Skip to main content
Log in

Steering structural mesoporosity and working microenvironment of Fe-N-C catalysts for boosting cathodic mass transport of zinc-air batteries

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Transition metal-N-C materials have considerably been demonstrated as promising catalysts for cathodic oxygen reduction reaction (ORR) in Zn-air batteries. Current efforts mainly focus on tailoring coordination structure and identifying active sites of metal-N-C materials for ORR, while the mass transport of metal-N-C employed in catalytic layers of working electrodes is seldom engineered. Herein, a Fe-N-C single-atom catalyst featuring high mesoporosity and abundant electrochemically accessible active sites is developed through post-loading Fe species into defective N-doped carbon support. The Fe-N-C single-atom catalyst serving as the air cathode of Zn-air battery delivers a peak power density of 189.9 mW cm−2, significantly larger than 114.2 mW cm−2 of commercial Pt/C and 162.9 mW cm−2 of the Fe-N-C contrast catalyst with low mesoporosity. More importantly, through adding hydrophobic polytetrafluoroethylene (PTFE) nanoparticles in the catalytic layer of air cathode, the peak power density of Fe-N-C single-atom catalyst is further increased to 212.3 mW cm−2. The increased peak power density is attributed to the enhancement of O2 mass transport, as evidenced by a substantially decreased diffusion layer thickness that is obtained from electrochemical impedance spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li B, Xue H, Pang H, Xu Q. Sci China Chem, 2020, 63: 475–482

    Article  CAS  Google Scholar 

  2. Pang R, Tian P, Jiang H, Zhu M, Su X, Wang Y, Yang X, Zhu Y, Song L, Li C. Natl Sci Rev, 2021, 8: nwaa187

    Article  CAS  PubMed  Google Scholar 

  3. Han X, Zhang T, Chen W, Dong B, Meng G, Zheng L, Yang C, Sun X, Zhuang Z, Wang D, Han A, Liu J. Adv Energy Mater, 2021, 11: 2002753

    Article  CAS  Google Scholar 

  4. Li J, Meng Y, Zhang L, Li G, Shi Z, Hou P, Liu C, Cheng H, Shao M. Adv Funct Mater, 2021, 31: 2103360

    Article  CAS  Google Scholar 

  5. Wang YH, Le JB, Li WQ, Wei J, Radjenovic PM, Zhang H, Zhou XS, Cheng J, Tian ZQ, Li JF. Angew Chem Int Ed, 2019, 58: 16062–16066

    Article  CAS  Google Scholar 

  6. Yang L, Zhang X, Yu L, Hou J, Zhou Z, Lv R. Adv Mater, 2022, 34: 2105410

    Article  CAS  Google Scholar 

  7. Guo Y, Yuan P, Zhang J, Hu Y, Amiinu IS, Wang X, Zhou J, Xia H, Song Z, Xu Q, Mu S. ACS Nano, 2018, 12: 1894–1901

    Article  CAS  PubMed  Google Scholar 

  8. Chen C, Wang XT, Zhong JH, Liu J, Waterhouse GIN, Liu ZQ. Angew Chem Int Ed, 2021, 60: 22043–22050

    Article  CAS  Google Scholar 

  9. Yan Y, Liang S, Wang X, Zhang M, Hao SM, Cui X, Li Z, Lin Z. Proc Natl Acad Sci USA, 2021, 118: e2110036118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meng Y, Li JC, Zhao SY, Shi C, Li XQ, Zhang L, Hou PX, Liu C, Cheng HM. Appl Catal B-Environ, 2021, 294: 120239

    Article  CAS  Google Scholar 

  11. Cheng W, Yuan P, Lv Z, Guo Y, Qiao Y, Xue X, Liu X, Bai W, Wang K, Xu Q, Zhang J. Appl Catal B-Environ, 2020, 260: 118198

    Article  CAS  Google Scholar 

  12. Duan X, Ren S, Pan N, Zhang M, Zheng H. J Mater Chem A, 2020, 8: 9355–9363

    Article  CAS  Google Scholar 

  13. Zhang Y, Ouyang B, Long G, Tan H, Wang Z, Zhang Z, Gao W, Rawat RS, Fan HJ. Sci China Chem, 2020, 63: 890–896

    Article  CAS  Google Scholar 

  14. Miao Z, Wang X, Zhao Z, Zuo W, Chen S, Li Z, He Y, Liang J, Ma F, Wang HL, Lu G, Huang Y, Wu G, Li Q. Adv Mater, 2021, 33: 2006613

    Article  CAS  Google Scholar 

  15. Wang Z, Jin X, Zhu C, Liu Y, Tan H, Ku R, Zhang Y, Zhou L, Liu Z, Hwang SJ, Fan HJ. Adv Mater, 2021, 33: 2104718

    Article  CAS  Google Scholar 

  16. Mazzucato M, Daniel G, Mehmood A, Kosmala T, Granozzi G, Kucernak A, Durante C. Appl Catal B-Environ, 2021, 291: 120068

    Article  CAS  Google Scholar 

  17. Wang X, Jia Y, Mao X, Liu D, He W, Li J, Liu J, Yan X, Chen J, Song L, Du A, Yao X. Adv Mater, 2020, 32: 2000966

    Article  CAS  Google Scholar 

  18. Wang YC, Huang L, Zhang P, Qiu YT, Sheng T, Zhou ZY, Wang G, Liu JG, Rauf M, Gu ZQ, Wu WT, Sun SG. ACS Energy Lett, 2017, 2: 645–650

    Article  CAS  Google Scholar 

  19. Fu X, Zamani P, Choi JY, Hassan FM, Jiang G, Higgins DC, Zhang Y, Hoque MA, Chen Z. Adv Mater, 2017, 29: 1604456

    Article  CAS  Google Scholar 

  20. Ye Y, Cai F, Li H, Wu H, Wang G, Li Y, Miao S, Xie S, Si R, Wang J, Bao X. Nano Energy, 2017, 38: 281–289

    Article  CAS  Google Scholar 

  21. Yu Q, Wu C, Xu J, Zhao Y, Zhang J, Guan L. Carbon, 2018, 128: 46–53

    Article  CAS  Google Scholar 

  22. Chang S, Zhang H, Zhang Z. J Energy Chem, 2021, 56: 64–71

    Article  Google Scholar 

  23. Xing Z, Jin R, Chen X, Chen B, Zhou J, Tian B, Li Y, Fan D. Chem Eng J, 2021, 410: 128015

    Article  CAS  Google Scholar 

  24. Jin H, Zhu J, Yu R, Li W, Ji P, Liang L, Liu B, Hu C, He D, Mu S. J Mater Chem A, 2022, 10: 664–671

    Article  CAS  Google Scholar 

  25. Yin J, Jin J, Liu H, Huang B, Lu M, Li J, Liu H, Zhang H, Peng Y, Xi P, Yan CH. Adv Mater, 2020, 32: 2001651

    Article  CAS  Google Scholar 

  26. Wan X, Liu X, Li Y, Yu R, Zheng L, Yan W, Wang H, Xu M, Shui J. Nat Catal, 2019, 2: 259–268

    Article  CAS  Google Scholar 

  27. Lee SH, Kim J, Chung DY, Yoo JM, Lee HS, Kim MJ, Mun BS, Kwon SG, Sung YE, Hyeon T. J Am Chem Soc, 2019, 141: 2035–2045

    Article  CAS  PubMed  Google Scholar 

  28. Gai H, Xue S, Wang X, Zhou J, Jiang H, Huang M. Mater Today Energy, 2021, 21: 100809

    Article  CAS  Google Scholar 

  29. Mohseninia A, Kartouzian D, Schlumberger R, Markötter H, Wilhelm F, Scholta J, Manke I. ChemSusChem, 2020, 13: 2931–2934

    Article  CAS  PubMed  Google Scholar 

  30. Lin R, Diao X, Ma T, Tang S, Chen L, Liu D. Appl Energy, 2019, 254: 113714

    Article  CAS  Google Scholar 

  31. Zhang Q, Zhou M, Ren G, Li Y, Li Y, Du X. Nat Commun, 2020, 11: 1731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Deng C, Pan L, Ji F, Du W, Zhang J, Sun Y, Zhong H. Int J Hydrogen Energy, 2021, 46: 36167–36175

    Article  CAS  Google Scholar 

  33. Guo B, Ma R, Li Z, Guo S, Luo J, Yang M, Liu Q, Thomas T, Wang J. Nano-Micro Lett, 2020, 12: 20

    Article  CAS  Google Scholar 

  34. Zhang N, Deng C, Tao S, Guo L, Cheng Y. Chem Eng Sci, 2020, 224: 115795

    Article  CAS  Google Scholar 

  35. Xu A, He B, Yu H, Han W, Li J, Shen J, Sun X, Wang L. Electrochim Acta, 2019, 308: 158–166

    Article  CAS  Google Scholar 

  36. Zhu Y, Tian P, Jiang H, Mu J, Meng L, Su X, Wang Y, Lin Y, Zhu Y, Song L, Li C. CCS Chem, 2021, 3: 2539–2547

    Article  CAS  Google Scholar 

  37. Xing Z, Hu L, Ripatti DS, Hu X, Feng X. Nat Commun, 2021, 12: 136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xing Z, Hu X, Feng X. ACS Energy Lett, 2021, 6: 1694–1702

    Article  CAS  Google Scholar 

  39. Xie X, Peng L, Yang H, Waterhouse GIN, Shang L, Zhang T. Adv Mater, 2021, 33: 2101038

    Article  CAS  Google Scholar 

  40. Xiao M, Zhu J, Ma L, Jin Z, Ge J, Deng X, Hou Y, He Q, Li J, Jia Q, Mukerjee S, Yang R, Jiang Z, Su D, Liu C, Xing W. ACS Catal, 2018, 8: 2824–2832

    Article  CAS  Google Scholar 

  41. Liu D, Li J, Ding S, Lyu Z, Feng S, Tian H, Huyan C, Xu M, Li T, Du D, Liu P, Shao M, Lin Y. Small Methods, 2020, 4: 1900827

    Article  CAS  Google Scholar 

  42. Tan Z, Li H, Feng Q, Jiang L, Pan H, Huang Z, Zhou Q, Zhou H, Ma S, Kuang Y. J Mater Chem A, 2019, 7: 1607–1615

    Article  CAS  Google Scholar 

  43. Wan C, Duan X, Huang Y. Adv Energy Mater, 2020, 10: 1903815

    Article  CAS  Google Scholar 

  44. Wang YC, Lai YJ, Song L, Zhou ZY, Liu JG, Wang Q, Yang XD, Chen C, Shi W, Zheng YP, Rauf M, Sun SG. Angew Chem Int Ed, 2015, 54: 9907–9910

    Article  CAS  Google Scholar 

  45. Primbs M, Sun Y, Roy A, Malko D, Mehmood A, Sougrati MT, Blanchard PY, Granozzi G, Kosmala T, Daniel G, Atanassov P, Sharman J, Durante C, Kucernak A, Jones D, Jaouen F, Strasser P. Energy Environ Sci, 2020, 13: 2480–2500

    Article  CAS  Google Scholar 

  46. Sahraie NR, Kramm UI, Steinberg J, Zhang Y, Thomas A, Reier T, Paraknowitsch JP, Strasser P. Nat Commun, 2015, 6: 8618

    Article  CAS  PubMed  Google Scholar 

  47. Lu XF, Zhang SL, Shangguan E, Zhang P, Gao S, Lou XWD. Adv Sci, 2020, 7: 2001178

    Article  CAS  Google Scholar 

  48. Fu S, Zhu C, Song J, Du D, Lin Y. Adv Energy Mater, 2017, 7: 1700363

    Article  CAS  Google Scholar 

  49. Choe JE, Ahmed MS, Jeon S. J Power Sources, 2015, 281: 211–218

    Article  CAS  Google Scholar 

  50. Meng F, Zhong H, Bao D, Yan J, Zhang X. J Am Chem Soc, 2016, 138: 10226–10231

    Article  CAS  PubMed  Google Scholar 

  51. Wang W, Chen W, Miao P, Luo J, Wei Z, Chen S. ACS Catal, 2017, 7: 6144–6149

    Article  CAS  Google Scholar 

  52. Malko D, Kucernak A, Lopes T. Nat Commun, 2016, 7: 13285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pampel J, Fellinger TP. Adv Energy Mater, 2016, 6: 1502389

    Article  CAS  Google Scholar 

  54. Antonacci P, Chevalier S, Lee J, Ge N, Hinebaugh J, Yip R, Tabuchi Y, Kotaka T, Bazylak A. Electrochim Acta, 2016, 188: 888–897

    Article  CAS  Google Scholar 

  55. Wang D, Xu H, Yang P, Xiao L, Du L, Lu X, Li R, Zhang J, An M. J Mater Chem A, 2021, 9: 9761–9770

    Article  CAS  Google Scholar 

  56. Liang HW, Wei W, Wu ZS, Feng X, Müllen K. J Am Chem Soc, 2013, 135: 16002–16005

    Article  CAS  PubMed  Google Scholar 

  57. Kwon W, Kim JM, Rhee SW. Electrochim Acta, 2012, 68: 110–113

    Article  CAS  Google Scholar 

  58. Bard AJ, Faulkner LR. Electrochemical Methods: Fundamentals and Applications. 2nd Ed. New York: Wiley, 2001

    Google Scholar 

  59. Zhang W, Ma J, Wang P, Wang Z, Shi F, Liu H. J Membrane Sci, 2016, 502: 37–47

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21838003, 91834301, 21978278, 21978087), the Shanghai Scientific and Technological Innovation Project (18JC1410500, 19JC1410400), and the Fundamental Research Funds for the Central Universities (222201718002). The authors thank the Shanghai Synchrotron Radiation Facility (14W1, SSRF), the Beijing Synchrotron Radiation Facility (1W1B and soft-X-ray endstation, BSRF), and the Hefei Synchrotron Radiation Facility (Photoemission, Magnetic Circular Dichroism and Catalysis/Surface Science Endstations, Endstations at National Synchrotron Radiation Laboratory).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongliang Jiang, Yihua Zhu or Chunzhong Li.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2022_1303_MOESM1_ESM.pdf

Steering structural mesoporosity and working microenvironment of Fe-N-C catalysts for boosting cathodic mass transport of zinc-air batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, H., Jia, Y., Qi, Y. et al. Steering structural mesoporosity and working microenvironment of Fe-N-C catalysts for boosting cathodic mass transport of zinc-air batteries. Sci. China Chem. 65, 1670–1678 (2022). https://doi.org/10.1007/s11426-022-1303-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1303-x

Navigation