powered near-infrared photodetector. Opt. Express 2015, 23, 4839–4846.

    Article  Google Scholar 

  49. Amirmazlaghani, M.; Raissi, F.; Habibpour, O.; Vukusic, J.; Stake, J. Graphene-Si Schottky IR detector. IEEE J. Quantum Elect. 2013, 49, 589–594.

    Article  Google Scholar 

  50. Wang, X. M.; Cheng, Z. Z.; Xu, K.; Tsang, H. K.; Xu, J.-B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics 2013, 7, 888–891.

    Article  Google Scholar 

  51. Li, Y.; Xu, C. Y.; Wang, J. Y.; Zhen, L. Photodiode-like behavior and excellent photoresponse of vertical Si/monolayer MoS2 heterostructures. Sci. Rep. 2014, 4, 7186.

    Article  Google Scholar 

  52. Wang, L.; Jie, J. S.; Shao, Z. B.; Zhang, Q.; Zhang, X. H.; Wang, Y. M.; Sun, Z.; Lee, S. T. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, highdetectivity, self-driven visible-near infrared photodetectors. Adv. Funct. Mater. 2015, 25, 2910–2919.

    Article  Google Scholar 

  53. Yuan, X.; Tang, L.; Liu, S. S.; Wang, P.; Chen, Z. G.; Zhang, C.; Liu, Y. W.; Wang, W. Y.; Zou, Y. C.; Liu, C. et al. Arrayed van der Waals vertical heterostructures based on 2D GaSe grown by molecular beam epitaxy. Nano Lett. 2015, 15, 3571–3577.

    Article  Google Scholar 

  54. Yao, J. D.; Shao, J. M.; Wang, Y. X.; Zhao, Z. R.; Yang, G. W. Ultra-broadband and high response of the Bi2Te3–Si heterojunction and its application as a photodetector at room temperature in harsh working environments. Nanoscale 2015, 7, 12535–12541.

    Article  Google Scholar 

  55. Aberle, A. G. Overview on SiN surface passivation of crystalline silicon solar cells. Sol. Energ. Mat. Sol. C. 2001, 65, 239–248.

    Article  Google Scholar 

  56. Schmidt, J.; Merkle, A.; Brendel, R.; Hoex, B.; Van de Sanden, M. C. M.; Kessels, W. M. M. Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3. Prog. Photovoltaics 2008, 16, 461–466.

    Article  Google Scholar 

  57. Mulligan, W. P.; Rose, D. H.; Cudzinovic, M. J.; De Ceuster, D. M.; McIntosh, K. R.; Smith, D. D.; Swanson, R. M. Manufacture of solar cells with 21% efficiency. In Proceedings of the 19th European Photovoltaic Solar Energy Conference, Paris, France, 2004, p 387.

    Google Scholar 

  58. Oh, J.; Yuan, H. C.; Branz, H. M. An 18.2%-efficient blacksilicon solar cell achieved through control of carrier recombination in nanostructures. Nat. Nanotechnol. 2012, 7, 743–748.

    Article  Google Scholar 

  59. Dan, Y. P.; Seo, K.; Takei, K.; Meza, J. H.; Javey, A.; Crozier, K. B. Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires. Nano Lett. 2011, 11, 2527–2532.

    Article  Google Scholar 

  60. Nemanick, E. J.; Hurley, P. T.; Brunschwig, B. S.; Lewis, N. S. Chemical and electrical passivation of silicon (111) surfaces through functionalization with sterically hindered alkyl groups. J. Phys. Chem. B 2006, 110, 14800–14808.

    Article  Google Scholar 

  61. Maldonado, S.; Knapp, D.; Lewis, N. S. Near-ideal photodiodes from sintered gold nanoparticle films on methyl-terminated Si(111) surfaces. J. Am. Chem. Soc. 2008, 130, 3300–3301.

    Article  Google Scholar 

  62. Lin, J. H.; Zeng, J. J.; Lin, Y. J. Electronic transport for graphene/n-type Si Schottky diodes with and without H2O2 treatment. Thin Solid Films 2014, 550, 582–586.

    Article  Google Scholar 

  63. Yang, L. F.; Yu, X. G.; Xu, M. S.; Chen, H. Z.; Yang, D. R. Interface engineering for efficient and stable chemicaldoping-free graphene-on-silicon solar cells by introducing a graphene oxide interlayer. J. Mater. Chem. A 2014, 2, 16877–16883.

    Article  Google Scholar 

  64. Han, T. H.; Lee, Y.; Choi, M. R.; Woo, S. H.; Bae, S. H.; Hong, B. H.; Ahn, J. H.; Lee, T. W. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photonics 2012, 6, 105–110.

    Article  Google Scholar 

  65. Ihm, K.; Lim, J. T.; Lee, K. J.; Kwon, J. W.; Kang, T. H.; Chung, S.; Bae, S.; Kim, J. H.; Hong, B. H.; Yeom, G. Y. Number of graphene layers as a modulator of the opencircuit voltage of graphene-based solar cell. Appl. Phys. Lett. 2010, 97, 032113.

    Article  Google Scholar 

  66. Wu, Y. M.; Zhang, X. Z.; Jie, J. S.; Xie, C.; Zhang, X. W.; Sun, B. Q.; Wang, Y.; Gao, P. Graphene transparent conductive electrodes for highly efficient silicon nanostructures-based hybrid heterojunction solar cells. J. Phys. Chem. C 2013, 117, 11968–11976.

    Article  Google Scholar 

  67. Kasry, A.; Kuroda, M. A.; Martyna, G. J.; Tulevski, G. S.; Bol, A. A. Chemical doping of large-area stacked graphene films for use as transparent, conducting electrodes. ACS Nano 2010, 4, 3839–3844.

    Article  Google Scholar 

  68. Fan, G. F.; Zhu, H. W.; Wang, K. L.; Wei, J. Q.; Li, X. M.; Shu, Q. K.; Guo, N.; Wu, D. H. Graphene/silicon nanowire Schottky junction for enhanced light harvesting. ACS Appl. Mater. Interfaces 2011, 3, 721–725.

    Article  Google Scholar 

  69. Wang, Y. S.; Chen, C. Y.; Fang, X.; Li, Z. P.; Qiao, H.; Sun, B. Q.; Bao, Q. L. Top-grid monolayer graphene/Si Schottkey solar cell. J. Solid State Chem. 2015, 224, 102–106.

    Article  Google Scholar 

  70. Feng, T. T.; Xie, D.; Lin, Y. X.; Zang, Y. Y.; Ren, T. L.; Song, R.; Zhao, H. M.; Tian, H.; Li, X.; Zhu, H. W. et al. Graphene based Schottky junction solar cells on patterned silicon-pillar-array substrate. Appl. Phys. Lett. 2011, 99, 233505.

    Article  Google Scholar 

  71. Liu, X.; Zhang, X. W.; Yin, Z. G.; Meng, J. H.; Gao, H. L.; Zhang, L. Q.; Zhao, Y. J.; Wang, H. L. Enhanced efficiency of graphene-silicon Schottky junction solar cells by doping with Au nanoparticles. Appl. Phys. Lett. 2014, 105, 183901.

    Article  Google Scholar 

  72. Ho, P. H.; Liou, Y. T.; Chuang, C. H.; Lin, S. W.; Tseng, C. Y.; Wang, D. Y.; Chen, C. C.; Hung, W. Y.; Wen, C. Y.; Chen, C. W. Self-crack-filled graphene films by metallic nanoparticles for high-performance graphene heterojunction solar cells. Adv. Mater. 2015, 27, 1724–1729.

    Article  Google Scholar 

  73. Yang, L. F.; Yu, X. G.; Hu, W. D.; Wu, X. L.; Zhao, Y.; Yang, D. R. An 8.68% efficiency chemically-doped-free graphene-silicon solar cell using silver nanowires network buried contacts. ACS Appl. Mater. Interfaces 2015, 7, 4135–4141.

    Article  Google Scholar 

  74. Ho, P. H.; Lee, W. C.; Liou, Y. T.; Chiu, Y. P.; Shih, Y. S.; Chen, C. C.; Su, P. Y.; Li, M. K.; Chen, H. L.; Liang, C. T. et al. Sunlight-activated graphene-heterostructure transparent cathodes: Enabling high-performance n-graphene/p-Si Schottky junction photovoltaics. Energy Environ. Sci. 2015, 8, 2085–2092.

    Article  Google Scholar 

  75. Yu, X. G.; Yang, L. F.; Lv, Q. M.; Xu, M. S.; Chen, H. Z.; Yang, D. R. The enhanced efficiency of graphene-silicon solar cells by electric field doping. Nanoscale 2015, 7, 7072–7077.

    Article  Google Scholar 

  76. Garnett, E.; Yang, P. D. Light trapping in silicon nanowire solar cells. Nano Lett. 2010, 10, 1082–1087.

    Article  Google Scholar 

  77. Tsakalakos, L.; Balch, J.; Fronheiser, J.; Shih, M. Y.; LeBoeuf, S. F.; Pietrzykowski, M.; Codella, P. J.; Korevaar, B. A.; Sulima, O. V.; Rand, J. et al. Strong broadband optical absorption in silicon nanowire films. J. Nanophoton. 2007, 1, 013552.

    Article  Google Scholar 

  78. Zhang, A.; Kim, H.; Cheng, J.; Lo, Y. H. Ultrahigh responsivity visible and infrared detection using silicon nanowire phototransistors. Nano Lett. 2010, 10, 2117–2120.

    Article  Google Scholar 

  79. Xie, C.; Lv, P.; Nie, B.; Jie, J. S.; Zhang, X. W.; Wang, Z.; Jiang, P.; Hu, Z. Z.; Luo, L. B.; Zhu, Z. F. et al. Monolayer graphene film/silicon nanowire array Schottky junction solar cells. Appl. Phys. Lett. 2011, 99, 133113.

    Article  Google Scholar 

  80. Schaadt, D. M.; Feng, B.; Yu, E. T. Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl. Phys. Lett. 2005, 86, 063106.

    Article  Google Scholar 

  81. Wang, L.; Lu, M.; Wang, X. G.; Yu, Y. Q.; Zhao, X. Z.; Lv, P.; Song, H. W.; Zhang, X. W.; Luo, L. B.; Wu, C. Y. et al. Tuning the p-type conductivity of ZnSe nanowiresvia silver doping for rectifying and photovoltaic device applications. J. Mater. Chem. A 2013, 1, 1148–1154.

    Article  Google Scholar 

  82. Zhang, X. W.; Zhang, X. J.; Zhang, X. Z.; Zhang, Y. P.; Bian, L.; Wu, Y. M.; Xie, C.; Han, Y. Y.; Wang, Y.; Gao, P. et al. ZnSe nanoribbon/Si nanowire p–n heterojunction arrays and their photovoltaic application with graphene transparent electrodes. J. Mater. Chem. 2012, 22, 22873–22880.

    Article  Google Scholar 

  83. Pagliaro, M.; Ciriminna, R.; Palmisano, G. Flexible solar cells. ChemSusChem 2008, 1, 880–891.

    Article  Google Scholar 

  84. Ichikawa, Y.; Yoshida, T.; Hama, T.; Sakai, H.; Harashima, K. Production technology for amorphous silicon-based flexible solar cells. Sol. Energ. Mat. Sol. C. 2001, 66, 107–115.

    Article  Google Scholar 

  85. Wang, S.; Weil, B. D.; Li, Y. B.; Wang, K. X.; Garnett, E.; Fan, S. H.; Cui, Y. Large-area free-standing ultrathin singlecrystal silicon as processable materials. Nano Lett. 2013, 13, 4393–4398.

    Article  Google Scholar 

  86. Zhang, M. L.; Peng, K. Q.; Fan, X.; Jie, J. S.; Zhang, R. Q.; Lee, S. T.; Wong, N. B. Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching. J. Phys. Chem. C 2008, 112, 4444–4450.

    Article  Google Scholar 

  87. Hochbaum, A. I.; Fan, R.; He, R. R.; Yang, P. D. Controlled growth of Si nanowire arrays for device integration. Nano Lett. 2005, 5, 457–460.

    Article  Google Scholar 

  88. Wang, Y.; Zhang, X. J.; Gao, P.; Shao, Z. B.; Zhang, X. W.; Han, Y. Y.; Jie, J. S. Air heating approach for multilayer etching and roll-to-roll transfer of silicon nanowire arrays as SERS substrates for high sensitivity molecule detection. ACS Appl. Mater. Interfaces 2014, 6, 977–984.

    Article  Google Scholar 

  89. Han, M. Y.; Özyilmaz, B.; Zhang, Y. B.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805.

    Article  Google Scholar 

  90. Yavari, F.; Kritzinger, C.; Gaire, C.; Song, L.; Gulapalli, H.; Borca-Tasciuc, T.; Ajayan, P. M.; Koratkar, N. Tunable bandgap in graphene by the controlled adsorption of water molecules. Small 2010, 6, 2535–2538.

    Article  Google Scholar 

  91. Peng, J.; Gao, W.; Gupta, B. K.; Liu, Z.; Romero-Aburto, R.; Ge, L. H.; Song, L.; Alemany, L. B.; Zhan, X. B.; Gao, G. H. et al. Graphene quantum dots derived from carbon fibers. Nano Lett. 2012, 12, 844–849.

    Article  Google Scholar 

  92. Mandal, B.; Sarkar, S.; Sarkar, P. Exploring the electronic structure of graphene quantum dots. J. Nanopart. Res. 2012, 14, 1317.

    Article  Google Scholar 

  93. Ponomarenko, L. A.; Schedin, F.; Katsnelson, M. I.; Yang, R.; Hill, E. W.; Novoselov, K. S.; Geim, A. K. Chaotic Dirac billiard in graphene quantum dots. Science 2008, 320, 356–358.

    Article  Google Scholar 

  94. Zhang, Z. P; Zhang, J.; Chen, N.; Qu, L. T. Graphene quantum dots: An emerging material for energy-related applications and beyond. Energy Environ. Sci. 2012, 5, 8869–8890.

    Article  Google Scholar 

  95. Williams, K. J.; Nelson, C. A.; Yan, X.; Li, L. S.; Zhu, X. Y. Hot electron injection from graphene quantum dots to TiO2. ACS Nano 2013, 7, 1388–1394.

    Article  Google Scholar 

  96. Ayhan, M. E.; Kalita, G.; Kondo, M.; Tanemura, M. Photoresponsivity of silver nanoparticles decorated graphenesilicon Schottky junction. RSC Adv. 2014, 4, 26866–26871.

    Article  Google Scholar 

  97. Luo, L. B.; Zeng, L. H.; Xie, C.; Yu, Y. Q.; Liang, F. X.; Wu, C. Y.; Wang, L.; Hu, J. G. Light trapping and surface plasmon enhanced high-performance NIR photodetector. Sci. Rep. 2014, 4, 3914.

    Google Scholar 

  98. Zhu, M.; Zhang, L.; Li, X. M.; He, Y. J.; Li, X.; Guo, F. M.; Zang, X. B.; Wang, K. L.; Xie, D.; Li, X. H. et al. TiO2 enhanced ultraviolet detection based on a graphene/Si Schottky diode. J. Mater. Chem. A 2015, 3, 8133–8138.

    Google Scholar 

  99. Xia, F. N.; Mueller, T.; Golizadeh-Mojarad, R.; Freitag, M.; Lin, Y. M.; Tsang, J.; Perebeinos, V.; Avouris, P. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 2009, 9, 1039–1044.

    Article  Google Scholar 

  100. Xia, F. N.; Mueller, T.; Lin, Y. M.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839–843.

    Article  Google Scholar 

  101. Gan, X. T.; Shiue, R. J.; Gao, Y. D.; Meric, I.; Heinz, T. F.; Shepard, K.; Hone, J.; Assefa, S.; Englund, D. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 2013, 7, 883–887.

    Article  Google Scholar 

  102. Pospischil, A.; Humer, M.; Furchi, M. M.; Bachmann, D.; Guider, R.; Fromherz, T.; Mueller, T. CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photonics 2013, 7, 892–896.

    Article  Google Scholar 

  103. Meric, I.; Han, M. Y.; Young, A. F.; Ozyilmaz, B.; Kim, P.; Shepard, K. L. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 2008, 3, 654–659.

    Article  Google Scholar 

  104. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of twodimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  Google Scholar 

  105. Huang, X.; Zeng, Z. Y.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934–1946.

    Article  Google Scholar 

  106. Chen, D. Y.; Chen, W. X.; Ma, L.; Ji, G.; Chang, K.; Lee, J. Y. Graphene-like layered metal dichalcogenide/graphene composites: Synthesis and applications in energy storage and conversion. Mater. Today 2014, 17, 184–193.

    Article  Google Scholar 

  107. Wilson, J. A.; Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 1969, 18, 193–335.

    Article  Google Scholar 

  108. Shanmugam, M.; Durcan, C. A.; Yu, B. Layered semiconductor molybdenum disulfide nanomembrane based Schottky-barrier solar cells. Nanoscale 2012, 4, 7399–7405.

    Article  Google Scholar 

  109. Ghatak, S.; Pal, A. N.; Ghosh, A. Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 2011, 5, 7707–7712.

    Article  Google Scholar 

  110. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  111. Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

    Article  Google Scholar 

  112. Bernardi, M.; Palummo, M.; Grossman, J. C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 2013, 13, 3664–3670.

    Article  Google Scholar 

  113. Ma, D. L.; Shi, J. P.; Ji, Q. Q.; Chen, K.; Yin, J. B.; Lin, Y. W.; Zhang, Y.; Liu, M. X.; Feng, Q. L.; Song, X. L. et al. A universal etching-free transfer of MoS2 films for applications in photodetectors. Nano Res. 2015, 8, 3662–3672.

    Article  Google Scholar 

  114. Park, M. J.; Min, J. K.; Yi, S. G.; Kim, J. H.; Oh, J.; Yoo, K. H. Near-infrared photodetectors utilizing MoS2-based heterojunctions. J. Appl. Phys. 2015, 118, 044504.

    Article  Google Scholar 

  115. Lin, Y. C.; Zhang, W. J.; Huang, J. K.; Liu, K. K.; Lee, Y. H.; Liang, C. T.; Chu, C. W.; Li, L. J. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale 2012, 4, 6637–6641.

    Article  Google Scholar 

  116. Ling, Z. P.; Yang, R.; Chai, J. W.; Wang, S. J.; Leong, W. S.; Tong, Y.; Lei, D.; Zhou, Q.; Gong, X.; Chi, D. Z. et al. Large-scale two-dimensional MoS2 photodetectors by magnetron sputtering. Opt. Express 2015, 23, 13580–13586.

    Article  Google Scholar 

  117. Kong, D. S.; Wang, H. T.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 2013, 13, 1341–1347.

    Article  Google Scholar 

  118. Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501.

    Article  Google Scholar 

  119. Tsai, D. S.; Liu, K. K.; Lien, D. H.; Tsai, M. L.; Kang, C. F.; Lin, C. A.; Li, L. J.; He, J. H. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano 2013, 7, 3905–3911.

    Article  Google Scholar 

  120. Xu, H.; Wu, J. X.; Feng, Q. L.; Mao, N. N.; Wang, C. M.; Zhang, J. High responsivity and gate tunable graphene-MoS2 hybrid phototransistor. Small 2014, 10, 2300–2306.

    Article  Google Scholar 

  121. Wang, X. D.; Wang, P.; Wang, J. L.; Hu, W. D.; Zhou, X. H.; Guo, N.; Huang, H.; Sun, S.; Shen, H.; Lin, T. et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv. Mater. 2015, 27, 6575–6581.

    Google Scholar 

  122. Liu, S. S.; Yuan, X.; Wang, P.; Chen, Z. G.; Tang, L.; Zhang, E. Z.; Zhang, C.; Liu, Y. W.; Wang, W. Y.; Liu, C. et al. Controllable growth of vertical heterostructure GaTexSe1–x/Si by molecular beam epitaxy. ACS Nano 2015, 9, 8592–8598.

    Article  Google Scholar 

  123. Yuan, X.; Tang, L.; Wang, P.; Chen, Z. G.; Zou, Y. C.; Su, X. F.; Zhang, C.; Liu, Y. W.; Wang, W. Y.; Liu, C. et al. Wafer-scale arrayed p–n junctions based on few-layer epitaxial GaTe. Nano Res. 2015, 8, 3332–3341.

    Article  Google Scholar 

  124. Zhang, H. B.; Li, H.; Shao, J. M.; Li, S. W.; Bao, D. H.; Yang, G. W. High-performance Bi2Te3-based topological insulator film magnetic field detector. ACS Appl. Mater. Interfaces 2013, 5, 11503–11508.

    Article  Google Scholar 

  125. Qi, X. L.; Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057–1110.

    Article  Google Scholar 

  126. Zheng, K.; Luo, L. B.; Zhang, T. F.; Liu, Y. H.; Yu, Y. Q.; Lu, R.; Qiu, H. L.; Li, Z. J.; Andrew Huang, J. C. Optoelectronic characteristics of a near infrared light photodetector based on a topological insulator Sb2Te3 film. J. Mater. Chem. C 2015, 3, 9154–9160.

    Article  Google Scholar 

  127. Lopez-Sanchez, O.; Alarcon Llado, E.; Koman, V.; Fontcuberta i Morral, A.; Radenovic, A.; Kis, A. Light generation and harvesting in a van der Waals heterostructure. ACS Nano 2014, 8, 3042–3048.

    Article  Google Scholar 

  128. Ding, Q.; Meng, F.; English, C. R.; Cabán-Acevedo, M.; Shearer, M. J.; Liang, D.; Daniel, A. S.; Hamers, R. J.; Jin, S. Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2. J. Am. Chem. Soc. 2014, 136, 8504–8507.

    Article  Google Scholar 

  129. Zhu, M.; Li, X. M.; Chung, S.; Zhao, L. Y.; Li, X.; Zang, X. B.; Wang, K. L.; Wei, J. Q.; Zhong, M. L.; Zhou, K. et al. Photo-induced selective gas detection based on reduced graphene oxide/Si Schottky diode. Carbon 2015, 84, 138–145.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuit-Tong Lee or Jiansheng Jie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Ding, K., Sun, B. et al. Two-dimensional layered material/silicon heterojunctions for energy and optoelectronic applications. Nano Res. 9, 72–93 (2016). https://doi.org/10.1007/s12274-016-1003-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1003-3

Keywords

Navigation