Skip to main content
Log in

MXenes/CNTs-based hybrids: Fabrications, mechanisms, and modification strategies for energy and environmental applications

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Emerging two-dimensional (2D) layered metal carbide and nitride materials, commonly termed MXenes, are increasingly recognized for their applications across diverse fields such as energy, environment, and catalysis. In the past few years, MXenes/carbon nanotubes (CNTs)-based hybrids have attracted extensive attention as an important catalyst in energy and environmental fields, due to their superior multifunctions and mechanical stability. This review aims to address the fabrication strategies, the identification of the enhancement mechanisms, and recent progress regarding the design and modification of MXenes/CNTs-based hybrids. A myriad of fabrication techniques have been systematically summarized, including mechanical mixing, spray drying, three-dimensional (3D) printing, self-assembly/in-situ growth, freeze drying, templating, hydrothermal methods, chemical vapor deposition (CVD), and rolling. Importantly, the identification of the enhancement mechanisms was thoroughly discussed from the two dimensions of theoretical simulations and in-situ analysis. Moreover, the recent advancements in profound applications of MXenes/CNTs-based hybrids have also been carefully revealed, including energy storage devices, sensors, water purification systems, and microwave absorption. We also underscore anticipated challenges related to their fabrication, structure, underlying mechanisms, modification approaches, and emergent applications. Consequently, this review offers insights into prospective directions and the future trajectory for these promising hybrids. It is expected that this review can inspire new ideas or provide new research methods for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiang, J. Z.; Li, N.; Zou, J.; Zhou, X.; Eda, G.; Zhang, Q. F.; Zhang, H.; Li, L. J.; Zhai, T. Y.; Wee, A. T. S. Synergistic additive-mediated CVD growth and chemical modification of 2D materials. Chem. Soc. Rev. 2019, 48, 4639–4654.

    Article  CAS  PubMed  Google Scholar 

  2. Wang, L. L.; Yang, T.; Peng, L. J.; Zhang, Q. Q.; She, X. L.; Tang, H.; Liu, Q. Q. Dual transfer channels of photo-carriers in 2D/2D/2D sandwich-like ZnIn2S4/g-C3N4/Ti3C2 MXene S-scheme/Schottky heterojunction for boosting photocatalytic H2 evolution. Chin. J. Catal. 2022, 43, 2720–2731.

    Article  CAS  Google Scholar 

  3. Zou, J.; Wu, S. L.; Liu, Y.; Sun, Y. J.; Cao, Y.; Hsu, J. P.; Shen Wee, A. T.; Jiang, J. Z. An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection. Carbon 2018, 130, 652–663.

    Article  CAS  Google Scholar 

  4. Xiang, X.; Zhu, Y.; Gao, C. Q.; Du, H.; Guo, C. W. Study on the structure of reduced graphene oxide prepared by different reduction methods. Carbon Lett. 2022, 32, 557–566.

    Article  Google Scholar 

  5. Wang, H. T.; Jiang, J. Z.; Yu, L. L.; Peng, J. H.; Song, Z.; Xiong, Z. G.; Li, N.; Xiang, K.; Zou, J.; Hsu, J. P. et al. Tailoring advanced N-defective and S-doped g-C3N4 for photocatalytic H2 evolution. Small 2023, 19, 2301116.

    Article  CAS  Google Scholar 

  6. Wang, Y. Q.; Zhang, M. C.; Xu, W.; Shen, X. Y.; Gao, F.; Zhu, J. L.; Wan, X.; Lian, X. J.; Xu, J. G.; Tong, Y. Chemical preparation of new Ti3C2 MXene and the performance and mechanism of memristor based on MXene. Acta Phys. Chim. Sin. 2022, 38, 1907076.

    Google Scholar 

  7. Zou, J.; Liao, G. D.; Jiang, J. Z.; Xiong, Z. G.; Bai, S. S.; Wang, H. T.; Wu, P. X.; Zhang, P.; Li, X. In-situ construction of sulfur-doped g-C3N4/defective g-C3N4 isotype step-scheme heterojunction for boosting photocatalytic H2 evolution. Chin. J. Struct. Chem. 2022, 41, 2201025–2201033.

    CAS  Google Scholar 

  8. Bai, X.; Guan, J. Q. MXenes for electrocatalysis applications: Modification and hybridization. Chin. J. Catal. 2022, 43, 2057–2090.

    Article  CAS  Google Scholar 

  9. Jiang, J. Z.; Ou-Yang, L.; Zhu, L. H.; Zheng, A. M.; Zou, J.; Yi, X. F.; Tang, H. Q. Dependence of electronic structure of g-C3N4 on the layer number of its nanosheets: A study by Raman spectroscopy coupled with first-principles calculations. Carbon 2014, 80, 213–221.

    Article  CAS  Google Scholar 

  10. Cheng, S.; Xiong, Q. Q.; Zhao, C. X.; Yang, X. F. Synergism of 1D CdS/2D modified Ti3C2Tx MXene heterojunctions for boosted photocatalytic hydrogen production. Chin. J. Struct. Chem. 2022, 41, 2208058–2208064.

    CAS  Google Scholar 

  11. Jiang, J. Z.; Xiong, Z. G.; Wang, H. T.; Liao, G. D.; Bai, S. S.; Zou, J.; Wu, P. X.; Zhang, P.; Li, X. Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution. J. Mater. Sci. Technol. 2022, 118, 15–24.

    Article  CAS  Google Scholar 

  12. Bai, J. X.; Shen, R. C.; Jiang, Z. M.; Zhang, P.; Li, Y. J.; Li, X. Integration of 2D layered CdS/WO3 S-scheme heterojunctions and metallic Ti3C2 MXene- based Ohmic junctions for effective photocatalytic H2 generation. Chin. J. Catal. 2022, 43, 359–369.

    Article  CAS  Google Scholar 

  13. Cao, X. H.; Hou, C. Y.; Li, Y. G.; Li, K. R.; Zhang, Q. H.; Wang, H. Z. MXenes- based functional fibers and their applications in the intelligent wearable field. Acta Phys. Chim. Sin. 2022, 38, 2204058.

    Article  Google Scholar 

  14. Manjushree, S. G.; Adarakatti, P. S.; Udayakumar, V.; Almalki, A. S. A. Hexagonal cerium oxide decorated on β-Ni(OH)2 nanosheets stabilized by reduced graphene oxide for effective sensing of H2O2. Carbon Lett. 2022, 32, 591–604.

    Article  Google Scholar 

  15. Wang, J. M.; Jiang, J. Z.; Li, F. Y.; Zou, J.; Xiang, K.; Wang, H. T.; Li, Y. J.; Li, X. Emerging carbon-based quantum dots for sustainable photocatalysis. Green Chem. 2023, 25, 32–58.

    Article  CAS  Google Scholar 

  16. Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

    Article  CAS  PubMed  Google Scholar 

  17. Jiang, J. Z.; Bai, S. S.; Zou, J.; Liu, S.; Hsu, J. P.; Li, N.; Zhu, G. Y.; Zhuang, Z. C.; Kang, Q.; Zhang, Y. Z. Improving stability of MXenes. Nano Res. 2022, 15, 6551–6567.

    Article  CAS  Google Scholar 

  18. Li, N.; Peng, J. H.; Ong, W. J.; Ma, T. T.; Arramel, N.; Zhang, P.; Jiang, J. Z.; Yuan, X. F.; Zhang, C. F. MXenes: An emerging platform for wearable electronics and looking beyond. Matter 2021, 4, 377–407.

    Article  CAS  Google Scholar 

  19. Bai, S. S.; Yang, M. Q.; Jiang, J. Z.; He, X. M.; Zou, J.; Xiong, Z. G.; Liao, G. D.; Liu, S. Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction. npj 2D Mater. Appl. 2021, 5, 78.

    Article  CAS  Google Scholar 

  20. Yan, X. S.; Deng, D. J.; Wu, S. Q.; Li, H. N.; Xu, L. Development of transition metal nitrides as oxygen and hydrogen electrocatalysts. Chin. J. Struct. Chem. 2022, 41, 2207004–2207015.

    CAS  Google Scholar 

  21. Gao, Y. J.; Zhang, S. J.; Sun, X.; Zhao, W.; Zhuo, H.; Zhuang, G. L.; Wang, S. B.; Yao, Z. H.; Deng, S. W.; Zhong, X. et al. Computational screening of O-functional MXenes for electrocatalytic ammonia synthesis. Chin. J. Catal. 2022, 43, 1860–1869.

    Article  CAS  Google Scholar 

  22. Jiang, Z. M.; Chen, Q.; Zheng, Q. Q.; Shen, R. C.; Zhang, P.; Li, X. Constructing 1D/2D Schottky-based heterojunctions between Mn0.2Cd0.8S nanorods and Ti3C2 nanosheets for boosted photocatalytic H2 evolution. Acta Phys. Chim. Sin. 2021, 37, 2010059.

    Google Scholar 

  23. Guan, C.; Yue, X. Y.; Fan, J. J.; Xiang, Q. J. MXene quantum dots of Ti3C2: Properties, synthesis, and energy-related applications. Chin. J. Catal. 2022, 43, 2484–2499.

    Article  CAS  Google Scholar 

  24. Peng, J. H.; Wang, X.; Wang, Z.; Liu, B.; Zhang, P.; Li, X.; Li, N. Uncovering the mechanism for urea electrochemical synthesis by coupling N2 and CO2 on Mo2C-MXene. Chin. J. Struct. Chem. 2022, 41, 2209094–2209104.

    CAS  Google Scholar 

  25. Zeng, Z. L.; Chen, X. Z.; Weng, K. Y.; Wu, Y.; Zhang, P.; Jiang, J. Z.; Li, N. Computational screening study of double transition metal carbonitrides M’ 2M”CNO2-MXene as catalysts for hydrogen evolution reaction. npj Comput. Mater. 2021, 7, 80.

    Article  CAS  Google Scholar 

  26. Li, B.; Wu, Y.; Li, N.; Chen, X. Z.; Zeng, X. B.; Arramel, N.; Zhao, X. J.; Jiang, J. Z. Single-metal atoms supported on MBenes for robust electrochemical hydrogen evolution. ACS Appl. Mater. Interfaces 2020, 12, 9261–9267.

    Article  CAS  PubMed  Google Scholar 

  27. Ding, B.; Ong, W. J.; Jiang, J. Z.; Chen, X. Z.; Li, N. Uncovering the electrochemical mechanisms for hydrogen evolution reaction of heteroatom doped M2C MXene (M = Ti, Mo). Appl. Surf. Sci. 2020, 500, 143987.

    Article  CAS  Google Scholar 

  28. Zou, J.; Wu, J.; Wang, Y. Z.; Deng, F. X.; Jiang, J. Z.; Zhang, Y. Z.; Liu, S.; Li, N.; Zhang, H.; Yu, J. G. et al. Additive-mediated intercalation and surface modification of MXenes. Chem. Soc. Rev. 2022, 51, 2972–2990.

    Article  CAS  PubMed  Google Scholar 

  29. Huang, H. Y.; Jiang, R. M.; Feng, Y. L.; Ouyang, H.; Zhou, N. G.; Zhang, X. Y.; Wei, Y. Recent development and prospects of surface modification and biomedical applications of MXenes. Nanoscale 2020, 12, 1325–1338.

    Article  CAS  PubMed  Google Scholar 

  30. Wang, H.; Wu, Y.; Yuan, X. Z.; Zeng, G. M.; Zhou, J.; Wang, X.; Chew, J. W. Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: State-of-the-art progresses and challenges. Adv. Mater. 2018, 30, 1704561.

    Article  Google Scholar 

  31. Jiang, J. Z.; Li, F. Y.; Zou, J.; Liu, S.; Wang, J. M.; Zou, Y. L.; Xiang, K.; Zhang, H.; Zhu, G. Y.; Zhang, Y. Z. et al. Three-dimensional MXenes heterostructures and their applications. Sci. China Mater. 2022, 65, 2895–2910.

    Article  Google Scholar 

  32. Li, F. Y.; Jiang, J. Z.; Wang, J. M.; Zou, J.; Sun, W.; Wang, H. T.; Xiang, K.; Wu, P. X.; Hsu, J. P. Porous 3D carbon-based materials: An emerging platform for efficient hydrogen production. Nano Res. 2023, 16, 127–145.

    Article  Google Scholar 

  33. Oberlin, A.; Endo, M.; Koyama, T. Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth 1976, 32, 335–349.

    Article  CAS  Google Scholar 

  34. Zhang, Z. Y.; Yao, Y. X.; Li, Y. Modulating the diameter of bulk single-walled carbon nanotubes grown by FeCo/MgO catalyst. Acta Phys. Chim. Sin. 2022, 38, 2101055.

    Google Scholar 

  35. Hu, C.; Shi, Q.; Yang, X.; Wu, T.; Pu, Z. H. Adsorption and sensing characteristics of air decomposed species onto pyridine-like PdN3-doped CNT: A first-principles study. Carbon Lett. 2022, 32, 109–117.

    Article  Google Scholar 

  36. Shen, X. F.; Wang, X. N.; Yu, N. S.; Yang, W.; Zhou, Y. R.; Shi, Y. H.; Wang, Y. L.; Dong, L. Z.; Di, J. T.; Li, Q. W. A polypyrrole-coated MnO2/carbon nanotube film cathode for rechargeable aqueous Zn-ion batteries. Acta Phys. Chim. Sin. 2022, 38, 2006059.

    Google Scholar 

  37. Singh, Y. T.; Patra, P. K.; Obodo, K. O.; Rai, D. P. Electronic and mechanical properties of (6,1) single-walled carbon nanotubes with different tube diameters: A theoretical study. Carbon Lett. 2022, 32, 451–460.

    Article  Google Scholar 

  38. Li, Z. Y.; Huai, L. Y.; Hao, P. P.; Zhao, X.; Wang, Y. Z.; Zhang, B. S.; Chen, C. L.; Zhang, J. Oxidation of 2,5-bis(hydroxymethyl)furan to 2,5-furandicarboxylic acid catalyzed by carbon nanotube-supported Pd catalysts. Chin. J. Catal. 2022, 43, 793–801.

    Article  Google Scholar 

  39. Wu, K. J.; Zhang, Y. Y.; Yong, Z. Z.; Li, Q. W. Continuous preparation and performance enhancement techniques of carbon nanotube fibers. Acta Phys. Chim. Sin. 2022, 38, 2106034.

    Google Scholar 

  40. Yi, Y.; Wang, B.; Liu, X. Y.; Li, C. P. Flexible piezoresistive strain sensor based on CNTs-polymer composites: A brief review. Carbon Lett. 2022, 32, 713–726.

    Article  Google Scholar 

  41. Wang, C. Y.; Yao, Q. Q.; Gan, Y. M.; Zhang, Q. X.; Guan, L. H.; Zhao, Y. Monodispersed SWNTs assembled coating layer as an alternative to graphene with enhanced alkali-ion storage performance. Chin. J. Struct. Chem. 2022, 41, 2201040–2201046.

    CAS  Google Scholar 

  42. Rafiee, M. A.; Rafiee, J.; Wang, Z.; Song, H. H.; Yu, Z. Z.; Koratkar, N. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 2009, 3, 3884–3890.

    Article  CAS  PubMed  Google Scholar 

  43. Yu, L. P.; Zhou, X. H.; Lu, L.; Xu, L.; Wang, F. J. MXene/carbon nanotube hybrids: Synthesis, structures, properties, and applications. ChemSusChem 2021, 14, 5079–5111.

    Article  CAS  PubMed  Google Scholar 

  44. Yang, Z. P.; Li, H. Q.; Zhang, S. F.; Lai, X. J.; Zeng, X. R. Superhydrophobic MXene@carboxylated carbon nanotubes/carboxymethyl chitosan aerogel for piezoresistive pressure sensor. Chem. Eng. J. 2021, 425, 130462.

    Article  CAS  Google Scholar 

  45. Zhao, J. X.; Zhang, Y.; Huang, Y. N.; Zhao, X. X.; Shi, Y. H.; Qu, J. Y.; Yang, C. F.; Xie, J. X.; Wang, J. J.; Li, L. L. et al. Duplex printing of all-in-one integrated electronic devices for temperature monitoring. J. Mater. Chem. A 2019, 7, 972–978.

    Article  CAS  Google Scholar 

  46. Zhao, M. Q.; Xie, X. Q.; Ren, C. E.; Makaryan, T.; Anasori, B.; Wang, G. X.; Gogotsi, Y. Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 2017, 29, 1702410.

    Article  Google Scholar 

  47. Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

    Article  CAS  Google Scholar 

  48. Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

    Article  CAS  Google Scholar 

  49. Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

    Article  CAS  Google Scholar 

  50. Li, Z. L.; Zhuang, Z. C.; Lv, F.; Zhu, H.; Zhou, L.; Luo, M. C.; Zhu, J. X.; Lang, Z. Q.; Feng, S. H.; Chen, W. et al. The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe 3d electron delocalization matters. Adv. Mater. 2018, 30, 1803220.

    Article  Google Scholar 

  51. Zhuang, Z. C.; Li, Y.; Li, Z. L.; Lv, F.; Lang, Z. Q.; Zhao, K. N.; Zhou, L.; Moskaleva, L.; Guo, S. J.; Mai, L. MoB/g-C3N4 interface materials as a schottky catalyst to boost hydrogen evolution. Angew. Chem. 2018, 130, 505–509.

    Article  Google Scholar 

  52. Hao, J. C.; Zhu, H.; Zhuang, Z. C.; Zhao, Q.; Yu, R. H.; Hao, J. C.; Kang, Q.; Lu, S. L.; Wang, X. F.; Wu, J. S. et al. Competitive trapping of single atoms onto a metal carbide surface. ACS Nano 2023, 17, 6955–6965.

    Article  CAS  PubMed  Google Scholar 

  53. Li, X. Y.; Zhuang, Z. C.; Chai, J.; Shao, R. W.; Wang, J. H.; Jiang, Z. L.; Zhu, S. W.; Gu, H. F.; Zhang, J.; Ma, Z. T. et al. Atomically strained metal sites for highly efficient and selective photooxidation. Nano Lett. 2023, 23, 2905–2914.

    Article  CAS  PubMed  Google Scholar 

  54. Ding, M. M.; Xu, H.; Chen, W.; Kong, Q.; Lin, T.; Tao, H.; Zhang, K.; Liu, Q.; Zhang, K. S.; Xie, Z. L. Construction of a hierarchical carbon nanotube/MXene membrane with distinct fusiform channels for efficient molecular separation. J. Mater. Chem. A 2020, 8, 22666–22673.

    Article  CAS  Google Scholar 

  55. Cai, Y. C.; Shen, J.; Ge, G.; Zhang, Y. Z.; Jin, W. Q.; Huang, W.; Shao, J. J.; Yang, J.; Dong, X. C. Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 2018, 12, 56–62.

    Article  CAS  PubMed  Google Scholar 

  56. Cui, Y. H.; Wu, F.; Wang, J. Q.; Wang, Y. B.; Shah, T.; Liu, P.; Zhang, Q. Y.; Zhang, B. L. Three dimensional porous MXene/CNTs microspheres: Preparation, characterization and microwave absorbing properties. Compos. Part A: Appl. Sci. Manuf. 2021, 145, 106378.

    Article  CAS  Google Scholar 

  57. Wang, Z. X.; Huang, Z. X.; Wang, H.; Li, W. D.; Wang, B. Y.; Xu, J. M.; Xu, T. T.; Zang, J. H.; Kong, D. Z.; Li, X. J. et al. 3D-printed sodiophilic V2CTx/rGO-CNT MXene microgrid aerogel for stable Na metal anode with high areal capacity. ACS Nano 2022, 16, 9105–9116.

    Article  CAS  PubMed  Google Scholar 

  58. Cui, Y. H.; Yang, K.; Zhang, F. R.; Lyu, Y.; Zhang, Q. Y.; Zhang, B. L. Ultra- light MXene/CNTs/PI aerogel with neat arrangement for electromagnetic wave absorption and photothermal conversion. Compos. Part A: Appl. Sci. Manuf. 2022, 158, 106986.

    Article  CAS  Google Scholar 

  59. Zhang, B.; Luo, C.; Zhou, G. M.; Pan, Z. Z.; Ma, J. B.; Nishihara, H.; He, Y. B.; Kang, F. Y.; Lv, W.; Yang, Q. H. Lamellar MXene composite aerogels with sandwiched carbon nanotubes enable stable lithium-sulfur batteries with a high sulfur loading. Adv. Funct. Mater. 2021, 31, 2100793.

    Article  CAS  Google Scholar 

  60. Wei, S. C.; Fu, Y.; Liu, M. M.; Yue, H. Y.; Park, S.; Lee, Y. H.; Li, H. M.; Yao, F. Dual-phase MoS2/MXene/CNT ternary nanohybrids for efficient electrocatalytic hydrogen evolution. npj 2D Mater. Appl. 2022, 6, 25.

    Article  CAS  Google Scholar 

  61. Wang, Z. Y.; Qin, S.; Seyedin, S.; Zhang, J. Z.; Wang, J. T.; Levitt, A.; Li, N.; Haines, C.; Ovalle-Robles, R.; Lei, W. W. et al. High-performance biscrolled MXene/carbon nanotube yarn supercapacitors. Small 2018, 14, 1802225.

    Article  Google Scholar 

  62. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  PubMed  Google Scholar 

  63. Kaner, R. B.; Kouvetakis, J.; Warble, C. E.; Sattler, M. L.; Bartlett, N. Boron-carbon- nitrogen materials of graphite-like structure. Mater. Res. Bull. 1987, 22, 399–404.

    Article  CAS  Google Scholar 

  64. Rickard, D.; Luther, G. W. Chemistry of iron sulfides. Chem. Rev. 2007, 107, 514–562.

    Article  CAS  PubMed  Google Scholar 

  65. Zhang, Y. W.; Chen, X. Z.; Arramel, N.; Augustine, K. B.; Zhang, P.; Jiang, J. Z.; Wu, Q.; Li, N. Atomic- scale superlubricity in Ti2CO2@MoS2 layered heterojunctions interface: A first principles calculation study. ACS Omega 2021, 6, 9013–9019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jiang, J. Z.; Li, F. Y.; Bai, S. S.; Wang, Y. J.; Xiang, K.; Wang, H. T.; Zou, J.; Hsu, J. P. Carbonitride MXene Ti3CN(OH)x@MoS2 hybrids as efficient electrocatalyst for enhanced hydrogen evolution. Nano Res. 2023, 16, 4656–4663.

    Article  CAS  Google Scholar 

  67. Li, F. Y.; Anjarsari, Y.; Wang, J. M.; Azzahiidah, R.; Jiang, J. Z.; Zou, J.; Xiang, K.; Ma, H. J.; Arramel. Modulation of the lattice structure of 2D carbon-based materials for improving photo/electric properties. Carbon Lett. 2023, 33, 1321–1331.

    Article  Google Scholar 

  68. Jin, S.; Wu, J. B.; Jiang, J. Z.; Wang, R. G.; Zhou, B. X.; Wang, L. B.; Hu, Q. K.; Zhou, A. G. Boosting photocatalytic performance of CdxZn1−xS for H2 production by Mo2C MXene with large interlayer distance. J. Mater. Chem. A 2023, 11, 5851–5863.

    Article  CAS  Google Scholar 

  69. Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

    Article  CAS  Google Scholar 

  70. Hu, M. M.; Zhang, H.; Hu, T.; Fan, B. B.; Wang, X. H.; Li, Z. J. Emerging 2D MXenes for supercapacitors: Status, challenges and prospects. Chem. Soc. Rev. 2020, 49, 6666–6693.

    Article  CAS  PubMed  Google Scholar 

  71. Ho, D. H.; Choi, Y. Y.; Jo, S. B.; Myoung, J. M.; Cho, J. H. Sensing with MXenes: Progress and prospects. Adv. Mater. 2021, 33, 2005846.

    Article  CAS  Google Scholar 

  72. Cao, M. S.; Cai, Y. Z.; He, P.; Shu, J. C.; Cao, W. Q.; Yuan, J. 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 2019, 359, 1265–1302.

    Article  CAS  Google Scholar 

  73. Ding, H. M.; Li, Y. B.; Li, M.; Chen, K.; Liang, K.; Chen, G. X.; Lu, J.; Palisaitis, J.; Persson, P. O. Å.; Eklund, P. et al. Chemical scissor-mediated structural editing of layered transition metal carbides. Science 2023, 379, 1130–1135.

    Article  CAS  PubMed  Google Scholar 

  74. Jiang, J. Z.; Bai, S. S.; Yang, M. Q.; Zou, J.; Li, N.; Peng, J. H.; Wang, H. T.; Xiang, K.; Liu, S.; Zhai, T. Y. Strategic design and fabrication of MXenes-Ti3CNCl2@CoS2 core-shell nanostructure for high-efficiency hydrogen evolution. Nano Res. 2022, 15, 5977–5986.

    Article  CAS  Google Scholar 

  75. Wang, J. M.; Qin, Q.; Li, F. Y.; Anjarsari, Y.; Sun, W.; Azzahiidah, R.; Zou, J.; Xiang, K.; Ma, H. J.; Jiang, J. Z. et al. Recent advances of MXenes Mo2C-based materials for efficient photocatalytic hydrogen evolution reaction. Carbon Lett. 2023, 33, 1381–1394.

    Article  Google Scholar 

  76. Jiang, J. Z.; Xiong, Z. G.; Wang, H. T.; Xiang, K.; Wu, P. X.; Zou, J. Anchoring Pt nanoparticles and Ti3C2Tx MXene nanosheets on CdS nanospheres as efficient synergistic photocatalysts for hydrogen evolution. Sci. China Technol. Sci. 2022, 65, 3020–3028.

    Article  CAS  Google Scholar 

  77. Jiang, J. Z.; Zou, Y. L.; Arramel, N.; Li, F. Y.; Wang, J. M.; Zou, J.; Li, N. Intercalation engineering of MXenes towards highly efficient photo(electrocatalytic) hydrogen evolution reactions. J. Mater. Chem. A 2021, 9, 24195–24214.

    Article  CAS  Google Scholar 

  78. Gogotsi, Y.; Anasori, B. The rise of MXenes. ACS Nano 2019, 13, 8491–8494.

    Article  CAS  PubMed  Google Scholar 

  79. Li, Y. B.; Shao, H.; Lin, Z. F.; Lu, J.; Liu, L. Y.; Duployer, B.; Persson, P. O. Å.; Eklund, P.; Hultman, L.; Li, M. et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 2020, 19, 894–899.

    Article  CAS  PubMed  Google Scholar 

  80. Wang, C. D.; Shou, H. W.; Chen, S. M.; Wei, S. Q.; Lin, Y. X.; Zhang, P. J.; Liu, Z. F.; Zhu, K. F.; Guo, X.; Wu, X. J. et al. HCl-based hydrothermal etching strategy toward fluoride-free MXenes. Adv. Mater. 2021, 33, 2101015.

    Article  CAS  Google Scholar 

  81. Nessim, G. D. Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition. Nanoscale 2010, 2, 1306–1323.

    Article  CAS  PubMed  Google Scholar 

  82. Natu, V.; Pai, R.; Sokol, M.; Carey, M.; Kalra, V.; Barsoum, M. W. 2D Ti3C2Tz MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents. Chem 2020, 6, 616–630.

    Article  CAS  Google Scholar 

  83. Sun, W.; Shah, S. A.; Chen, Y.; Tan, Z.; Gao, H.; Habib, T.; Radovic, M.; Green, M. J. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A 2017, 5, 21663–21668.

    Article  CAS  Google Scholar 

  84. Liu, L. Y.; Orbay, M.; Luo, S.; Duluard, S.; Shao, H.; Harmel, J.; Rozier, P.; Taberna, P. L.; Simon, P. Exfoliation and delamination of Ti3C2Tx MXene prepared via molten salt etching route. ACS Nano 2022, 16, 111–118.

    Article  CAS  PubMed  Google Scholar 

  85. Overbury, S. H.; Kolesnikov, A. I.; Brown, G. M.; Zhang, Z. Y.; Nair, G. S.; Sacci, R. L.; Lotfi, R.; Van Duin, A. C. T.; Naguib, M. Complexity of intercalation in MXenes: Destabilization of urea by two-dimensional titanium carbide. J. Am. Chem. Soc. 2018, 140, 10305–10314.

    Article  CAS  PubMed  Google Scholar 

  86. Iakunkov, A.; Nordenström, A.; Boulanger, N.; Hennig, C.; Baburind, I.; Talyzin, A. V. Temperature- dependent swelling transitions in MXene Ti3C2Tx. Nanoscale 2022, 14, 10940–10949.

    Article  CAS  PubMed  Google Scholar 

  87. Naguib, M.; Unocic, R. R.; Armstrong, B. L.; Nanda, J. Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”. Dalton Trans. 2015, 44, 9353–9358.

    Article  CAS  PubMed  Google Scholar 

  88. Wang, D.; Zhou, C. K.; Filatov, A. S.; Cho, W.; Lagunas, F.; Wang, M. Z.; Vaikuntanathan, S.; Liu, C.; Klie, R. F.; Talapin, D. V. Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes. Science 2023, 379, 1242–1247.

    Article  CAS  PubMed  Google Scholar 

  89. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

    Article  CAS  Google Scholar 

  90. Ji, L. L.; Chen, W.; Bi, J.; Zheng, S. R.; Xu, Z. Y.; Zhu, D. Q.; Alvarez, P. J. Adsorption of tetracycline on single-walled and multi-walled carbon nanotubes as affected by aqueous solution chemistry. Environ. Toxicol. Chem. 2010, 29, 2713–2719.

    Article  CAS  PubMed  Google Scholar 

  91. Ando, Y.; Zhao, X. L. Synthesis of carbon nanotubes by arc-discharge method. New Diamond Front. Carbon Technol. 2006, 16, 123–137.

    CAS  Google Scholar 

  92. Scott, C. D.; Arepalli, S.; Nikolaev, P.; Smalley, R. E. Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl. Phys. A 2001, 72, 573–580.

    Article  CAS  Google Scholar 

  93. Hou, P. X.; Zhang, F.; Zhang, L. L.; Liu, C.; Cheng, H. M. Synthesis of carbon nanotubes by floating catalyst chemical vapor deposition and their applications. Adv. Funct. Mater. 2022, 32, 2108541.

    Article  CAS  Google Scholar 

  94. Che, G. L.; Lakshmi, B. B.; Fisher, E. R.; Martin, C. R. Carbon nanotubule membranes for electrochemical energy storage and production. Nature 1998, 393, 346–349.

    Article  CAS  Google Scholar 

  95. Lacerda, L.; Raffa, S.; Prato, M.; Bianco, A.; Bianco, K. Cell-penetrating CNTs for delivery of therapeutics. Nano Today 2007, 2, 38–43.

    Article  Google Scholar 

  96. Wu, M.; Kim, D. Y.; Park, H.; Cho, K. M.; Kim, J. Y.; Kim, S. J.; Choi, S.; Kang, Y. K.; Kim, J.; Jung, H. T. Formation of toroidal Li2O2 in non-aqueous Li-O2 batteries with Mo2CTx MXene/CNT composite. RSC Adv. 2019, 9, 41120–41125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yang, K.; Luo, M.; Zhang, D. T.; Liu, C. Z.; Li, Z.; Wang, L. C.; Chen, W. M.; Zhou, X. Y. Ti3C2Tx/carbon nanotube/porous carbon film for flexible supercapacitor. Chem. Eng. J. 2022, 427, 132002.

    Article  CAS  Google Scholar 

  98. Chen, J.; Chen, Y.; Li, S. Y.; Yang, J.; Dong, J. B.; Lu, X. Q. MXene/CNTs/Cu-MOF electrochemical probe for detecting tyrosine. Carbon 2022, 199, 110–118.

    Article  CAS  Google Scholar 

  99. Zhao, M. Q.; Ren, C. E.; Ling, Z.; Lukatskaya, M. R.; Zhang, C. F.; Van Aken, K. L.; Barsoum, M. W.; Gogotsi, Y. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 2015, 27, 339–345.

    Article  CAS  PubMed  Google Scholar 

  100. Gao, X.; Du, X.; Mathis, T. S.; Zhang, M. M.; Wang, X. H.; Shui, J. L.; Gogotsi, Y.; Xu, M. Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage. Nat. Commun. 2020, 11, 6160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. He, X.; Jin, S.; Miao, L. C.; Cai, Y. C.; Hou, Y. P.; Li, H. X.; Zhang, K.; Yan, Z. H.; Chen, J. A 3D hydroxylated MXene/carbon nanotubes composite as a scaffold for dendrite-free sodium-metal electrodes. Angew. Chem., Int. Ed. 2020, 59, 16705–16711.

    Article  CAS  Google Scholar 

  102. Lee, J. Y.; An, J.; Chua, C. K. Fundamentals and applications of 3D printing for novel materials. Appl. Mater. Today 2017, 7, 120–133.

    Article  Google Scholar 

  103. Li, H.; Chen, R.; Ali, M.; Lee, H.; Ko, M. J. In situ grown MWCNTs/MXenes nanocomposites on carbon cloth for high-performance flexible supercapacitors. Adv. Funct. Mater. 2020, 30, 2002739.

    Article  CAS  Google Scholar 

  104. Su, F. Y.; Li, Y. C.; Deng, W. L.; Zhang, X.; Zhao, Z. Q.; Yan, W. F.; Zhang, L. L.; Bai, C. Y.; Zhang, X. H.; Zheng, T. et al. Layer-by-layer macroassembly of inorganic CNTs and MXenes with organic PVA for enhancing the interfacial properties of carbon fiber/epoxy composites. Compos. Commun. 2023, 37, 101427.

    Article  Google Scholar 

  105. Ma, X.; Tu, X. L.; Gao, F.; Xie, Y.; Huang, X. G.; Fernandez, C.; Qu, F. L.; Liu, G. B.; Lu, L. M.; Yu, Y. F. Hierarchical porous MXene/amino carbon nanotubes-based molecular imprinting sensor for highly sensitive and selective sensing of fisetin. Sens. Actuators B: Chem. 2020, 309, 127815.

    Article  CAS  Google Scholar 

  106. Li, X.; You, W. B.; Xu, C. Y.; Wang, L.; Yang, L. T.; Li, Y. S.; Che, R. C. 3D seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization. Nano-Micro Lett. 2021, 13, 157

    Article  CAS  Google Scholar 

  107. Deng, Z. M.; Tang, P. P.; Wu, X. Y.; Zhang, H. B.; Yu, Z. Z. Superelastic, ultralight, and conductive Ti3C2Tx MXene/acidified carbon nanotube anisotropic aerogels for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2021, 13, 20539–20547.

    Article  CAS  PubMed  Google Scholar 

  108. Wang, X.; Luo, D.; Wang, J. Y.; Sun, Z. H.; Cui, G. L.; Chen, Y. X.; Wang, T.; Zheng, L. R.; Zhao, Y.; Shui, L. L. et al. Strain engineering of a MXene/CNT hierarchical porous hollow microsphere electrocatalyst for a high-efficiency lithium polysulfide conversion process. Angew. Chem., Int. Ed. 2021, 60, 2371–2378.

    Article  CAS  Google Scholar 

  109. Xiong, C.; Zhu, G. Y.; Jiang, H. R.; Chen, Q.; Zhao, T. S. Achieving multiplexed functionality in a hierarchical MXene-based sulfur host for high-rate, high-loading lithium-sulfur batteries. Energy Storage Mater. 2020, 33, 147–157.

    Article  Google Scholar 

  110. Xu, M. Y.; Liang, L.; Qi, J.; Wu, T. L.; Zhou, D.; Xiao, Z. B. Intralayered ostwald ripening-induced self-catalyzed growth of CNTs on MXene for robust lithium-sulfur batteries. Small 2021, 17, 2007446.

    Article  CAS  Google Scholar 

  111. Ostwald, W. Studien über die bildung und umwandlung fester Körper. 1. Abhandlung: Übersättigung und Überkaltung. Z. Phys. Chem. 1897, 22, 289–330.

    Article  CAS  Google Scholar 

  112. Thirumal, V.; Yuvakkumar, R.; Kumar, P. S.; Ravi, G.; Keerthana, S. P.; Velauthapillai, D. Facile single-step synthesis of MXene@CNTs hybrid nanocomposite by CVD method to remove hazardous pollutants. Chemosphere 2022, 286, 131733.

    Article  CAS  PubMed  Google Scholar 

  113. Li, X. L.; Yin, X. W.; Han, M. K.; Song, C. Q.; Xu, H. L.; Hou, Z. X.; Zhang, L. T.; Cheng, L. F. Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 2017, 5, 4068–4074.

    Article  CAS  Google Scholar 

  114. Yu, C. Y.; Gong, Y. J.; Chen, R. Y.; Zhang, M. Y.; Zhou, J. Y.; An, J. N.; Lv, F.; Guo, S. J.; Sun, G. Z. A solid-state fibriform supercapacitor boosted by host-guest hybridization between the carbon nanotube scaffold and MXene nanosheets. Small 2018, 14, 1801203.

    Article  Google Scholar 

  115. Lima, M. D.; Fang, S. L.; Leprö, X.; Lewis, C.; Ovalle-Robles, R.; Carretero-González, J.; Castillo-Martínez, E.; Kozlov, M. E.; Oh, J.; Rawat, N. et al. Biscrolling nanotube sheets and functional guests into yarns. Science 2011, 331, 51–55.

    Article  CAS  PubMed  Google Scholar 

  116. Tang, X.; Zhou, D.; Li, P.; Guo, X.; Sun, B.; Liu, H.; Yan, K.; Gogotsi, Y.; Wang, G. X. MXene- based dendrite-free potassium metal batteries. Adv. Mater. 2020, 32, 1906739.

    Article  CAS  Google Scholar 

  117. Hu, M. M.; Cui, C.; Shi, C.; Wu, Z. S.; Yang, J. X.; Cheng, R. F.; Guang, T. J.; Wang, H. L.; Lu, H. X.; Wang, X. H. High-energy-density hydrogen-ion-rocking-chair hybrid supercapacitors based on Ti3C2Tx MXene and carbon nanotubes mediated by redox active molecule. ACS Nano 2019, 13, 6899–6905.

    Article  CAS  PubMed  Google Scholar 

  118. Xu, C. X.; Fan, C. C.; Zhang, X. L.; Chen, H. T.; Liu, X. T.; Fu, Z. M.; Wang, R. R.; Hong, T.; Cheng, J. G. MXene (Ti3C2Tx) and carbon nanotube hybrid-supported platinum catalysts for the high-performance oxygen reduction reaction in PEMFC. ACS Appl. Mater. Interfaces 2020, 12, 19539–19546.

    Article  CAS  PubMed  Google Scholar 

  119. Wang, H.; He, S. A.; Cui, Z.; Xu, C. T.; Zhu, J. Q.; Liu, Q.; He, G. J.; Luo, W.; Zou, R. J. Enhanced kinetics and efficient activation of sulfur by ultrathin MXene coating S-CNTs porous sphere for highly stable and fast charging lithium-sulfur batteries. Chem. Eng. J. 2021, 420, 129693.

    Article  CAS  Google Scholar 

  120. Zhang, S. X.; Liu, H.; Cao, B.; Zhu, Q. Z.; Zhang, P.; Zhang, X.; Chen, R. J.; Wu, F.; Xu, B. An MXene/CNTs@P nanohybrid with stable Ti–O–P bonds for enhanced lithium ion storage. J. Mater. Chem. A 2019, 7, 21766–21773.

    Article  CAS  Google Scholar 

  121. Li, R. S.; Ding, L.; Gao, Q.; Zhang, H. M.; Zeng, D.; Zhao, B.; Fan, B. B.; Zhang, R. Tuning of anisotropic electrical conductivity and enhancement of EMI shielding of polymer composite foam via CO2-assisted delamination and orientation of MXene. Chem. Eng. J. 2021, 415, 128930.

    Article  CAS  Google Scholar 

  122. Liu, Y.; Jiang, Y.; Hu, Z.; Peng, J.; Lai, W. H.; Wu, D. L.; Zuo, S. W.; Zhang, J.; Chen, B.; Dai, Z. W. et al. In-situ electrochemically activated surface vanadium valence in V2C MXene to achieve high capacity and superior rate performance for Zn-ion batteries. Adv. Funct. Mater. 2021, 31, 2008033.

    Article  CAS  Google Scholar 

  123. Wang, X.; Wang, S. G.; Qin, J. W.; Xie, X.; Yang, R.; Cao, M. H. Constructing conductive bridge arrays between Ti3C2Tx MXene nanosheets for high-performance lithium-ion batteries and highly efficient hydrogen evolution. Inorg. Chem. 2019, 58, 16524–16536.

    Article  CAS  PubMed  Google Scholar 

  124. Dong, H.; Sun, J. C.; Liu, X. M.; Jiang, X. D.; Lu, S. W. Highly sensitive and stretchable MXene/CNTs/TPU composite strain sensor with bilayer conductive structure for human motion detection. ACS Appl. Mater. Interfaces 2022, 14, 15504–15516.

    Article  CAS  PubMed  Google Scholar 

  125. He, F. Y.; Tang, C.; Liu, Y. D.; Li, H. T.; Du, A. J.; Zhang, H. J. Carbon-coated MoS2 nanosheets@CNTs-Ti3C2 MXene Quaternary composite with the superior rate performance for sodium-ion batteries. J. Mater. Sci. Technol. 2022, 100, 101–109.

    Article  CAS  Google Scholar 

  126. Wang, R. C.; Luo, S. H.; Xiao, C.; Chen, Z. Y.; Li, H. S.; Asif, M.; Chan, V.; Liao, K.; Sun, Y. M. MXene-carbon nanotubes layer-by-layer assembly based on-chip micro-supercapacitor with improved capacitive performance. Electrochim. Acta 2021, 386, 138420.

    Article  CAS  Google Scholar 

  127. Liu, Q.; Yang, J. J.; Luo, X. G.; Miao, Y. F.; Zhang, Y.; Xu, W. T.; Yang, L. J.; Liang, Y. X.; Weng, W.; Zhu, M. F. Fabrication of a fibrous MnO2@MXene/CNT electrode for high-performance flexible supercapacitor. Ceram. Int. 2020, 46, 11874–11881.

    Article  CAS  Google Scholar 

  128. Sun, Y. Q.; Xu, D. A.; Li, S. L.; Cui, L. L.; Zhuang, Y. X.; Xing, W. H.; Jing, W. H. Assembly of multidimensional MXene-carbon nanotube ultrathin membranes with an enhanced anti-swelling property for water purification. J. Membr. Sci. 2021, 623, 119075.

    Article  CAS  Google Scholar 

  129. Wang, Y. L.; Qin, W. J.; Hu, X. Y.; Liu, Z. S.; Ren, Z. X.; Cao, H. Q.; An, B. G.; Zhou, X.; Shafiq, M.; Yin, S. G. et al. Hierarchically buckled Ti3C2Tx MXene/carbon nanotubes strain sensor with improved linearity, sensitivity, and strain range for soft robotics and epidermal monitoring. Sens. Actuators B: Chem. 2022, 368, 132228.

    Article  CAS  Google Scholar 

  130. Cui, C.; Cheng, R. F.; Zhang, H.; Zhang, C.; Ma, Y. H.; Shi, C.; Fan, B. B.; Wang, H. L.; Wang, X. H. Ultrastable MXene@Pt/SWCNTs’ nanocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 2020, 30, 2000693.

    Article  CAS  Google Scholar 

  131. Zhang, L. P.; Zhao, X. C.; Chu, Z. Y.; Wang, Q.; Cao, Y.; Li, J.; Lei, W.; Cao, J.; Si, W. M. Construction of Co-decorated 3D nitrogen doped-carbon nanotube/Ti3C2Tx-MXene as efficient hydrogen evolution electrocatalyst. Int. J. Hydrogen Energy 2023, 48, 15053–15064.

    Article  CAS  Google Scholar 

  132. Zhang, C.; Dong, H. F.; Chen, B. L.; Jin, T. X.; Nie, J.; Ma, G. P. 3D MXene anchored carbon nanotube as bifunctional and durable oxygen catalysts for Zn-air batteries. Carbon 2021, 185, 17–26.

    Article  CAS  Google Scholar 

  133. Parse, H. B.; Patil, I.; Swami, A.; Kakade, B. An adept approach to convert titanium carbide to titanium nitride and it’s composite with N-doped carbon nanotubes for efficient oxygen electroreduction kinetics. Catal. Today 2021, 370, 46–54.

    Article  CAS  Google Scholar 

  134. Wang, J. L.; Zhang, Z.; Yan, X. F.; Zhang, S. L.; Wu, Z. H.; Zhuang, Z. H.; Han, W. Q. Rational design of porous N-Ti3C2 MXene@CNT microspheres for high cycling stability in Li-S battery. Nano-Micro Lett. 2020, 12, 4.

    Article  Google Scholar 

  135. Chen, M. M.; Hu, X. Y.; Li, K.; Sun, J. K.; Liu, Z. J.; An, B. G.; Zhou, X.; Liu, Z. F. Self- assembly of dendritic-lamellar MXene/carbon nanotube conductive films for wearable tactile sensors and artificial skin. Carbon 2020, 164, 111–120.

    Article  CAS  Google Scholar 

  136. Luo, G. X.; Zhang, Q. K.; Luo, Y. Y.; Chen, K.; Zhou, W. K.; Zhao, L. B.; Jiang, Z. D. A wearable strain sensor based on fiber-structured PU/MXene/CNT composite with ultra-high sensitivity and broad sensing range. In 2821 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Xiamen, China, 2021, pp 1362–1365.

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 62004143) and the Key R&D Program of Hubei Province (No. 2022BAA084).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jizhou Jiang or Xin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Li, F., Ding, L. et al. MXenes/CNTs-based hybrids: Fabrications, mechanisms, and modification strategies for energy and environmental applications. Nano Res. 17, 3429–3454 (2024). https://doi.org/10.1007/s12274-023-6302-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6302-x

Keywords

Navigation