Skip to main content
Log in

High-efficiency preparation of multifunctional conjugated electrospun graphene doped PVDF/CF yarns for energy harvesting and human movement monitoring in TENG textile

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Portable power is an effective solution to realize self-powered sensors for wearable devices, promoting future sustainable development. Membrane-based triboelectric nanogenerators (M-TENGs) have emerged as a promising technology for harvesting biomechanical energy from human motion owing to their advantages, such as simple structure, lightweight design, and efficient energy conversion. However, the poor durability, low adaptability, and un-washability of two-dimensional membrane materials have largely hindered their application in wearable electronics. In this study, we propose a sheath–core polyvinylidene fluoride (PVDF)/graphene (G)-carbon fiber (CF) yarn fabricated via conjugate electrospinning, comprising a commercial CF core and an electrospun graphene-doped PVDF sheath, which improves the fatigue resistance of electrospun nanofiber films under prolonged friction and keeps a high degree of freedom. The resulting electronic textile, woven with the large-scale electrospun PVDF/G-CF yarn, demonstrates a remarkable power density of 25.5 mW·m−2. The tight distribution of PVDF/G nanofibers on the textile surface ensures excellent softness, washability, and durability. Furthermore, the electrospun PVDF/G-CF textile exhibits significant potential in pressure sensing, self-powered operation, and motion detection, making it highly suitable for wearable electronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, W.; Yu, A. F.; Zhai, J. Y.; Wang, Z. L. Recent progress of functional fiber and textile triboelectric nanogenerators: Towards electricity power generation and intelligent sensing. Adv. Fiber Mater. 2021, 3, 394–412.

    Article  CAS  Google Scholar 

  2. Niu, L.; Peng, X.; Chen, L. J.; Liu, Q.; Wang, T. R.; Dong, K.; Pan, H.; Cong, H. L.; Liu, G. L.; Jiang, G. M. et al. Industrial production of bionic scales knitting fabric-based triboelectric nanogenerator for outdoor rescue and human protection. Nano Energy 2022, 97, 107168.

    Article  CAS  Google Scholar 

  3. He, Y.; Wan, C. W.; Yang, X.; Wang, Y. T.; Fang, J.; Liu, Y. Q. Thermally drawn super-elastic multifunctional fiber sensor for human movement monitoring and joule heating. Adv. Mater. Technol. 2023, 8, 2202079.

    Article  CAS  Google Scholar 

  4. Qin, Y.; Mo, J. L.; Liu, Y. H.; Zhang, S.; Wang, J. L.; Fu, Q.; Wang, S. F.; Nie, S. X. Stretchable triboelectric self-powered sweat sensor fabricated from self-healing nanocellulose hydrogels. Adv. Funct. Mater. 2022, 32, 2201846.

    Article  CAS  Google Scholar 

  5. Tian, X.; Dong, S. S.; Yang, M. Y.; Ng, H.; Liu, Y. P.; Hu, H.; Hua, T. Textile-based triboelectric nanogenerators for smart wearable systems: Comfort, integration, and application. Adv. Mater. Technol. 2023, 8, 2201294.

    Article  CAS  Google Scholar 

  6. Guo, R.; Fang, Y. S.; Wang, Z. S.; Libanori, A.; Xiao, X.; Wan, D.; Cui, X. J.; Sang, S. B.; Zhang, W. D.; Zhang, H. L. et al. Deep learning assisted body area triboelectric hydrogel sensor network for infant care. Adv. Funct. Mater. 2022, 32, 2204803.

    Article  CAS  Google Scholar 

  7. Yu, A. F.; Pu, X.; Wen, R. M.; Liu, M. M.; Zhou, T.; Zhang, K.; Zhang, Y.; Zhai, J. Y.; Hu, W. G.; Wang, Z. L. Core–shell-yarn-based triboelectric nanogenerator textiles as power cloths. ACS Nano 2017, 11, 12764–12771.

    Article  CAS  PubMed  Google Scholar 

  8. Ma, L. Y.; Zhou, M. J.; Wu, R. H.; Patil, A.; Gong, H.; Zhu, S. H.; Wang, T. T.; Zhang, Y. F.; Shen, S.; Dong, K. et al. Continuous and scalable manufacture of hybridized nano-micro triboelectric yarns for energy harvesting and signal sensing. ACS Nano 2020, 14, 4716–4726.

    Article  CAS  PubMed  Google Scholar 

  9. Kaltenbrunner, M.; Sekitani, T.; Reeder, J.; Yokota, T.; Kuribara, K.; Tokuhara, T.; Drack, M.; Schwödiauer, R.; Graz, I.; Bauer-Gogonea, S. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013, 499, 458–463.

    Article  CAS  PubMed  Google Scholar 

  10. Liu, M. M.; Cong, Z. F.; Pu, X.; Guo, W. B.; Liu, T.; Li, M.; Zhang, Y.; Hu, W. G.; Wang, Z. L. High-energy asymmetric supercapacitor yarns for self-charging power textiles. Adv. Funct. Mater. 2019, 29, 1806298.

    Article  CAS  Google Scholar 

  11. Cai, J. Y.; Du, M. J.; Li, Z. L. Flexible temperature sensors constructed with fiber materials. Adv. Mater. Technol. 2022, 7, 2101182.

    Article  Google Scholar 

  12. Li, J. L.; Cai, J. Y.; Yu, J. Y.; Li, Z. L.; Ding, B. The rising of fiber constructed piezo/triboelectric nanogenerators: From material selections, fabrication techniques to emerging applications. Adv. Funct. Mater. 2023, 33, 2303249.

    Article  CAS  Google Scholar 

  13. Li, H. Y.; Su, L.; Kuang, S. Y.; Fan, Y. J.; Wu, Y.; Wang, Z. L.; Zhu, G. Multilayered flexible nanocomposite for hybrid nanogenerator enabled by conjunction of piezoelectricity and triboelectricity. Nano Res. 2017, 10, 785–793.

    Article  Google Scholar 

  14. Qing, X.; Chen, H. J.; Zeng, F. J.; Jia, K. Y.; Shu, Q.; Wu, J. M.; Xu, H. M.; Lei, W. W.; Liu, D.; Wang, X. G. et al. All-fiber integrated thermoelectrically powered physiological monitoring biosensor. Adv. Fiber Mater. 2023, 5, 1025–1036.

    Article  CAS  Google Scholar 

  15. Jia, Y. P.; Pan, Y. M.; Wang, C. F.; Liu, C. T.; Shen, C. Y.; Pan, C. F.; Guo, Z. H.; Liu, X. H. Flexible Ag microparticle/MXene-based film for energy harvesting. Nano-Micro Lett. 2021, 13, 201.

    Article  CAS  Google Scholar 

  16. Li, Y.; Xiao, S.; Luo, Y.; Tian, S. S.; Tang, J.; Zhang, X. X.; Xiong, J. Q. Advances in electrospun nanofibers for triboelectric nanogenerators. Nano Energy 2022, 104, 107884.

    Article  CAS  Google Scholar 

  17. Chen, C. Y.; Guo, H. Y.; Chen, L. J.; Wang, Y. C.; Pu, X. J.; Yu, W. D.; Wang, F. M.; Du, Z. Q.; Wang, Z. L. Direct current fabric triboelectric nanogenerator for biomotion energy harvesting. ACS Nano 2020, 14, 4585–4594.

    Article  CAS  PubMed  Google Scholar 

  18. Yin, J.; Reddy, V. S.; Chinnappan, A.; Ramakrishna, S.; Xu, L. Electrospun micro/nanofiber with various structures and functions for wearable physical sensors. Polym. Rev. 2023, 63, 715–762.

    Article  CAS  Google Scholar 

  19. Wu, H. Y.; He, W. C.; Shan, C. C.; Wang, Z.; Fu, S. K.; Tang, Q.; Guo, H. Y.; Du, Y.; Liu, W. L.; Hu, C. G. Achieving remarkable charge density via self-polarization of polar high-k material in a charge-excitation triboelectric nanogenerator. Adv. Mater. 2022, 34, 2109918.

    Article  CAS  Google Scholar 

  20. Wang, Y.; Ren, J.; Ye, C.; Pei, Y.; Ling, S. J. Thermochromic silks for temperature management and dynamic textile displays. Nano-Micro Lett. 2021, 13, 72.

    Article  Google Scholar 

  21. Jia, T. J.; Wang, Y.; Dou, Y. Y.; Li, Y. W.; Jung de Andrade, M.; Wang, R.; Fang, S. L.; Li, J. J.; Yu, Z.; Qiao, R. et al. Moisture sensitive smart yarns and textiles from self-balanced silk fiber muscles. Adv. Funct. Mater. 2019, 29, 1808241.

    Article  Google Scholar 

  22. Ye, C.; Ren, J.; Wang, Y. L.; Zhang, W. W.; Qian, C.; Han, J.; Zhang, C. X.; Jin, K.; Buehler, M. J.; Kaplan, D. L. et al. Design and fabrication of silk templated electronic yarns and applications in multifunctional textiles. Matter 2019, 1, 1411–1425.

    Article  Google Scholar 

  23. Cao, Y. Y.; Shao, H.; Wang, H. X.; Yang, X.; Gao, Q.; Chen, Q.; Fang, J.; Cheng, T. H.; Lin, T. An easy-to-install textile bending sensor with high sensitivity, linearity, and multidirection direction capability. Adv. Mater. Technol. 2022, 7, 2100830.

    Article  CAS  Google Scholar 

  24. Ma, M. Y.; Kang, Z.; Liao, Q. L.; Zhang, Q.; Gao, F. F.; Zhao, X.; Zhang, Z.; Zhang, Y. Development, applications, and future directions of triboelectric nanogenerators. Nano Res. 2018, 11, 2951–2969.

    Article  CAS  Google Scholar 

  25. Fan, W.; Zhang, C.; Liu, Y.; Wang, S. J.; Dong, K.; Li, Y.; Wu, F.; Liang, J. H.; Wang, C. L.; Zhang, Y. Y. An ultra-thin piezoelectric nanogenerator with breathable, superhydrophobic, and antibacterial properties for human motion monitoring. Nano Res. 2023, 16, 11612–11620.

    Article  CAS  Google Scholar 

  26. Lv, X. S.; Liu, Y.; Yu, J. Y.; Li, Z. L.; Ding, B. Smart fibers for self-powered electronic skins. Adv. Fiber Mater. 2023, 5, 401–428.

    Article  Google Scholar 

  27. Zhu, M. M.; Li, J. L.; Yu, J. Y.; Li, Z. L.; Ding, B. Superstable and intrinsically self-healing fibrous membrane with bionic confined protective structure for breathable electronic skin. Angew. Chem., Int. Ed. 2022, 61, e202200226.

    Article  CAS  Google Scholar 

  28. Zhu, M. M.; Yu, J. Y.; Li, Z. L.; Ding, B. Self-healing fibrous membranes. Angew. Chem., Int. Ed. 2022, 61, e202208949.

    Article  CAS  Google Scholar 

  29. Hedau, B.; Kang, B. C.; Ha, T. J. Enhanced triboelectric effects of self-poled MoS2-embedded PVDF hybrid nanocomposite films for bar-printed wearable triboelectric nanogenerators. ACS Nano 2022, 16, 18355–18365.

    Article  CAS  PubMed  Google Scholar 

  30. Ippili, S.; Jella, V.; Thomas, A. M.; Yoon, C.; Jung, J. S.; Yoon, S. G. ZnAl-LDH-induced electroactive β-phase and controlled dielectrics of PVDF for a high-performance triboelectric nanogenerator for humidity and pressure sensing applications. J. Mater. Chem. A 2021, 9, 15993–16005.

    Article  CAS  Google Scholar 

  31. Chen, Y.; Ling, Y. L.; Yin, R. Fiber/yarn-based triboelectric nanogenerators (TENGs): Fabrication strategy, structure, and application. Sensors 2022, 22, 9716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, Y. N.; Zhao, Y.; Lu, X. Y.; Zhu, Y.; Jiang, L. Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole fiber with core–sheath structures for superior microwave absorption. Nano Res. 2016, 9, 2034–2045.

    Article  CAS  Google Scholar 

  33. Kavarthapu, V. S.; Graham, S. A.; Manchi, P.; Paranjape, M. V.; Yu, J. S. Electrospun ZnSnO3/PVDF-HFP nanofibrous triboelectric films for efficient mechanical energy harvesting. Adv. Fiber Mater. 2023, 5, 1685–1698.

    Article  CAS  Google Scholar 

  34. Babu, A.; Aazem, I.; Walden, R.; Bairagi, S.; Mulvihill, D. M.; Pillai, S. C. Electrospun nanofiber based TENGs for wearable electronics and self-powered sensing. Chem. Eng. J. 2023, 452, 139060.

    Article  CAS  Google Scholar 

  35. Walden, R.; Aazem, I.; Babu, A.; Pillai, S. C. Textile-triboelectric nanogenerators (T-TENGs) for wearable energy harvesting devices. Chem. Eng. J. 2023, 451, 138741.

    Article  CAS  Google Scholar 

  36. Yang, Y.; Yang, Y. C.; Huang, J. Y.; Li, S. H.; Meng, Z. Y.; Cai, W. L.; Lai, Y. K. Electrospun nanocomposite fibrous membranes for sustainable face mask based on triboelectric nanogenerator with high air filtration efficiency. Adv. Fiber Mater. 2023, 5, 1505–1518.

    Article  CAS  Google Scholar 

  37. Pandey, P.; Thapa, K.; Ojha, G. P.; Seo, M. K.; Shin, K. H.; Kim, S. W.; Sohn, J. I. Metal-organic frameworks-based triboelectric nanogenerator powered visible light communication system for wireless human–machine interactions. Chem. Eng. J. 2023, 452, 139209.

    Article  CAS  Google Scholar 

  38. Cao, R.; Wang, J. N.; Zhao, S. Y.; Yang, W.; Yuan, Z. Q.; Yin, Y. Y.; Du, X. Y.; Li, N. W.; Zhang, X. L.; Li, X. Y. et al. Self-powered nanofiber-based screen-print triboelectric sensors for respiratory monitoring. Nano Res. 2018, 11, 3771–3779.

    Article  CAS  Google Scholar 

  39. Kang, L.; Ma, C. X.; Wang, J.; Gao, X. P.; An, G. C. PTFE/PVA-PVDF conjugated electrospun nanofiber membrane with triboelectric effect used in face mask. Fibers Polym. 2023, 24, 1975–1982

    Article  CAS  Google Scholar 

  40. Zhao, P. F.; Soin, N.; Prashanthi, K.; Chen, J. K.; Dong, S. R.; Zhou, E. P.; Zhu, Z. G.; Narasimulu, A. A.; Montemagno, C. D.; Yu, L. Y. et al. Emulsion electrospinning of polytetrafluoroethylene (PTFE) nanofibrous membranes for high-performance triboelectric nanogenerators. ACS Appl. Mater. Interfaces 2018, 10, 5880–5891.

    Article  CAS  PubMed  Google Scholar 

  41. Wang, H. L.; Guo, Z. H.; Pu, X.; Wang, Z. L. Ultralight iontronic triboelectric mechanoreceptor with high specific outputs for epidermal electronics. Nano-Micro Lett. 2022, 14, 86.

    Article  Google Scholar 

  42. Xiong, J. Q.; Lee, P. S. Progress on wearable triboelectric nanogenerators in shapes of fiber, yarn, and textile. Sci. Technol. Adv. Mater. 2019, 20, 837–857.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dong, K.; Peng, X.; Cheng, R. W.; Ning, C.; Jiang, Y.; Zhang, Y. H.; Wang, Z. L. Advances in high-performance autonomous energy and self-powered sensing textiles with novel 3D fabric structures. Adv. Mater. 2022, 34, 2109355.

    Article  CAS  Google Scholar 

  44. Zhang, L. S.; Fairbanks, M.; Andrew, T. L. Rugged textile electrodes for wearable devices obtained by vapor coating off-the-shelf, plain-woven fabrics. Adv. Funct. Mater. 2017, 27, 1700415.

    Article  Google Scholar 

  45. Dong, K.; Peng, X.; An, J.; Wang, A. C.; Luo, J. J.; Sun, B. Z.; Wang, J.; Wang, Z. L. Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing. Nat. Commun. 2020, 11, 2868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ma, L. Y.; Wu, R. H.; Liu, S.; Patil, A.; Gong, H.; Yi, J.; Sheng, F. F.; Zhang, Y. Z.; Wang, J.; Wang, J. et al. A machine-fabricated 3D honeycomb-structured flame-retardant triboelectric fabric for fire escape and rescue. Adv. Mater. 2020, 32, 2003897.

    Article  CAS  Google Scholar 

  47. Cheng, M. F.; Liu, X.; Li, Z. K.; Zhao, Y. L.; Miao, X.; Yang, H. X.; Jiang, T.; Yu, A. F.; Zhai, J. Y. Multiple textile triboelectric nanogenerators based on UV-protective, radiative cooling, and antibacterial composite yarns. Chem. Eng. J. 2023, 468, 143800.

    Article  CAS  Google Scholar 

  48. Chen, L. J.; Chen, C. Y.; Jin, L.; Guo, H. Y.; Wang, A. C.; Ning, F. G.; Xu, Q. L.; Du, Z. Q.; Wang, F. M.; Wang, Z. L. Stretchable negative Poisson’s ratio yarn for triboelectric nanogenerator for environmental energy harvesting and self-powered sensor. Energy Environ. Sci. 2021, 14, 955–964.

    Article  CAS  Google Scholar 

  49. Ye, C.; Xu, Q. F.; Ren, J.; Ling, S. J. Violin string inspired core–sheath silk/steel yarns for wearable triboelectric nanogenerator applications. Adv. Fiber Mater. 2020, 2, 24–33.

    Article  CAS  Google Scholar 

  50. Guan, X. Y.; Xu, B. G.; Wu, M. J.; Jing, T. T.; Yang, Y. J.; Gao, Y. Y. Breathable, washable and wearable woven-structured triboelectric nanogenerators utilizing electrospun nanofibers for biomechanical energy harvesting and self-powered sensing. Nano Energy 2021, 80, 105549.

    Article  CAS  Google Scholar 

  51. Aliyana, A. K.; Stylios, G. A review on the progress in core-spun yarns (CSYs) based textile TENGs for real-time energy generation, capture and sensing. Adv. Sci. 2023, 10, 2304232.

    Article  CAS  Google Scholar 

  52. Andrew, T. L.; Zhang, L. S.; Cheng, N. Y.; Baima, M.; Kim, J. J.; Allison, L.; Hoxie, S. Melding vapor-phase organic chemistry and textile manufacturing to produce wearable electronics. Acc. Chem. Res. 2018, 51, 850–859.

    Article  CAS  PubMed  Google Scholar 

  53. Zhu, C. J.; Zheng, J. X.; Fu, J. Electrospinning nanofibers as stretchable sensors for wearable devices. Macromol. Biosci., in press, DOI: https://doi.org/10.1002/mabi.202300274.

  54. Dong, K.; Deng, J. N.; Zi, Y. L.; Wang, Y. C.; Xu, C.; Zou, H. Y.; Ding, W. B.; Dai, Y. J.; Gu, B. H.; Sun, B. Z. et al. 3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors. Adv. Mater. 2017, 29, 1702648

    Article  Google Scholar 

  55. Zhou, M. J.; Xu, F.; Ma, L. Y.; Luo, Q. L.; Ma, W. W.; Wang, R. W.; Lan, C. T.; Pu, X.; Qin, X. H. Continuously fabricated nano/micro aligned fiber based waterproof and breathable fabric triboelectric nanogenerators for self-powered sensing systems. Nano Energy 2022, 104, 107885.

    Article  CAS  Google Scholar 

  56. Ye, C.; Yang, S.; Ren, J.; Dong, S. J.; Cao, L. T.; Pei, Y.; Ling, S. J. Electroassisted core-spun triboelectric nanogenerator fabrics for intellisense and artificial intelligence perception. ACS Nano 2022, 16, 4415–4425.

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, D. W.; Yang, W. F.; Gong, W. W.; Ma, W.; Hou, C. Y.; Li, Y. G.; Zhang, Q. H.; Wang, H. Z. Abrasion resistant/waterproof stretchable triboelectric yarns based on Fermat spirals. Adv. Mater. 2021, 33, 2100782.

    Article  CAS  Google Scholar 

  58. Busolo, T.; Szewczyk, P. K.; Nair, M.; Stachewicz, U.; Kar-Narayan, S. Triboelectric yarns with electrospun functional polymer coatings for highly durable and washable smart textile applications. ACS Appl. Mater. Interfaces 2021, 13, 16876–16886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen, Q.; Akram, W.; Cao, Y. Y.; Ge, C.; Lin, T.; Fang, J. Recent progress in the fabrication and processing of triboelectric yarns. Carbon Neutralization 2023, 2, 63–89.

    Article  Google Scholar 

  60. Kim, W. J.; Cho, S.; Hong, J.; Hong, J. P. Geometrically versatile triboelectric yarn-based harvesters via carbon nanotubes-elastomer composites. Compos. Sci. Technol. 2022, 219, 109247.

    Article  CAS  Google Scholar 

  61. Cheng, L.; Xu, Q.; Zheng, Y. B.; Jia, X. F.; Qin, Y. A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed. Nat. Commun. 2018, 9, 3773.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lacks, D. J.; Sankaran, R. M. Contact electrification of insulating materials. J. Phys. D: Appl. Phys. 2011, 44, 453001.

    Article  Google Scholar 

  63. Yousry, Y. M.; Yao, K.; Mohamed, A. M.; Liew, W. H.; Chen, S. T.; Ramakrishna, S. Theoretical model and outstanding performance from constructive piezoelectric and triboelectric mechanism in electrospun PVDF fiber film. Adv. Funct. Mater. 2020, 30, 1910592.

    Article  CAS  Google Scholar 

  64. Huang, T.; Yang, S. W.; He, P.; Sun, J.; Zhang, S.; Li, D. D.; Meng, Y.; Zhou, J. S.; Tang, H. X.; Liang, J. R. et al. Phase-separation-induced PVDF/graphene coating on fabrics toward flexible piezoelectric sensors. ACS Appl. Mater. Interfaces 2018, 10, 30732–30740.

    Article  CAS  PubMed  Google Scholar 

  65. Gunawardhana, K. R. S.; Wanasekara, N. D.; Wijayantha, K. G.; Dharmasena, R. D. I. Scalable textile manufacturing methods for fabricating triboelectric nanogenerators with balanced electrical and wearable properties. ACS Appl. Electron. Mater. 2022, 4, 678–688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li, Z. L.; Shen, J. L.; Abdalla, I.; Yu, J. Y.; Ding, B. Nanofibrous membrane constructed wearable triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy 2017, 36, 341–348.

    Article  CAS  Google Scholar 

  67. Xia, G. T.; Huang, Y. N.; Li, F. J.; Wang, L. C.; Pang, J. B.; Li, L. W.; Wang, K. A thermally flexible and multi-site tactile sensor for remote 3D dynamic sensing imaging. Front. Chem. Sci. Eng. 2020, 14, 1039–1051.

    Article  Google Scholar 

  68. Mondal, B.; Mishra, H. K.; Sengupta, D.; Kumar, A.; Babu, A.; Saini, D.; Gupta, V.; Mandal, D. Lead-free perovskite Cs3Bi2I9-derived electroactive PVDF composite-based piezoelectric nanogenerators for physiological signal monitoring and piezophototronic-aided strain modulated photodetectors. Langmuir 2022, 38, 12157–12172.

    Article  CAS  PubMed  Google Scholar 

  69. Rasel, M. S.; Maharjan, P.; Salauddin, M.; Rahman, M. T.; Cho, H. O.; Kim, J. W.; Park, J. Y. An impedance tunable and highly efficient triboelectric nanogenerator for large-scale, ultra-sensitive pressure sensing applications. Nano Energy 2018, 49, 603–613.

    Article  CAS  Google Scholar 

  70. Li, Y. Y.; Zhang, Y. H.; Yi, J.; Peng, X.; Cheng, R. W.; Ning, C.; Sheng, F. F.; Wang, S.; Dong, K.; Wang, Z. L. Large-scale fabrication of core–shell triboelectric braided fibers and power textiles for energy harvesting and plantar pressure monitoring. EcoMat 2022, 4, e12191.

    Article  CAS  Google Scholar 

  71. Lou, M. N.; Abdalla, I.; Zhu, M. M.; Wei, X. D.; Yu, J. Y.; Li, Z. L.; Ding, B. Highly wearable, breathable, and washable sensing textile for human motion and pulse monitoring. ACS Appl. Mater. Interfaces 2020, 12, 19965–19973.

    Article  CAS  PubMed  Google Scholar 

  72. Roy, K.; Ghosh, S. K.; Sultana, A.; Garain, S.; Xie, M. Y.; Bowen, C. R.; Henkel, K.; Schmeißer, D.; Mandal, D. A self-powered wearable pressure sensor and pyroelectric breathing sensor based on GO interfaced PVDF nanofibers. ACS Appl. Nano Mater. 2019, 2, 2013–2025.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from National Natural Science Foundation of China (No. 52173059), China National Textile and Apparel Council Science and Technology Guidance Project (No. 2020116), the Key Research and Development Program of Jiangsu Province (No. 21KJA540002), and the Open Project of Tianjin Key Laboratory of Optoelectronic Detection Technology and System (No. 2023LOTDS011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Niu, Jian Fang or Yuqing Liu.

Electronic Supplementary Material

12274_2023_6373_MOESM1_ESM.pdf

High-efficiency preparation of multifunctional conjugated electrospun graphene doped PVDF/CF yarns for energy harvesting and human movement monitoring in TENG textile

Supplementary material, approximately 21.2 MB.

Supplementary material, approximately 24.1 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Wan, C., Zhang, X. et al. High-efficiency preparation of multifunctional conjugated electrospun graphene doped PVDF/CF yarns for energy harvesting and human movement monitoring in TENG textile. Nano Res. 17, 4478–4488 (2024). https://doi.org/10.1007/s12274-023-6373-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6373-8

Keywords

Navigation