Skip to main content
Log in

MOF-mediated synthesis of novel PtFeCoNiMn high-entropy nano-alloy as bifunctional oxygen electrocatalysts for zinc-air battery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

High-entropy alloy (HEA)-based materials are expected to be promising oxygen electrocatalysts due to their exceptional properties. The electronic structure regulation of HEAs plays a pivotal role in enhancing their elctrocatalytic ability. Herein, PtFeCoNiMn nanoparticles (NPs) with subtle lattice distortions are constructed on metal-organic framework-derived nitrogen-doped carbon by an ultra-rapid Joule heating process. Thanks to the modulated electronic structure and the inherent cocktail effect of HEAs, the as-synthesized PtFeCoNiMn/NC exhibits superior bifunctional electrocatalytic performance with a positive half-wave potential of 0.863 V vs. reversible hydrogen electrode (RHE) for oxygen reduction reaction and a low overpotential of 357 mV at 10 mA·cm−2 for oxygen evolution reaction. The assembled quasi-solid-state zinc-air battery using PtFeCoNiMn/NC as air electrode shows a high peak power density of 192.16 mW·cm−2, low charge–discharge voltage gap, and excellent durability over 500 cycles at 5 mA·cm−2. This work demonstrates an effective route for rational design of bifunctional nanostructured HEA electrocatalysts with favorable electronic structures, and opens up a fascinating directions for energy storage and conversion, and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22.

    Article  Google Scholar 

  2. Wang, Q. C.; Kaushik, S.; Xiao, X.; Xu, Q. Sustainable zinc-air battery chemistry: Advances, challenges and prospects. Chem. Soc. Rev. 2023, 52, 6139–6190.

    Article  CAS  PubMed  Google Scholar 

  3. Pan, H.; Wang, X. L.; Li, F. Y.; Xu, Q. A one-stone-two-birds strategy to construct metal-organic framework-derived cobalt phosphide as an efficient bifunctional electrocatalyst for oxygen electrode reactions. J. Mater. Chem. A 2023, 11, 15006–15013.

    Article  CAS  Google Scholar 

  4. Lu, Q.; Zou, X. H.; Bu, Y. F.; Shao, Z. P. Structural design of supported electrocatalysts for rechargeable Zn-air batteries. Energy Storage Mater. 2023, 55, 166–192.

    Article  Google Scholar 

  5. Shi, J. J.; Shu, X. X.; Xiang, C. S.; Li, H.; Li, Y.; Du, W.; An, P. F.; Tian, H.; Zhang, J. T.; Xia, H. B. Fe ultra-small particles anchored on carbon aerogels to enhance the oxygen reduction reaction in Zn-air batteries. J. Mater. Chem. A 2021, 9, 6861–6871.

    Article  CAS  Google Scholar 

  6. Wang, Q.; Zhao, Z. L.; Zhang, Z.; Feng, T. L.; Zhong, R. Y.; Xu, H.; Pantelides, S. T.; Gu, M. Sub-3 nm intermetallic ordered Pt3In clusters for oxygen reduction reaction. Adv. Sci. 2020, 7, 1901279.

    Article  CAS  Google Scholar 

  7. Zhang, W.; Chang, J. F.; Wang, G. Z.; Li, Z.; Wang, M. Y.; Zhu, Y. M.; Li, B. Y.; Zhou, H.; Wang, G. F.; Gu, M. et al. Surface oxygenation induced strong interaction between Pd catalyst and functional support for zinc-air batteries. Energy Environ. Sci. 2022, 15, 1573–1584.

    Article  CAS  Google Scholar 

  8. Chung, D. Y.; Jun, S. W.; Yoon, G.; Kwon, S. G.; Shin, D. Y.; Seo, P.; Yoo, J. M.; Shin, H.; Chung, Y. H.; Kim, H. et al. Highly durable and active PtFe nanocatalyst for electrochemical oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 15478–15485.

    Article  CAS  PubMed  Google Scholar 

  9. Chai, Z. L.; Zhang, C. X.; Wang, H.; Bi, X.; Bai, P.; Wang, X. J. Increased interface effects of Pt-Fe alloy/CeO2/C with Pt-Fe selective loading on CeO2 for superior performance in direct methanol fuel cell. Int. J. Hydrogen Energy 2019, 44, 4794–4808.

    Article  CAS  Google Scholar 

  10. Xie, M. H.; Lyu, Z.; Chen, R. H.; Shen, M.; Cao, Z. M.; Xia, Y. N. Pt-Co@Pt octahedral nanocrystals: Enhancing their activity and durability toward oxygen reduction with an intermetallic core and an ultrathin shell. J. Am. Chem. Soc. 2021, 143, 8509–8518.

    Article  CAS  PubMed  Google Scholar 

  11. Jia, Q. Y.; Caldwell, K.; Strickland, K.; Ziegelbauer, J. M.; Liu, Z. Y.; Yu, Z. Q.; Ramaker, D. E.; Mukerjee, S. Improved oxygen reduction activity and durability of dealloyed PtCox catalysts for proton exchange membrane fuel cells: Strain, ligand, and particle size effects. ACS Catal. 2015, 5, 176–186.

    Article  CAS  PubMed  Google Scholar 

  12. Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.

    Article  CAS  PubMed  Google Scholar 

  13. Cui, C. H.; Gan, L.; Li, H. H.; Yu, S. H.; Heggen, M.; Strasser, P. Octahedral PtNi nanoparticle catalysts: Exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett. 2012, 12, 5885–5889.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, W.; Xia, G. J.; Wang, Y. G. Mechanistic insight into methanol electro-oxidation catalyzed by PtCu alloy. Chin. J. Catal. 2022, 43, 167–176.

    Article  CAS  Google Scholar 

  15. Zhao, F. L.; Zheng, L. R.; Yuan, Q.; Zhang, Q. H.; Sheng, T.; Yang, X. T.; Gu, L.; Wang, X. PtCu subnanoclusters epitaxial on octahedral PtCu/Pt skin matrix as ultrahigh stable cathode electrocatalysts for room-temperature hydrogen fuel cells. Nano Res. 2023, 16, 2252–2258.

    Article  CAS  Google Scholar 

  16. Yano, H.; Kataoka, M.; Yamashita, H.; Uchida, H.; Watanabe, M. Oxygen reduction activity of carbon-supported Pt-M (M = V, Ni, Cr, Co, and Fe) alloys prepared by nanocapsule method. Langmuir 2007, 23, 6438–6445.

    Article  CAS  PubMed  Google Scholar 

  17. Gao, F.; Zhang, Y. P.; Ren, F. F.; Song, T. X.; Du, Y. K. Tiny Ir doping of sub-one-nanometer PtMn nanowires: Highly active and stable catalysts for alcohol electrooxidation. Nanoscale 2020, 12, 12098–12105.

    Article  CAS  PubMed  Google Scholar 

  18. George, E. P.; Raabe, D.; Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534.

    Article  CAS  Google Scholar 

  19. Batchelor, T. A. A.; Pedersen, J. K.; Winther, S. H.; Castelli, I. E.; Jacobsen, K. W.; Rossmeisl, J. High-entropy alloys as a discovery platform for electrocatalysis. Joule 2019, 3, 834–845.

    Article  CAS  Google Scholar 

  20. Chen, T.; Ning, F. H.; Qi, J. Z.; Feng, G.; Wang, Y. C.; Song, J.; Yang, T. H.; Liu, X.; Chen, L. W.; Xia, D. G. PtFeCoNiCu high-entropy solid solution alloy as highly efficient electrocatalyst for the oxygen reduction reaction. iScience 2023, 26, 105890.

    Article  CAS  PubMed  Google Scholar 

  21. Chang, J. F.; Wang, G. Z.; Li, C.; He, Y. Q.; Zhu, Y. M.; Zhang, W.; Sajid, M.; Kara, A.; Gu, M.; Yang, Y. Rational design of septenary high-entropy alloy for direct ethanol fuel cells. Joule 2023, 7, 587–602.

    Article  CAS  Google Scholar 

  22. Yu, Y. N.; Xia, F. J.; Wang, C. J.; Wu, J. S.; Fu, X. B.; Ma, D. S.; Lin, B. C.; Wang, J. A.; Yue, Q.; Kang, Y. J. High-entropy alloy nanoparticles as a promising electrocatalyst to enhance activity and durability for oxygen reduction. Nano Res. 2022, 15, 7868–7876.

    Article  CAS  Google Scholar 

  23. He, R.; Yang, L. L.; Zhang, Y.; Wang, X.; Lee, S.; Zhang, T.; Li, L. X.; Liang, Z. F.; Chen, J. W.; Li, J. S. et al. A CrMnFeCoNi high entropy alloy boosting oxygen evolution/reduction reactions and zinc-air battery performance. Energy Storage Mater. 2023, 58, 287–298.

    Article  Google Scholar 

  24. Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu, H. F.; Hu, R. M.; Zhang, Y. Z.; Yan, H. B.; Zhu, Q.; Shang, J. X.; Yang, S. B.; Li, B. Nano high-entropy alloy with strong affinity driving fast polysulfide conversion towards stable lithium sulfur batteries. Energy Storage Mater. 2021, 43, 212–220.

    Article  CAS  Google Scholar 

  26. Feng, G.; Ning, F. H.; Song, J.; Shang, H. F.; Zhang, K.; Ding, Z. P.; Gao, P.; Chu, W. S.; Xia, D. G. Sub-2 nm ultrasmall high-entropy alloy nanoparticles for extremely superior electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 2021, 143, 17117–17127.

    Article  CAS  PubMed  Google Scholar 

  27. Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 2008, 130, 5390–5391.

    Article  CAS  PubMed  Google Scholar 

  28. Dang, S.; Zhu, Q. L.; Xu, Q. Nanomaterials derived from metal-organic frameworks. Nat. Rev. Mater. 2017, 3, 17075.

    Article  Google Scholar 

  29. Wang, X. X.; Hwang, S.; Pan, Y. T.; Chen, K. T.; He, Y. H.; Karakalos, S.; Zhang, H. G.; Spendelow, J. S.; Su, D.; Wu, G. Ordered Pt3Co intermetallic nanoparticles derived from metal-organic frameworks for oxygen reduction. Nano Lett. 2018, 18, 4163–4171.

    Article  CAS  PubMed  Google Scholar 

  30. Du, N. N.; Wang, C. M.; Long, R.; Xiong, Y. J. N-doped carbon-stabilized PtCo nanoparticles derived from Pt@ZIF-67: Highly active and durable catalysts for oxygen reduction reaction. Nano Res. 2017, 10, 3228–3237.

    Article  CAS  Google Scholar 

  31. Yao, Y. G.; Huang, Z. N.; Hughes, L. A.; Gao, J. L.; Li, T. Y.; Morris, D.; Zeltmann, S. E.; Savitzky, B. H.; Ophus, C.; Finfrock, Y. Z. et al. Extreme mixing in nanoscale transition metal alloys. Matter 2021, 4, 2340–2353.

    Article  CAS  Google Scholar 

  32. Zhao, Z.; Sun, J. P.; Li, Z. Z.; Xu, X. F.; Zhang, Z. S.; Li, C. H.; Wang, L.; Meng, X. C. Rapid synthesis of efficient Mo-based electrocatalyst for the hydrogen evolution reaction in alkaline seawater with 11.28% solar-to-hydrogen efficiency. J. Mater. Chem. A 2023, 11, 10346–10359.

    Article  CAS  Google Scholar 

  33. Sun, J. P.; Qin, S. Y.; Zhang, Z. S.; Li, C. H.; Xu, X. F.; Li, Z. Z.; Meng, X. C. Joule heating synthesis of well lattice-matched Co2Mo3O8/MoO2 heterointerfaces with greatly improved hydrogen evolution reaction in alkaline seawater electrolysis with 12.4 % STH efficiency. Appl. Catal. B Environ. 2023, 338, 123015.

    Article  CAS  Google Scholar 

  34. Wang, Q. C.; Feng, Q. G.; Lei, Y. P.; Tang, S. H.; Xu, L.; Xiong, Y.; Fang, G. Z.; Wang, Y. C.; Yang, P. Y.; Liu, J. J. et al. Quasi-solid-state Zn-air batteries with an atomically dispersed cobalt electrocatalyst and organohydrogel electrolyte. Nat. Commun. 2022, 13, 3689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dong, S. H.; Li, C. X.; Ge, X. L.; Li, Z. Q.; Miao, X. G.; Yin, L. W. ZnS-Sb2S3@C core-double shell polyhedron structure derived from metal-organic framework as anodes for high performance sodium ion batteries. ACS Nano 2017, 11, 6474–6482.

    Article  CAS  PubMed  Google Scholar 

  36. Li, J.; Liu, J. L.; Chen, C.; Guo, J. N.; Bi, R.; Chen, S.; Zhang, L.; Zhu, M. Pt nanoclusters anchored on ordered macroporous nitrogen-doped carbon for accelerated water dissociation toward superior alkaline hydrogen production. Chem. Eng. J. 2022, 436, 135186.

    Article  CAS  Google Scholar 

  37. Liao, Y. T.; Zhu, R. T.; Zhang, W. J.; Zhu, H. Y.; Sun, Y.; Chen, J. L.; Dong, Z. H.; Lv, R. H.Transient synthesis of carbon-supported high-entropy alloy sulfide nanoparticles via flash Joule heating for efficient electrocatalytic hydrogen evolution. Nano Res. 2024, 17, 3379–3389.

    Article  CAS  Google Scholar 

  38. Jacob, K. T.; Raj, S.; Rannesh, L. Vegard’s law: A fundamental relation or an approximation. Int. J. Mater. Res. 2007, 98, 776–779.

    Article  CAS  Google Scholar 

  39. Tian, Z. H.; Zhang, P. G.; Sun, W. W.; Yan, B. Z.; Sun, Z. M. Vegard’s law deviating Ti2(SnxAl1−x)C solid solution with enhanced properties. J. Adv. Ceram. 2023, 12, 1655–1669.

    Article  CAS  Google Scholar 

  40. Huang, K.; Zhang, B. W.; Wu, J. S.; Zhang, T. Y.; Peng, D. D.; Cao, X.; Zhang, Z.; Li, Z.; Huang, Y. Z. Exploring the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-centred cubic high-entropy alloy electrocatalyst. J. Mater. Chem. A 2020, 8, 11938–11947.

    Article  CAS  Google Scholar 

  41. Huang, K.; Peng, D. D.; Yao, Z. X.; Xia, J. Y.; Zhang, B. W.; Liu, H.; Chen, Z. B.; Wu, F.; Wu, J. S.; Huang, Y. Z. Cathodic plasma driven self-assembly of HEAs dendrites by pure single FCC FeCoNiMnCu nanoparticles as high efficient electrocatalysts for OER. Chem. Eng. J. 2021, 425, 131533.

    Article  CAS  Google Scholar 

  42. Zuo, X. F.; Yan, R. Q.; Zhao, L. J.; Long, Y. D.; Shi, L.; Cheng, Q. Q.; Liu, D.; Hu, C. G. A hollow PdCuMoNiCo high-entropy alloy as an efficient bi-functional electrocatalyst for oxygen reduction and formic acid oxidation. J. Mater. Chem. A 2022, 10, 14857–14865.

    Article  CAS  Google Scholar 

  43. Hou, C. C.; Zou, L. L.; Xu, Q. A hydrangea-like superstructure of open carbon cages with hierarchical porosity and highly active metal sites. Adv. Mater. 2019, 31, 1904689.

    Article  CAS  Google Scholar 

  44. Jo, S.; Kim, M. C.; Lee, K. B.; Choi, H.; Zhang, L. T.; Sohn, J. I. Nonprecious high-entropy chalcogenide glasses-based electrocatalysts for efficient and stable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. Adv. Energy Mater. 2023, 13, 2301420.

    Article  CAS  Google Scholar 

  45. Li, R.; Liu, X. J.; Liu, W. H.; Li, Z. B.; Chan, K. C.; Lu, Z. P. Design of hierarchical porosity via manipulating chemical and microstructural complexities in high-entropy alloys for efficient water electrolysis. Adv. Sci. 2022, 9, 2105808.

    Article  CAS  Google Scholar 

  46. Kwon, J.; Sun, S.; Choi, S.; Lee, K.; Jo, S.; Park, K.; Kim, Y. K.; Park, H. B.; Park, H. Y.; Jang, J. H. et al. Tailored electronic structure of Ir in high entropy alloy for highly active and durable bifunctional electrocatalyst for water splitting under an acidic environment. Adv. Mater. 2023, 35, 2300091.

    Article  CAS  Google Scholar 

  47. Sivanantham, A.; Lee, H.; Hwang, S. W.; Lee, H. U.; Cho, S. B.; Ahn, B.; Cho, I. S. Complementary functions of vanadium in boosting electrocatalytic activity of CuCoNiFeMn high-entropy alloy for water splitting. Adv. Funct. Mater. 2023, 33, 2301153.

    Article  CAS  Google Scholar 

  48. Cui, Z. M.; Chen, H.; Zhou, W. D.; Zhao, M. T.; DiSalvo, F. J. Structurally ordered Pt3Cr as oxygen reduction electrocatalyst: Ordering control and origin of enhanced stability. Chem. Mater. 2015, 27, 7538–7545.

    Article  CAS  Google Scholar 

  49. Gong, M. X.; Xiao, D. D.; Deng, Z. P.; Zhang, R.; Xia, W. W.; Zhao, T. H.; Liu, X. P.; Shen, T.; Hu, Y. Z.; Lu, Y. et al. Structure evolution of PtCu nanoframes from disordered to ordered for the oxygen reduction reaction. Appl. Catal. B Environ. 2021, 282, 119617.

    Article  CAS  Google Scholar 

  50. Nie, Y.; Sun, Y. J.; Song, B. Y.; Meyer, Q.; Liu, S. Y.; Guo, H. Y.; Tao, L.; Lin, F. X.; Luo, M. C.; Zhang, Q. H. et al. Low-electronegativity Mn-contraction of PtMn nanodendrites boosts oxygen reduction durability. Angew. Chem., Int. Ed., in press, DOI: https://doi.org/10.1002/anie.202317987.

  51. Yang, J.; Hübner, R.; Zhang, J. W.; Wan, H.; Zheng, Y. Y.; Wang, H. L.; Qi, H. Y.; He, L. Q.; Li, Y.; Dubale, A. A. et al. A robust PtNi nanoframe/N-doped graphene aerogel electrocatalyst with both high activity and stability. Angew. Chem., Int. Ed. 2021, 60, 9590–9597.

    Article  CAS  Google Scholar 

  52. Zhou, Q.; An, Y.; Zhou, S. Y.; Wang, Z. C.; Long, J.; Liao, W.; Chen, M. D.; Wang, Q. M. Precisely tuning the electronic structure of ordered PtFe alloy supported on multi-walled carbon nanotubes for enhanced methanol oxidation. J. Alloys Compd. 2023, 937, 168347.

    Article  CAS  Google Scholar 

  53. Zhang, J. T.; Xia, Z. H.; Dai, L. M. Carbon-based electrocatalysts for advanced energy conversion and storage. Sci. Adv. 2015, 1, e1500564.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Li, Y. R.; Li, H. W.; Zhao, Y.; Ji, D.; Guo, P.; Li, G. X.; Zhao, X. H. Insights on the roles of nitrogen configuration in enhancing the performance of electrocatalytic methanol oxidation over Pt nanoparticles. Small 2023, 19, 2303065.

    Article  CAS  Google Scholar 

  55. Nguyen, T. X.; Liao, Y. C.; Lin, C. C.; Su, Y. H.; Ting, J. M. Advanced high entropy perovskite oxide electrocatalyst for oxygen evolution reaction. Adv. Funct. Mater. 2021, 31, 2101632.

    Article  CAS  Google Scholar 

  56. Nguyen, T. X.; Su, Y. H.; Lin, C. C.; Ruan, J.; Ting, J. M. A new high entropy glycerate for high performance oxygen evolution reaction. Adv. Sci. 2021, 8, 2002446.

    Article  CAS  Google Scholar 

  57. Wei, M.; Sun, Y. Y.; Ai, F.; Xi, S. B.; Zhang, J. Y.; Wang, J. K. Stretchable high-entropy alloy nanoflowers enable enhanced alkaline hydrogen evolution Catalysis. Appl. Catal. B Environ. 2023, 334, 122814.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (No. ZDSYS20210709112802010), the Shenzhen Science and Technology Innovation Commission (No. GJHZ20220913142610020), Guangdong Grants (No. 2021ZT09C064), and the National Key Research and Development Program of China (Nos. 2022YFA1503900 and 2023YFA1506600). The authors acknowledge the assistance of SUSTech Core Research Facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Xiao or Qiang Xu.

Electronic Supplementary Material

12274_2024_6526_MOESM1_ESM.pdf

MOF-mediated synthesis of novel PtFeCoNiMn high-entropy nano-alloy as bifunctional oxygen electrocatalysts for zinc-air battery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, M., Xiao, X., Wu, D. et al. MOF-mediated synthesis of novel PtFeCoNiMn high-entropy nano-alloy as bifunctional oxygen electrocatalysts for zinc-air battery. Nano Res. 17, 5288–5297 (2024). https://doi.org/10.1007/s12274-024-6526-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6526-4

Keywords

Navigation