Skip to main content
Log in

High-entropy alloy nanoparticles as a promising electrocatalyst to enhance activity and durability for oxygen reduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Developing efficient platinum-based electrocatalysts with super durability for the oxygen reduction reaction (ORR) is highly desirable to promote the large-scale commercialization of fuel cells. Although progress has been made in this aspect, the electrochemical kinetics and stability of platinum-based catalysts are still far from the requirements of the practical applications. Herein, PtPdFeCoNi high-entropy alloy (HEA) nanoparticles were demonstrated via a high-temperature injection method. PtPdFeCoNi HEA nanocatalyst exhibits outstanding catalytic activity and stability towards ORR due to the high entropy, lattice distortion, and sluggish diffusion effects of HEA, and the HEA nanoparticles delivered a mass activity of 1.23 A/mgPt and a specific activity of 1.80 mA/cmPt2, which enhanced by 6.2 and 4.9 times, respectively, compared with the values of the commercial Pt/C catalyst. More importantly, the high durability of PtPdFeCoNi HEA/C was evidenced by only 6 mV negative-shifted half-wave potential after 50,000 cycles of accelerated durability test (ADT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.

    Article  CAS  Google Scholar 

  2. Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

    Article  CAS  Google Scholar 

  3. Zhu, Y. M.; Peng, J. H.; Zhu, X. R.; Bu, L. Z.; Shao, Q.; Pao, C. W.; Hu, Z. W.; Li, Y. F.; Wu, J. B.; Huang, X. Q. A large-scalable, surfactant-free, and ultrastable Ru-doped Pt3Co oxygen reduction catalyst. Nano Lett. 2021, 21, 6625–6632.

    Article  CAS  Google Scholar 

  4. Yang, C. L.; Wang, L. N.; Yin, P.; Liu, J. Y.; Chen, M. X.; Yan, Q. Q.; Wang, Z. S.; Xu, S. L.; Chu, S. Q.; Cui, C. H. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 2021, 374, 459–464.

    Article  CAS  Google Scholar 

  5. Chong, L.; Wen, J. G.; Kubal, J.; Sen, F. G.; Zou, J. X.; Greeley, J.; Chan, M.; Barkholtz, H.; Ding, W. J.; Liu, D. J. Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 2018, 362, 1276–1281.

    Article  CAS  Google Scholar 

  6. Li, X.; He, Y. H.; Cheng, S. B.; Li, B. Y.; Zeng, Y. C.; Xie, Z. H.; Meng, Q. P.; Ma, L.; Kisslinger, K.; Tong, X. et al. Atomic structure evolution of Pt-Co binary catalysts: Single metal sites versus intermetallic nanocrystals. Adv. Mater. 2021, 33, 2106371.

    Article  CAS  Google Scholar 

  7. Wang, Q.; Zhao, Z. L.; Zhang, Z.; Feng, T. L.; Zhong, R. Y.; Xu, H.; Pantelides, S. T.; Gu, M. Sub-3 nm intermetallic ordered Pt3In clusters for oxygen reduction reaction. Adv. Sci. 2020, 7, 1901279.

    Article  CAS  Google Scholar 

  8. Fan, X. J.; Peng, Z. W.; Ye, R. Q.; Zhou, H. Q.; Guo, X. M3C (M: Fe, Co, Ni) nanocrystals encased in graphene nanoribbons: An active and stable bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. ACS Nano 2015, 9, 7407–7418.

    Article  CAS  Google Scholar 

  9. Wu, Z. X.; Lv, Y. Y.; Xia, Y. Y.; Webley, P. A.; Zhao, D. Y. Ordered mesoporous platinum@graphitic carbon embedded nanophase as a highly active, stable, and methanol-tolerant oxygen reduction electrocatalyst. J. Am. Chem. Soc. 2012, 134, 2236–2245.

    Article  CAS  Google Scholar 

  10. Kang, Y. J.; Li, M.; Cai, Y.; Cargnello, M.; Diaz, R. E.; Gordon, T. R.; Wieder, N. L.; Adzic, R. R.; Gorte, R. J.; Stach, E. A. et al. Heterogeneous catalysts need not be so “heterogeneous”: Monodisperse Pt nanocrystals by combining shape-controlled synthesis and purification by colloidal recrystallization. J. Am. Chem. Soc. 2013, 135, 2741–2747.

    Article  CAS  Google Scholar 

  11. Cui, C. H.; Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 2013, 12, 765–771.

    Article  CAS  Google Scholar 

  12. Zhang, H. F.; Qiu, X. Y.; Chen, Y. F.; Wang, S. Z.; Skrabalak, S. E.; Tang, Y. W. Shape control of monodispersed sub-5 nm Pd tetrahedrons and laciniate Pd nanourchins by maneuvering the dispersed state of additives for boosting ORR performance. Small 2020, 16, 1906026.

    Article  CAS  Google Scholar 

  13. Wu, M. H.; Chen, C. L.; Zhao, Y. Z.; Zhu, E. B.; Li, Y. J. Atomic regulation of PGM electrocatalysts for the oxygen reduction reaction. Front. Chem. 2021, 9, 699861.

    Article  CAS  Google Scholar 

  14. Su, K. Y.; Zhang, H. F.; Qian, S. Y.; Li, J. T.; Zhu, J. W.; Tang, Y. W.; Qiu, X. Y. Atomic crystal facet engineering of core-shell nanotetrahedrons restricted under sub-10 nanometer region. ACS Nano 2021, 15, 5178–5188.

    Article  CAS  Google Scholar 

  15. Chang, F. F.; Shan, S. Y.; Petkov, V.; Skeete, Z.; Lu, A. L.; Ravid, J.; Wu, J. F.; Luo, J.; Yu, G.; Ren, Y. et al. Composition tunability and (111)-dominant facets of ultrathin platinum-gold alloy nanowires toward enhanced electrocatalysis. J. Am. Chem. Soc. 2016, 138, 12166–12175.

    Article  CAS  Google Scholar 

  16. Kang, Y. J.; Snyder, J.; Chi, M. F.; Li, D. G.; More, K. L.; Markovic, N. M.; Stamenkovic, V. R. Multimetallic core/interlayer/shell nanostructures as advanced electrocatalysts. Nano Lett. 2014, 14, 6361–6367.

    Article  CAS  Google Scholar 

  17. Xie, M. H.; Lyu, Z. H.; Chen, R. H.; Shen, M.; Cao, Z. M.; Xia, Y. N. Pt-Co@Pt octahedral nanocrystals: Enhancing their activity and durability toward oxygen reduction with an intermetallic core and an ultrathin shell. J. Am. Chem. Soc. 2021, 143, 8509–8518.

    Article  CAS  Google Scholar 

  18. Tao, L.; Huang, B. L.; Jin, F. D.; Yang, Y.; Luo, M. C.; Sun, M. Z.; Liu, Q.; Gao, F. M.; Guo, S. J. Atomic PdAu interlayer sandwiched into Pd/Pt core/shell nanowires achieves superstable oxygen reduction catalysis. ACS Nano 2020, 14, 11570–11578.

    Article  CAS  Google Scholar 

  19. Zhao, X.; Chen, S.; Fang, Z. C.; Ding, J.; Sang, W.; Wang, Y. C.; Zhao, J.; Peng, Z. M.; Zeng, J. Octahedral Pd@Pt18Ni core-shell nanocrystals with ultrathin PtNi alloy shells as active catalysts for oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 2804–2807.

    Article  CAS  Google Scholar 

  20. Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J. K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552–556.

    Article  CAS  Google Scholar 

  21. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Article  Google Scholar 

  22. Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.

    Article  CAS  Google Scholar 

  23. Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.

    Article  CAS  Google Scholar 

  24. Chung, D. Y.; Jun, S. W.; Yoon, G.; Kwon, S. G.; Shin, D. Y.; Seo, P.; Yoo, J. M.; Shin, H.; Chung, Y. H.; Kim, H. et al. Highly durable and active PtFe nanocatalyst for electrochemical oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 15478–15485.

    Article  CAS  Google Scholar 

  25. Kong, Z. J.; Maswadeh, Y.; Vargas, J. A.; Shan, S. Y.; Wu, Z. P.; Kareem, H.; Leff, A. C.; Tran, D. T.; Chang, F. F.; Yan, S. et al. Origin of high activity and durability of twisty nanowire alloy catalysts under oxygen reduction and fuel cell operating conditions. J. Am. Chem. Soc. 2020, 142, 1287–1299.

    Article  CAS  Google Scholar 

  26. Kang, Y. J.; Murray, C. B. Synthesis and electrocatalytic properties of cubic Mn−Pt nanocrystals (nanocubes). J. Am. Chem. Soc. 2010, 132, 7568–7569.

    Article  CAS  Google Scholar 

  27. Lopes, P. P.; Li, D. G.; Lv, H. F.; Wang, C.; Tripkovic, D.; Zhu, Y. S.; Schimmenti, R.; Daimon, H.; Kang, Y. J.; Snyder, J. et al. Eliminating dissolution of platinum-based electrocatalysts at the atomic scale. Nat. Mater. 2020, 19, 1207–1214.

    Article  CAS  Google Scholar 

  28. Molaabasi, F.; Sarparast, M.; Shamsipur, M.; Irannejad, L.; Moosavi-Movahedi, A. A.; Ravandi, A.; Verdom, B. H.; Ghazfar, R. Shape-controlled synthesis of luminescent hemoglobin capped hollow porous platinum nanoclusters and their application to catalytic oxygen reduction and cancer imaging. Sci. Rep. 2018, 8, 14507.

    Article  Google Scholar 

  29. Liu, J.; Li, W. Q.; Cheng, R. L.; Wu, Q.; Zhao, J. H.; He, D. P.; Mu, S. C. Stabilizing Pt nanocrystals encapsulated in N-doped carbon as double-active sites for catalyzing oxygen reduction reaction. Langmuir 2019, 35, 2580–2586.

    Article  CAS  Google Scholar 

  30. Chen, L.; Leonardi, A.; Chen, J.; Cao, M. H.; Li, N.; Su, D.; Zhang, Q.; Engel, M.; Ye, X. C. Imaging the kinetics of anisotropic dissolution of bimetallic core-shell nanocubes using graphene liquid cells. Nat. Commun. 2020, 11, 3041.

    Article  CAS  Google Scholar 

  31. Chen, S. P.; Niu, Z. Q.; Xie, C. L.; Gao, M. Y.; Lai, M. L.; Li, M. F.; Yang, P. D. Effects of catalyst processing on the activity and stability of Pt−Ni nanoframe electrocatalysts. ACS Nano 2018, 12, 8697–8705.

    Article  CAS  Google Scholar 

  32. Su, F. B.; Poh, C. K.; Zeng, J. H.; Zhong, Z. Y.; Liu, Z. L.; Lin, J. Y. Pt nanoparticles supported on mesoporous carbon nanocomposites incorporated with Ni or Co nanoparticles for fuel cells. J. Power Sources 2012, 205, 136–144.

    Article  CAS  Google Scholar 

  33. Sun, Y. F.; Dai, S. High-entropy materials for catalysis: A new frontier. Sci. Adv. 2021, 7, eabg1600.

    Article  CAS  Google Scholar 

  34. Okejiri, F.; Yang, Z. Z.; Chen, H.; Do-Thanh, C. L.; Wang, T.; Yang, S. Z.; Dai, S. Ultrasound-driven fabrication of high-entropy alloy nanocatalysts promoted by alcoholic ionic liquids. Nano Res. 2022, 15, 4792–4798.

    Article  CAS  Google Scholar 

  35. Wu, D. S.; Kusada, K.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kawaguchi, S.; Kubota, Y.; Kitagawa, H. Platinum-group-metal high-entropy-alloy nanoparticles. J. Am. Chem. Soc. 2020, 142, 13833–13838.

    Article  CAS  Google Scholar 

  36. Guo, R.; Yu, L. L.; Liu, Z. Y.; Pan, J.; Yao, Y. G.; Liu, L. Enthalpy induced phase partition toward hierarchical, nanostructured highentropy alloys. Nano Res. 2022, 15, 4893–4901.

    Article  CAS  Google Scholar 

  37. Johny, J.; Li, Y.; Kamp, M.; Prymak, O.; Liang, S. X.; Krekeler, T.; Ritter, M.; Kienle, L.; Rehbock, C.; Barcikowski, S. et al. Lasergenerated high entropy metallic glass nanoparticles as bifunctional electrocatalysts. Nano Res. 2022, 15, 4807–4819.

    Article  CAS  Google Scholar 

  38. Yao, Y. G.; Liu, Z. Y.; Xie, P. F.; Huang, Z. N.; Li, T. Y.; Morris, D.; Finfrock, Z.; Zhou, J. H.; Jiao, M. L.; Gao, J. L. et al. Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts. Sci. Adv. 2020, 6, eaaz0510.

    Article  CAS  Google Scholar 

  39. Nie, S. Y.; Wu, L.; Zhao, L. C.; Zhang, P. F. Enthalpy-change driven synthesis of high-entropy perovskite nanoparticles. Nano Res. 2022, 15, 4867–4872.

    Article  CAS  Google Scholar 

  40. Wang, Y.; Yu, B.; He, M.; Zhai, Z. H.; Yin, K. B.; Kong, F. G.; Zhang, Z. H. Eutectic-derived high-entropy nanoporous nanowires for efficient and stable water-to-hydrogen conversion. Nano Res. 2022, 15, 4820–4826.

    Article  Google Scholar 

  41. Chen, J.; Zhou, X. Y.; Wang, W. L.; Liu, B.; Lv, Y. K.; Yang, W.; Xu, D. P.; Liu, Y. A review on fundamental of high entropy alloys with promising high-temperature properties. J. Alloys Compd. 2018, 760, 15–30.

    Article  CAS  Google Scholar 

  42. Yao, Y. G.; Huang, Z. N.; Li, T. Y.; Wang, H.; Liu, Y. F.; Stein, H. S.; Mao, Y. M.; Gao, J. L.; Jiao, M. L.; Dong, Q. et al. High-throughput, combinatorial synthesis of multimetallic nanoclusters. Proc. Natl. Acad. Sci. USA 2020, 117, 6316–6322.

    Article  CAS  Google Scholar 

  43. Chen, X. T.; Si, C. H.; Gao, Y. L.; Frenzel, J.; Sun, J. Z.; Eggeler, G.; Zhang, Z. H. Multi-component nanoporous platinum-ruthenium-copper-osmium-iridium alloy with enhanced electrocatalytic activity towards methanol oxidation and oxygen reduction. J. Power Sources 2015, 273, 324–332.

    Article  CAS  Google Scholar 

  44. Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F. J.; Nie, A. M.; Pu, T. C.; Rehwoldt, M. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018, 359, 1489–1494.

    Article  CAS  Google Scholar 

  45. Qiao, H. Y.; Saray, M. T.; Wang, X. Z.; Xu, S. M.; Chen, G.; Huang, Z. N.; Chen, C. J.; Zhong, G.; Dong, Q.; Hong, M. et al. Scalable synthesis of high entropy alloy nanoparticles by microwave heating. ACS Nano 2021, 15, 14928–14937.

    Article  CAS  Google Scholar 

  46. Huang, X. Q.; Zhao, Z. P.; Fan, J. M.; Tan, Y. M.; Zheng, N. F. Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets. J. Am. Chem. Soc. 2011, 133, 4718–4721.

    Article  CAS  Google Scholar 

  47. Zhao, Z. L.; Zhang, L. Y.; Bao, S. J.; Li, C. M. One-pot synthesis of small and uniform Au@PtCu core-alloy shell nanoparticles as an efficient electrocatalyst for direct methanol fuel cells. Appl. Catal. B: Environ. 2015, 174–175, 361–366.

    Article  Google Scholar 

  48. Huang, L. L.; Chen, P. C.; Liu, M. H.; Fu, X. B.; Gordiichuk, P.; Yu, Y. N.; Wolverton, C.; Kang, Y. J.; Mirkin, C. A. Catalyst design by scanning probe block copolymer lithography. Proc. Natl. Acad. Sci. USA 2018, 115, 3764–3769.

    Article  CAS  Google Scholar 

  49. Li, Y. X.; Liao, Y. J.; Zhang, J.; Huang, E. H.; Ji, L. Z.; Zhang, Z. Y.; Zhao, R. Z.; Zhang, Z. M.; Yang, B.; Zhang, Y. H. et al. High-entropy-alloy nanoparticles with enhanced interband transitions for efficient photothermal conversion. Angew. Chem., Int. Ed. 2021, 60, 27113–27118.

    Article  CAS  Google Scholar 

  50. Chen, W.; Dalach, P.; Schneider, W. F.; Wolverton, C. Interplay between subsurface ordering, surface segregation, and adsorption on Pt-Ti(111) near-surface alloys. Langmuir 2012, 28, 4683–4693.

    Article  CAS  Google Scholar 

  51. Wang, G. W.; Huang, B.; Xiao, L.; Ren, Z. D.; Chen, H.; Wang, D. L.; Abruña, H. D.; Lu, J. T.; Zhuang, L. Pt skin on AuCu intermetallic substrate: A strategy to maximize Pt utilization for fuel cells. J. Am. Chem. Soc. 2014, 136, 9643–9649.

    Article  CAS  Google Scholar 

  52. Zaman, S.; Su, Y. Q.; Dong, C. L.; Qi, R. J.; Huang, L.; Qin, Y. Y.; Huang, Y. C.; Li, F. M.; You, B.; Guo, W. et al. Scalable molten salt synthesis of platinum alloys planted in metal-nitrogen-graphene for efficient oxygen reduction. Angew. Chem. 2022, 134, e202115835.

    Article  Google Scholar 

  53. Yang, Z. J.; Yang, H. Z.; Shang, L.; Zhang, T. R. Ordered PtFeIr intermetallic nanowires prepared through a silica-protection strategy for the oxygen reduction reaction. Angew. Chem. 2022, 134, e202113278.

    Google Scholar 

  54. Tian, X. L.; Zhao, X.; Su, Y. Q.; Wang, L. J.; Wang, H. M.; Dang, D.; Chi, B.; Liu, H. F.; Hensen, E. J. M.; Lou, X. W. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850–856.

    Article  CAS  Google Scholar 

  55. Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.

    Article  CAS  Google Scholar 

  56. Impagnatiello, A.; Cerqueira, C. F.; Coulon, P. E.; Morin, A.; Escribano, S.; Guetaz, L.; Clochard, M. C.; Rizza, G. Degradation mechanisms of supported Pt nanocatalysts in proton exchange membrane fuel cells: An operando study through liquid cell transmission electron microscopy. ACS Appl. Energy Mater. 2020, 3, 2360–2371.

    Article  CAS  Google Scholar 

  57. Shi, F. L.; Gao, W. P.; Shan, H.; Li, F.; Xiong, Y. L.; Peng, J. H.; Xiang, Q.; Chen, W. L.; Tao, P.; Song, C. Y. et al. Strain-induced corrosion kinetics at nanoscale are revealed in liquid: Enabling control of corrosion dynamics of electrocatalysis. Chem 2020, 6, 2257–2271.

    Article  CAS  Google Scholar 

  58. Guo, S. J.; Zhang, S.; Sun, X. L.; Sun, S. H. Synthesis of ultrathin FePtPd nanowires and their use as catalysts for methanol oxidation reaction. J. Am. Chem. Soc. 2011, 133, 15354–15357.

    Article  CAS  Google Scholar 

  59. Feng, Q. C.; Zhao, S.; He, D. S.; Tian, S. B.; Gu, L.; Wen, X. D.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Strain engineering to enhance the electrooxidation performance of atomic-layer Pt on intermetallic Pt3Ga. J. Am. Chem. Soc. 2018, 140, 2773–2776.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work is supported by the National Natural Science Foundation of China (Nos. 21972016 and 21773023), National Youth Top-notch Talent Support Program of China, Sichuan Science and Technology Program (No. 2020YJ0243), Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology (No. SKLPST 202103), and Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (No. 2022-K28). We thank Dr. Pawan Kumar for help in TEM EDS characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianbiao Fu or Qin Yue.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Xia, F., Wang, C. et al. High-entropy alloy nanoparticles as a promising electrocatalyst to enhance activity and durability for oxygen reduction. Nano Res. 15, 7868–7876 (2022). https://doi.org/10.1007/s12274-022-4432-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4432-1

Keywords

Navigation