Skip to main content
Log in

Recent advances in metal-organic frameworks for electrochemical performance of batteries

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Energy shortage hinders the rapid development of today’s society, and the emergence of electronic travel equipment alleviates this phenomenon to a certain extent. The batteries are the energy storage part of electric equipment. Metal-organic frameworks (MOFs) are a fresh sort of porous crystal materials with controllable structure, large specific surface area, and adjustable pore size. MOFs are good electrode materials, which are used to make a variety of friendly environment, long cycling life and superior energy density of new batteries. Furthermore, MOFs are also used in separators and electrolytes, which have a lot of application space in batteries. In this review, the up-to-date research advance of MOF materials in various kinds of batteries (lithium-ion batteries, lithium oxygen batteries, lithium sulfur batteries, zinc-ion batteries, potassium-ion batteries, etc.) is reviewed. Moreover, concisely introduced several conventional synthesis approaches of MOFs. Finally, Perspectives and directions on the future improvement of MOF in energy storage devices are proposed for meeting the requirement of practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo, S. J.; Xiao, Y. B.; Wang, J.; Ouyang, Y.; Li, X.; Deng, H. Y.; He, W. C.; Zeng, Q. H.; Zhang, W.; Zhang, Q. et al. Ordered structure of interlayer constructed with metal-organic frameworks improves the performance of lithium-sulfur batteries. Nano Res. 2021, 14, 4556–4562.

    Article  CAS  Google Scholar 

  2. Zhang, Y. J.; Li, J.; Zhao, W. Y.; Dou, H. L.; Zhao, X. L.; Liu, Y.; Zhang, B. W.; Yang, X. W. Defect-free metal-organic framework membrane for precise ion/solvent separation toward highly stable magnesium metal anode. Adv. Mater. 2022, 34, 2108114.

    Article  CAS  Google Scholar 

  3. Mehtab, T.; Yasin, G.; Arif, M.; Shakeel, M.; Korai, R. M.; Nadeem, M.; Muhammad, N.; Lu, X. Metal-organic frameworks for energy storage devices: Batteries and supercapacitors. J. Energy Storage 2019, 21, 632–646.

    Article  Google Scholar 

  4. Hua, Y.; Li, X. X.; Chen, C. Y.; Pang, H. Cobalt based metal-organic frameworks and their derivatives for electrochemical energy conversion and storage. Chem. Eng. J. 2019, 370, 37–59.

    Article  CAS  Google Scholar 

  5. Liu, J. J.; Song, X. Y.; Zhang, T.; Liu, S. Y.; Wen, H. R.; Chen, L. 2D conductive metal-organic frameworks: An emerging platform for electrochemical energy storage. Angew. Chem., Int. Ed. 2021, 60, 5612–5624.

    Article  Google Scholar 

  6. Wu, X. X.; Zhou, C.; Dong, C. X.; Shen, C. L.; Shuai, B. B.; Li, C.; Li, Y.; An, Q. Y.; Xu, X.; Mai, L. Polydopamine-assisted in-situ formation of dense MOF layer on polyolefin separator for synergistic enhancement of lithium-sulfur battery. Nano Res. 2022, 15, 8048–8055.

    Article  CAS  Google Scholar 

  7. Ding, L.; Zeng, M.; Wang, H.; Jiang, X. B. Synthesis of MIL-101-derived bimetal-organic framework and applications for lithium-ion batteries. J. Mater. Sci.: Mater. Electron. 2021, 32, 1778–1786.

    CAS  Google Scholar 

  8. Wang, Y. Y.; Zhang, X. Q.; Zhou, M. Y.; Huang, J. Q. Mechanism, quantitative characterization, and inhibition of corrosion in lithium batteries. Nano Res. Energy 2023, 2, e9120046.

    Article  Google Scholar 

  9. Ahmed, S.; Shim, J.; Sun, H. J.; Rim, H. R.; Lee, H. K.; Park, G. Nickel decorated bimetallic catalysts derived from metal-organic frameworks as cathode materials for rechargeable zinc-air batteries. Mater. Lett. 2021, 283, 128781.

    Article  CAS  Google Scholar 

  10. Tong, Z. Q.; Kang, T. X.; Wu, Y.; Zhang, F.; Tang, Y. B.; Lee, C. S. Novel metastable Bi:Co and Bi:Fe alloys nanodots@carbon as anodes for high rate K-ion batteries. Nano Res. 2022, 15, 7220–7226.

    Article  CAS  Google Scholar 

  11. Li, Z. L.; Wang, S. X.; Shi, J. K.; Liu, Y.; Zheng, S. Y.; Zou, H. Q.; Chen, Y. L.; Kuang, W. X.; Ding, K.; Chen, L. Y. et al. A 3D interconnected metal-organic framework-derived solid-state electrolyte for dendrite-free lithium metal battery. Energy Stor. Mater. 2022, 47, 262–270.

    Google Scholar 

  12. Liu, J. B.; Qiao, Z. S.; Xie, Q. S.; Peng, D. L.; Xie, R. J. Phosphorus-doped metal-organic framework-derived CoS2 nanoboxes with improved adsorption-catalysis effect for Li-S batteries. ACS Appl. Mater. Interfaces 2021, 13, 15226–15236.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, S. L.; Sun, L.; Fan, Q. N.; Zhang, F. L.; Wang, Z. J.; Zou, J. S.; Zhao, S. Y.; Mao, J. F.; Guo, Z. P. Challenges and prospects of lithium-CO2 batteries. Nano Res. Energy 2022, 1, e9120001.

    Article  Google Scholar 

  14. Sun, F. C.; Chen, T. T.; Li, Q.; Pang, H. Hierarchical nickel oxalate superstructure assembled from 1D nanorods for aqueous nickel-zinc battery. J. Colloid Interface Sci. 2022, 627, 483–491.

    Article  CAS  PubMed  Google Scholar 

  15. Wei, A. K.; Wang, L.; Li, Z. Metal-organic framework derived binary-metal oxide/MXene composite as sulfur host for high-performance lithium-sulfur batteries. J. Alloys Compd. 2022, 899, 163369.

    Article  CAS  Google Scholar 

  16. Ge, H. Y.; Feng, X. L.; Liu, D. P.; Zhang, Y. Recent advances and perspectives for Zn-based batteries: Zn anode and electrolyte. Nano Res. Energy 2023, 2, e9120039.

    Article  Google Scholar 

  17. Yang, Z. Q.; Zhu, J. P.; Tang, W. H.; Ding, Y. An Fe2O3/Mn2O3 nanocomposite derived from a metal-organic framework as an anode material for lithium-ion batteries. Chemistry Select 2022, 7, e202203107.

    CAS  Google Scholar 

  18. Nam, K. W.; Park, S. S.; dos Reis, R.; Dravid, V. P.; Kim, H.; Mirkin, C. A.; Stoddart, J. F. Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries. Nat. Commun. 2019, 10, 4948.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhou, H. J.; Yang, H.; Yao, S. Y.; Jiang, L.; Sun, N. C.; Pang, H. Synthesis of 3D printing materials and their electrochemical applications. Chin. Chem. Lett. 2022, 33, 3681–3694.

    Article  CAS  Google Scholar 

  20. Wang, Q. P.; Guo, C.; He, J. P.; Yang, S.; Liu, Z. F.; Wang, Q. H. Fe2O3/C-modified Si nanoparticles as anode material for high-performance lithium-ion batteries. J. Alloys Compd. 2019, 795, 284–290.

    Article  CAS  Google Scholar 

  21. Liu, D.; Lu, B. B.; Pei, W. Y.; Gu, Z. Y.; Yang, J.; Wu, X. L.; Ma, J. F. A new polyoxometalate-resorcin[4]arene-based framework as an efficient anode material for lithium-ion batteries. J. Alloys Compd. 2020, 835, 155314.

    Article  CAS  Google Scholar 

  22. Gao, M. Q.; Wang, Z. Y.; Lek, D. G.; Wang, Q. Towards high power density aqueous redox flow batteries. Nano Res. Energy 2023, 2, e9120045.

    Article  Google Scholar 

  23. Zhang, P.; Wei, Y.; Zhou, S. J.; Soomro, R. A.; Jiang, M. C.; Xu, B. A metal-organic framework derived approach to fabricate in-situ carbon encapsulated Bi/Bi2O3 heterostructures as high-performance anodes for potassium ion batteries. J. Colloid Interface Sci. 2023, 630, 365–374.

    Article  CAS  PubMed  Google Scholar 

  24. Wang, X. X.; Ge, L.; Lu, Q.; Dai, J.; Guan, D. Q.; Ran, R.; Weng, S. C.; Hu, Z. W.; Zhou, W.; Shao, Z. P. High-performance metal-organic framework-perovskite hybrid as an important component of the air-electrode for rechargeable Zn-air battery. J. Power Sources 2020, 46, 228377.

    Article  Google Scholar 

  25. Zhu, F. L.; Tao, Y. L.; Bao, H. F.; Wu, X. S.; Qin, C.; Wang, X. L.; Su, Z. M. Ferroelectric metal-organic framework as a host material for sulfur to alleviate the shuttle effect of lithium-sulfur battery. Chem.—Eur. J. 2020, 26, 13779–13782.

    Article  CAS  PubMed  Google Scholar 

  26. Liu, Y. L.; Liu, X. Y.; Feng, L.; Shao, L. X.; Li, S. J.; Tang, J.; Cheng, H.; Chen, Z.; Huang, R.; Xu, H. C. et al. Two-dimensional metal-organic framework nanosheets: Synthesis and applications in electrocatalysis and photocatalysis. ChemSusChem 2022, 15, e202102603.

    Article  CAS  PubMed  Google Scholar 

  27. Qin, X. L.; Huang, Y.; Wang, K.; Xu, T. T.; Wang, Y. L.; Liu, P. B.; Kang, Y.; Zhang, Y. Novel hierarchically porous Ti-MOFs/nitrogen-doped graphene nanocomposite served as high efficient oxygen reduction reaction catalyst for fuel cells application. Electrochim. Acta 2019, 297, 805–813.

    Article  CAS  Google Scholar 

  28. Tang, Y. J.; Zheng, S. S.; Cao, S.; Yang, F. Y.; Guo, X. T.; Zhang, S. T.; Xue, H. G.; Pang, H. Hollow mesoporous carbon nanospheres space-confining ultrathin nanosheets superstructures for efficient capacitive deionization. J. Colloid Interface Sci. 2022, 626, 1062–1069.

    Article  CAS  PubMed  Google Scholar 

  29. Du, M.; Geng, P. B.; Pei, C. X.; Jiang, X. Y.; Shan, Y. Y.; Hu, W. H.; Ni, L. B.; Pang, H. High-entropy Prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2022, 61, e202209350.

    Article  CAS  Google Scholar 

  30. Geng, P. B.; Du, M.; Wu, C. S.; Luo, T. X.; Zhang, Y.; Pang, H. PPy-constructed core-shell structures from MOFs for confining lithium polysulfides. Inorg. Chem. Front. 2022, 9, 2389–2394.

    Article  CAS  Google Scholar 

  31. Wu, Z. Z.; Adekoya, D.; Huang, X.; Kiefel, M. J.; Xie, J.; Xu, W.; Zhang, Q. C.; Zhu, D. B.; Zhang, S. Q. Highly conductive two-dimensional metal-organic frameworks for resilient lithium storage with superb rate capability. ACS Nano 2020, 14, 12016–12026.

    Article  CAS  PubMed  Google Scholar 

  32. Ye, Z. Q.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. J. Rational design of MOF-based materials for next-generation rechargeable batteries. Nano-Micro Lett. 2021, 13, 203.

    Article  CAS  Google Scholar 

  33. Qi, C.; Xu, L.; Wang, J.; Li, H. L.; Zhao, C. C.; Wang, L. N.; Liu, T. X. Titanium-containing metal-organic framework modified separator for advanced lithium-sulfur batteries. ACS Sustain. Chem. Eng. 2020, 8, 12968–12975.

    Article  CAS  Google Scholar 

  34. Zhang, F. P.; Chen, L.; Zhang, Y. L.; Peng, Y. Y.; Luo, X.; Xu, Y. S.; Shi, Y. L. Engineering Co/CoO heterojunctions stitched in mulberry-like open-carbon nanocages via a metal-organic frameworks in-situ sacrificial strategy for performance-enhanced zinc-air batteries. Chem. Eng. J. 2022, 447, 137490.

    Article  CAS  Google Scholar 

  35. Zhang, Y. T.; Zhu, J.; Liu, Z. Y.; Li, S. B.; Huang, H.; Jiang, B. X. Microwave-assisted synthesis of Zr-based metal-organic polyhedron: Serving as efficient visible-light photocatalyst for Cr(VI) reduction. Inorg. Chim. Acta 2022, 543, 121204.

    Article  CAS  Google Scholar 

  36. Azbell, T. J.; Pitt, T. A.; Bollmeyer, M. M.; Cong, C.; Lancaster, K. M.; Milner, P. J. Ionothermal synthesis of metal-organic frameworks using low-melting metal salt precursors. Angew. Chem., Int. Ed. 2023, 62, e202218252.

    Article  CAS  Google Scholar 

  37. Bashar, B. S.; Kareem, H. A.; Hasan, Y. M.; Ahmad, N.; Alshehri, A. M.; Al-Majdi, K.; Hadrawi, S. K.; Al Kubaisy, M. M. R.; Qasim, M. T. Application of novel Fe3O4/Zn-metal organic framework magnetic nanostructures as an antimicrobial agent and magnetic nanocatalyst in the synthesis of heterocyclic compounds. Front. Chem. 2022, 10, 1014731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou, J. J.; Liu, H.; Lin, Y. C.; Zhou, C.; Huang, A. S. Synthesis of well-shaped and high-crystalline Ce-based metal organic framework for CO2/CH4 eparaatinn. Microporous Mesoporous Mater. 2020, 302, 110224.

    Article  CAS  Google Scholar 

  39. Skoda, D.; Kazda, T.; Hanulikova, B.; Cech, O.; Vykoukal, V.; Michalicka, J.; Cudek, P.; Kuritka, I. Vanadium metal-organic frameworks derived VOx/carbon nano-sheets and paperclip-like VOx/nitrogen-doped carbon nanocomposites for sodium-ion battery electrodes. Mater. Chem. Phys. 2022, 278, 125584.

    Article  CAS  Google Scholar 

  40. Yuan, R. R.; He, H. M. Constructing a 3D porous Co(II)-organic framework: Synthesis, characterization and chemical transformation of epoxide and CO2 into cyclic carbonate. Inorg. Chem. Commun. 2020, 121, 108235.

    Article  CAS  Google Scholar 

  41. Abo El-Yazeed, W. S.; Abou El-Reash, Y. G.; Elatwy, L. A.; Ahmed, A. I. Novel bimetallic Ag-Fe MOF for exceptional Cd and Cu removal and 3,4-dihydropyrimidinone synthesis. J. Taiwan Inst. Chem. Eng. 2020, 114, 199–210.

    Article  CAS  Google Scholar 

  42. Shan, Y.; Zhang, G. X.; Yin, W.; Pang, H.; Xu, Q. Recent progress in Prussian blue/Prussian blue analogue-derived metallic compounds. Bull. Chem. Soc. Jpn. 2022, 95, 230–260.

    Article  CAS  Google Scholar 

  43. Abánades Lázaro, I.; Mazarakioti, E. C.; Andres-Garcia, E.; Vieira, B. J. C.; Waerenborgh, J. C.; Vitórica-Yrezábal, I. J.; Giménez-Marqués, M.; Mínguez Espallargas, G. Ultramicroporous iron-isonicotinate MOFs combining size-exclusion kinetics and thermodynamics for efficient CO2/N2 gas separation. J. Mater. Chem. A 2023, 11, 5320–5327.

    Article  Google Scholar 

  44. Lee, G.; Yoon, J. H.; Kwon, K.; Han, H.; Song, J. H.; Lim, K. S.; Lee, W. R. Dimensional selective syntheses of metal-organic frameworks using mixed organic ligands. Inorg. Chim. Acta 2020, 513, 119739.

    Article  CAS  Google Scholar 

  45. Shah, R.; Ali, S.; Ali, S.; Xia, P. F.; Raziq, F.; Adnan; Mabood, F.; Shah, S.; Zada, A.; Ismail, P. M. et al. Amino functionalized metal-organic framework/RGO composite electrode for flexible Li-ion batteries. J. Alloys Compd. 2023, 936, 168183.

    Article  CAS  Google Scholar 

  46. Guo, X. T.; Li, W. T.; Geng, P. B.; Zhang, Q. Y.; Pang, H.; Xu, Q. Construction of SiOx/nitrogen-doped carbon superstructures derived from rice husks for boosted lithium storage. J. Colloid Interface Sci. 2022, 606, 784–792.

    Article  CAS  PubMed  Google Scholar 

  47. He, S. H.; Li, Z. P.; Wang, J. Q. Bimetallic MOFs with tunable morphology: Synthesis and enhanced lithium storage properties. J. Solid State Chem. 2022, 307, 122726.

    Article  CAS  Google Scholar 

  48. Hou, J. M.; Guo, Y. P.; Zhang, Y. R.; Li, J. Z.; Xu, Y. P.; Fang, Z. X.; Yang, J.; Wu, M. Q. Facile green and sustainable synthesis of MnO@rGO as electrochemically stable anode for lithium-ion batteries. Mater. Lett. 2022, 325, 132761.

    Article  CAS  Google Scholar 

  49. Wang, M. X. Teemella-like NiO/NiCo2O4 nanocomposites as excellent anodes for cyclable lithium-ion batteries. J. Cryst. Growth 2022, 589, 126685.

    Article  CAS  Google Scholar 

  50. Li, T.; Tong, Y. H.; Li, J. W.; Kong, Z.; Liu, X. X.; Xu, H. Y.; Xu, H.; Wang, K. L.; Jin, H. Hericium erinaceus-like copper-based MOFs as anodes for high performance lithium-ion batteries. ACS Appl. Energy Mater. 2021, 4, 11400–11407

    Article  CAS  Google Scholar 

  51. Huang, K. S.; Li, B.; Zhao, M. M.; Qiu, J. Q.; Xue, H. G.; Pang, H. Synthesis of lithium metal silicates for lithium ion batteries. Chin. Chem. Lett. 2017, 28, 2195–2206.

    Article  CAS  Google Scholar 

  52. Choi, D.; Lim, S.; Han, D. Advanced metal-organic frameworks for aqueous sodium-ion rechargeable batteries. J. Energy Chem. 2021, 53, 396–406.

    Article  CAS  Google Scholar 

  53. Zhou, J. E.; Zhong, H.; Zhang, Y. Z.; Huang, Q. H.; Zhang, B. H.; Zeb, A.; Xu, Z. G.; Lin, X. M. An oxygen-deficient strategy to boost lithium storage of metal-organic framework-derived ZnTiO3/TiO2/C composite anodes. Chem. Eng. J. 2022, 450, 137448.

    Article  CAS  Google Scholar 

  54. Liu, H.; Zhao, Y. Y.; Zhou, C.; Mu, B.; Chen, L. Microwave-assisted synthesis of Zr-based metal-organic framework (Zr-fum-fcu-MOF) for gas adsorption separation. Chem. Phys. Lett. 2021, 780, 138906.

    Article  CAS  Google Scholar 

  55. Li, Q. L.; Liu, Y. B.; Niu, S. Y.; Li, C. H.; Chen, C.; Liu, Q. Q.; Huo, J. Microwave-assisted rapid synthesis and activation of ultrathin trimetal-organic framework nanosheets for efficient electrocatalytic oxygen evolution. J. Colloid Interface Sci. 2021, 603, 148–156.

    Article  CAS  PubMed  Google Scholar 

  56. Wang, W. J.; Sun, Z. H.; Chen, S. C.; Qian, J. F.; He, M. Y.; Chen, Q. Microwave-assisted fabrication of a mixed-ligand [Cu4(u3-OH)2]-cluster-based metal-organic framework with coordinatively unsaturated metal sites for carboxylation of terminal alkynes with carbon dioxide. Appl. Organomet. Chem. 2021, 35, e6288.

    Article  CAS  Google Scholar 

  57. Skoda, D.; Kazda, T.; Munster, L.; Hanulikova, B.; Styskalik, A.; Eloy, P.; Debecker, D. P.; Vyroubal, P.; Simonikova, L.; Kuritka, I. Microwave-assisted synthesis of a manganese metal-organic framework and its transformation to porous MnO/carbon nanocomposite utilized as a shuttle suppressing layer in lithium-sulfur batteries. J. Mater. Sci. 2019, 54, 14102–14122.

    Article  CAS  Google Scholar 

  58. Jiang, L. L.; Zeng, X. Z.; Li, M. K.; Wang, M. Q.; Su, T. Y.; Tian, X. C.; Tang, J. Rapid electrochemical synthesis of HKUST-1 on indium tin oxide. RSC Adv. 2017, 7, 9316–9320.

    Article  CAS  Google Scholar 

  59. Vo, T. K.; Le, V. N.; Quang, D. T.; Song, M.; Kim, D.; Kim, J. Rapid defect engineering of UiO-67 (Zr) via microwave-assisted continuous-flow synthesis: Effects of modulator species and concentration on the toluene adsorption. Microporous Mesoporous Mater. 2020, 306, 110405.

    Article  CAS  Google Scholar 

  60. González, L.; Gil-San-Millán, R.; Navarro, J. A. R.; Maldonado, C. R.; Barea, E.; Carmona, F. J. Green synthesis of zirconium MOF-808 for simultaneous phosphate recovery and organophosphorus pesticide detoxification in wastewater. J. Mater. Chem. A 2022, 10, 19606–19611.

    Article  Google Scholar 

  61. Appelhans, L. N.; Hughes, L.; McKenzie, B.; Rodriguez, M.; Griego, J.; Briscoe, J.; Moorman, M.; Frederick, E.; Wright, J. B. Facile microwave synthesis of zirconium metal-organic framework thin films on gold and silicon and application to sensor functionalization. Microporous Mesoporous Mater. 2021, 323, 111133.

    Article  CAS  Google Scholar 

  62. da Trindade, L. G.; Zanchet, L.; Dreon, R.; Souza, J. C.; Assis, M.; Longo, E.; Martini, E. M. A.; Chiquito, A. J.; Pontes, F. M. Microwave-assisted solvothermal preparation of Zr-BDC for modification of proton exchange membranes made of SPEEK/PBI blends. J. Mater. Sci. 2020, 55, 14938–14952.

    Article  CAS  Google Scholar 

  63. Salahdin, O. D.; Patra, I.; Ansari, M. J.; Emad Izzat, S.; Uktamov, K. F.; Abid, M. K.; Mahdi, A. B.; Hammid, A. T.; Mustafa, Y. F.; Sharma, H. Synthesis of efficient cobalt-metal organic framework as reusable nanocatalyst in the synthesis of new 1,4-dihydropyridine derivatives with antioxidant activity. Front. Chem. 2022, 10, 932902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hu, L.; Wang, Q. S.; Zhu, X. D.; Meng, T.; Huang, B. B.; Yang, J. D.; Lin, X. M.; Tong, Y. X. Novel Fe4-based metal-organic cluster-derived iron oxides/S,N dual-doped carbon hybrids for high-performance lithium storage. Nanoscale 2021, 13, 716–723.

    Article  CAS  PubMed  Google Scholar 

  65. Vaitsis, C.; Kanellou, E.; Pandis, P. K.; Papamichael, I.; Sourkouni, G.; Zorpas, A. A.; Argirusis, C. Sonochemical synthesis of zinc adipate metal-organic framework (MOF) for the electrochemical reduction of CO2: MOF and circular economy potential. Sustain. Chem. Pharm. 2022, 29, 100786.

    Article  CAS  Google Scholar 

  66. Yu, K.; Lee, Y. R.; Seo, J. Y.; Baek, K. Y.; Chung, Y. M.; Ahn, W. S. Sonochemical synthesis of Zr-based porphyrinic MOF-525 and MOF-545: Enhancement in catalytic and adsorption properties. Microporous Mesoporous Mater. 2021, 316, 110985.

    Article  CAS  Google Scholar 

  67. Beamish-Cook, J.; Shankland, K.; Murray, C. A.; Vaqueiro, P. Insights into the mechanochemical synthesis of MOF-74. Cryst. Growth Des. 2021, 21, 3047–3055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cindro, N.; Tireli, M.; Karadeniz, B.; Mrla, T.; Užarević, K. Investigations of thermally controlled mechanochemical milling reactions. ACS Sustain. Chem. Eng. 2019, 7, 16301–16309.

    Article  CAS  Google Scholar 

  69. Wu, D. N.; Li, X. C.; Zheng, J.; He, C. J.; Zhang, J.; Xie, Y. R.; Li, Y. F.; Tang, B. H. J.; Rui, Y. C.; Liu, F. J. Self-healable metal-organic gel membranes as anodes with high lithium storage. Electrochim. Acta 2021, 386, 138334.

    Article  CAS  Google Scholar 

  70. Li, L.; Wang, Q. M.; Zhang, X. Y.; Fang, L. D.; Li, X. T.; Zhang, W. M. Unique three-dimensional Co3O4@N-CNFs derived from ZIFs and bacterial cellulose as advanced anode for sodium-ion batteries. Appl. Surf. Sci. 2020, 508, 145295.

    Article  CAS  Google Scholar 

  71. Xia, S. B.; Huang, W. J.; Shen, X.; Liu, J. M.; Cheng, F. X.; Guo, H.; Liu, J. J. Fabrication of porous Ni/CoFe2O4@C composite for pseudocapacitive lithium storage. J. Alloys Compd. 2021, 854, 157177.

    Article  CAS  Google Scholar 

  72. Liu, Y. Y.; Sun, K.; Jiang, J. C.; Zhou, W. S.; Shang, Y.; Du, C. X.; Li, B. J. Metallurgical pyrolysis toward Co@nitrogen-doped carbon composite for lithium storage. Green Energy Environ. 2021, 6, 91–101.

    Article  CAS  Google Scholar 

  73. Xue, Y. S.; Cheng, W. W.; Luo, X. M.; Cao, J. P.; Xu, Y. Multifunctional polymolybdate-based metal-organic framework as an efficient catalyst for the CO2 cycloaddition and as the anode of a lithium-ion battery. Inorg. Chem. 2019, 58, 13058–13065.

    Article  CAS  PubMed  Google Scholar 

  74. Chen, Y. Y.; Chen, J. H.; Liu, J. W.; Lin, Z.; Hu, X.; Lin, X. M.; Xu, Z. G.; Zeb, A. Metal-organic framework-derived mixed-phase anatase/rutile TiO2 towards boosted lithium storage: Surface engineering and design strategy through crystal phase transition. Mater. Today Nano 2022, 20, 100265.

    Article  CAS  Google Scholar 

  75. Mallarabanavadi Ravikumar, M.; Rajshekar Shetty, V.; Suresh, G. S. Synthesis and applications of aurin tricarboxylic acid-copper metal organic framework for rechargeable lithium-ion batteries. J. Electrochem. Soc. 2020, 167, 100533.

    Article  Google Scholar 

  76. Cui, X.; Liang, M. X.; Wang, L.; Li, L. G.; Peng, Q. Q.; Dong, H. H.; Qi, S.; Sun, W. W.; Lv, L. P.; Chen, X. F. et al. High structural stability and reaction mechanism of porous carbon nanobox encapsulated monodisperse CoP nanoparticles for high-performance lithium-ion battery. Batter. Supercaps 2022, 5, e202200271.

    Article  CAS  Google Scholar 

  77. Hu, W. H.; Zheng, M. B.; Duan, H. Y.; Zhu, W.; Wei, Y.; Zhang, Y.; Pan, K. M.; Pang, H. Heat treatment-induced Co3+ enrichment in CoFePBA to enhance OER electrocatalytic performance. Chin. Chem. Lett. 2022, 33, 1412–1416.

    Article  CAS  Google Scholar 

  78. Shi, X.; Lin, X. J.; Liu, S. T.; Li, A.; Chen, X. H.; Zhou, J. S.; Ma, Z. K.; Song, H. H. Flake-like carbon coated Mn2SnO4 nanoparticles as anode material for lithium-ion batteries. Chem. Eng. J. 2019, 372, 269–276.

    Article  CAS  Google Scholar 

  79. Gao, X. Y.; Zhu, G.; Zhang, X. J.; Hu, T. Porous carbon materials derived from in situ construction of metal-organic frameworks for high-performance sodium ions batteries. Microporous Mesoporous Mater. 2019, 273, 156–162.

    Article  CAS  Google Scholar 

  80. Li, J. P.; Li, Y. J.; Ma, X. D.; Zhang, K.; Hu, J. H.; Yang, C. H.; Liu, M. L. A honeycomb-like nitrogen-doped carbon as high-performance anode for potassium-ion batteries. Chem. Eng. J. 2020, 384, 123328.

    Article  CAS  Google Scholar 

  81. Fan, L.; Guo, X. T.; Hang, X. X.; Pang, H. Synthesis of truncated octahedral zinc-doped manganese hexacyanoferrates and low-temperature calcination activation for lithium-ion battery. J. Colloid Interface Sci. 2022, 607, 1898–1907.

    Article  CAS  PubMed  Google Scholar 

  82. Fang, Y. X.; Chen, Y. L.; Zeng, L. X.; Yang, T.; Xu, Q. X.; Wang, Y. Y.; Zeng, S. H.; Qian, Q. R.; Wei, M. D.; Chen, Q. H. Nitrogen-doped carbon encapsulated zinc vanadate polyhedron engineered from a metal-organic framework as a stable anode for alkali ion batteries. J. Colloid Interface Sci. 2021, 593, 251–265.

    Article  CAS  PubMed  Google Scholar 

  83. Gu, S.; Liu, D. N.; Zhang, X.; Huang, H.; Zhang, Y. L.; Cheng, Z. Q.; Liu, Q.; Meng, L. Q.; Wang, J. H.; Chu, P. K. et al. Finite phosphorene derived partial reduction of metal organic framework nanofoams for enhanced lithium storage capability. J. Power Sources 2022, 525, 231025.

    Article  CAS  Google Scholar 

  84. Li, N.; Guo, X. W.; Tang, X. R.; Xing, Y. C.; Pang, H. Three-dimensional Co2V2O7·nH2O superstructures assembled by nanosheets for electrochemical energy storage. Chin. Chem. Lett. 2022, 33, 462–465.

    Article  CAS  Google Scholar 

  85. Furukawa, H.; Miller, M. A.; Yaghi, O. M. Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal-organic frameworks. J. Mater. Chem. 2007, 17, 3197–3204.

    Article  CAS  Google Scholar 

  86. Li, X. X.; Cheng, F. Y.; Zhang, S. N.; Chen, J. Shape-controlled synthesis and lithium-storage study of metal-organic frameworks Zn4O(1,3,5-benzenetribenzoate)2. J. Power Sources 2006, 160, 542–547.

    Article  CAS  Google Scholar 

  87. Yu, L. T.; Zhang, L. G.; Fu, J. J.; Yun, J. M.; Kim, K. H. Hierarchical Tiny-Sb encapsulated in MOFs derived-carbon and TiO2 hollow nanotubes for enhanced Li/Na-ion half-and full-cell batteries. Chem. Eng. J. 2021, 417, 129106.

    Article  CAS  Google Scholar 

  88. Liu, X. F.; Guo, X. Q.; Wang, R.; Liu, Q. C.; Li, Z. J.; Zang, S. Q.; Mak, T. C. W. Manganese cluster-based MOF as efficient polysulfide-trapping platform for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 2838–2844.

    Article  CAS  Google Scholar 

  89. Yuan, Y. F.; Chen, F.; Ye, L. W.; Cai, G. S.; Zhu, M.; Yin, S. M.; Guo, S. Y. Construction of Co3O4@TiO2 hetegogeneous mesoporous hollow nanocage-in-nanocage from metal-organic frameworks with enhanced lithium storage properties. J. Alloys Compd. 2019, 790, 814–821.

    Article  CAS  Google Scholar 

  90. Chen, L.; Yang, W. J.; Li, X. Y.; Han, L. J.; Wei, M. D. Co9S8 Embedded into N/S doped carbon composites: In situ derivation from a sulfonate-based metal-organic framework and its electrochemical properties. J. Mater. Chem. A 2019, 7, 10331–10337.

    Article  CAS  Google Scholar 

  91. Zheng, S. S.; Ru, Y.; Xue, H. G.; Pang, H. Fluorinated pillared-layer metal-organic framework microrods for improved electrochemical cycling stability. Chin. Chem. Lett. 2021, 32, 3817–3820.

    Article  CAS  Google Scholar 

  92. Wu, N.; Yang, Y. J.; Jia, T.; Li, T. H.; Li, F.; Wang, Z. Sodium-tin metal-organic framework anode material with advanced lithium storage properties for lithium-ion batteries. J. Mater. Sci. 2020, 44, 6030–6036.

    Article  Google Scholar 

  93. Manthiram, A. An outlook on lithium ion battery technology. ACS Cent. Sci. 2017, 3, 1063–1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li, C.; Zhang, C.; Xie, J.; Wang, K. B.; Li, J. Z.; Zhang, Q. C. Ferrocene-based metal-organic framework as a promising cathode in lithium-ion battery. Chem. Eng. J. 2021, 404, 126463.

    Article  CAS  Google Scholar 

  95. Mutahir, S.; Wang, C. X.; Song, J. J.; Wang, L.; Lei, W.; Jiao, X. Y.; Khan, M. A.; Zhou, B. J.; Zhong, Q.; Hao, Q. L. Pristine Co(BDC)TED0.5 a pillared-layer biligand cobalt based metal organic framework as improved anode material for lithium-ion batteries. Appl. Mater. Today 2020, 21, 100813.

    Article  Google Scholar 

  96. Jiang, Y. C.; Zhao, H. T.; Yue, L. C.; Liang, J.; Li, T. S.; Liu, Q.; Luo, Y. L.; Kong, X. Z.; Lu, S. Y.; Shi, X. F. et al. Recent advances in lithium-based batteries using metal organic frameworks as electrode materials. Electrochem. Commun. 2021, 122, 106881.

    Article  CAS  Google Scholar 

  97. Song, J. J.; He, B.; Wang, X. C.; Guo, Y. Q.; Peng, C. Q.; Wang, Y.; Su, Z.; Hao, Q. L. Hollow porous nanocuboids cobalt-based metal-organic frameworks with coordination defects as anode for enhanced lithium storage. J. Mater. Sci. 2021, 56, 17178–17190.

    Article  CAS  Google Scholar 

  98. Peng, Y.; Bai, Y.; Liu, C. L.; Cao, S.; Kong, Q. Q.; Pang, H. Applications of metal-organic framework-derived N,P,S doped materials in electrochemical energy conversion and storage. Coord. Chem. Rev. 2022, 466, 214602.

    Article  CAS  Google Scholar 

  99. Zheng, W.; Bi, W. Y.; Gao, X. N.; Zhang, Z. G.; Yuan, W. H.; Li, L. A nickel and cobalt bimetal organic framework with high capacity as an anode material for lithium-ion batteries. Sustain. Energy Fuels 2020, 4, 5757–5764.

    Article  CAS  Google Scholar 

  100. Rambabu, D.; Lakraychi, A. E.; Wang, J. D.; Sieuw, L.; Gupta, D.; Apostol, P.; Chanteux, G.; Goossens, T.; Robeyns, K.; Vlad, A. An electrically conducting Li-ion metal-organic framework. J. Am. Chem. Soc. 2021, 143, 11641–11650.

    Article  CAS  PubMed  Google Scholar 

  101. Wu, X. Y.; Ru, Y.; Bai, Y.; Zhang, G. X.; Shi, Y. X.; Pang, H. PBA composites and their derivatives in energy and environmental applications. Coord. Chem. Rev. 2022, 451, 214260.

    Article  CAS  Google Scholar 

  102. Wang, Z. K.; Bi, R.; Liu, J. D.; Wang, K. B.; Mao, F. F.; Wu, H.; Bu, Y. Q.; Song, N. H. Polyoxometalate-based Cu/Zn-MOFs with diverse stereo dimensions as anode materials in lithium ion batteries. Chem. Eng. J. 2021, 404, 127117.

    Article  CAS  Google Scholar 

  103. Gao, C. W.; Jiang, Z. J.; Qi, S. B.; Wang, P. X.; Jensen, L. R.; Johansen, M.; Christensen, C. K.; Zhang, Y. F.; Ravnsbæk, D. B.; Yue, Y. Z. Metal-organic framework glass anode with an exceptional cycling-induced capacity enhancement for lithium-ion batteries. Adv. Mater. 2022, 34, 2110048.

    Article  CAS  Google Scholar 

  104. Dai, Z. X.; Long, Z. W.; Li, R. R.; Shi, C.; Qiao, H.; Wang, K. L.; Liu, K. Metal-organic framework-structured porous ZnCo2O4/C composite nanofibers for high-rate lithium-ion batteries. ACS Appl. Energy Mater. 2020, 3, 12378–12384.

    Article  CAS  Google Scholar 

  105. Yin, C. J.; Xu, L. F.; Pan, Y. S.; Pan, C. L. Metal-oggnnic framework as anode materials for lithium-ion batteries with high capacity and rate performance. ACS Appl. Energy Mater. 2020, 3, 10776–10786.

    Article  CAS  Google Scholar 

  106. Chang, Z.; Qiao, Y.; Deng, H.; Yang, H. J.; He, P.; Zhou, H. S. A stable high-voltage lithium-ion battery realized by an in-built water scavenger. Energy Environ. Sci. 2020, 13, 1197–1204.

    Article  CAS  Google Scholar 

  107. Panda, D. K.; Maity, K.; Palukoshka, A.; Ibrahim, F.; Saha, S. Li+ ion-conducting sulfonate-based neutral metal-organic framework. ACS Sustain. Chem. Eng. 2019, 7, 4619–4624.

    Article  CAS  Google Scholar 

  108. Zhou, X. Y.; Yu, Y. W.; Yang, J.; Wang, H.; Jia, M.; Tang, J. J. Cross-linking tin-based metal-organic frameworks with encapsulated silicon nanoparticles: High-performance anodes for lithium-ion batteries. ChemElectroChem 2019, 6, 2056–2063.

    Article  CAS  Google Scholar 

  109. Wang, J.; Kong, F. J.; Chen, J. Y.; Han, Z. S.; Tao, S.; Qian, B.; Jiang, X. F. Meta—oranmfrlremework-derived FeSe2@carbon embedded into nitrogen-doped graphene sheets with binary conductive networks for rechargeable batteries. ChemElectroChem 2019, 6, 2805–2811.

    Article  CAS  Google Scholar 

  110. Zhang, J.; Zhou, L.; Sun, Q. J.; Ming, H.; Sun, L. S.; Wang, C. L.; Wu, Y. Q.; Guan, K.; Wang, L. M.; Ming, J. Metal-organic coordination strategy for obtaining metal-decorated Mo-based complexes: Multi-dimensional structural evolution and high-rate lithium-ion battery applications. Chem.—Eur. J. 2019, 25, 8813–8819.

    Article  CAS  PubMed  Google Scholar 

  111. Xu, H. J.; Wang, L.; Zhong, J.; Wang, T.; Cao, J. H.; Wang, Y. Y.; Li, X. Q.; Fei, H. L.; Zhu, J.; Duan, X. D. Ultra-stable and high-rate lithium ion batteries based on metal-organic framework-derived In2O3 nanocrystals/hierarchically porous nitrogen-doped carbon anode. Energy Environ. Mater. 2020, 3, 177–185.

    Article  CAS  Google Scholar 

  112. Yang, Z.; Wang, J.; Wu, H. T.; Kong, F. J.; Yin, W. Y.; Cheng, H. J.; Tang, X. Y.; Qian, B.; Tao, S.; Yi, J. et al. MOFs derived Co1−x;S nanoparticles embedded in N-doped carbon nanosheets with improved electrochemical performance for lithium ion batteries. Appl. Surf. Sci. 2019, 479, 693–699.

    Article  CAS  Google Scholar 

  113. Wang, Y. L.; Song, J.; Wong, W. Y. Constructing 2D sandwichlike MOF/MXene heterostructures for durable and fast aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2022, 62, e202218343.

    Article  Google Scholar 

  114. Yan, Z. L.; Liu, J. Y.; Lin, Y. F.; Deng, Z.; He, X. Q.; Ren, J. G.; He, P.; Pang, C. L.; Xiao, C. M.; Yang, D. R. et al. Metal-organic frameworks-derived CoMOF-D@Si@C core-shell structure for high-performance lithium-ion battery anode. Electrochim. Acta 2021, 390, 138814.

    Article  CAS  Google Scholar 

  115. Palani, R.; Wu, Y. S.; Wu, S. H.; Jose, R.; Yang, C. C. Metal-organic framework-derived ZrO2/NiCo2O4/graphene mesoporous cake-like structure as enhanced bifunctional electrocatalytic cathodes for long life Li-O2 batteries. Electrochim. Acta 2022, 412, 140147.

    Article  CAS  Google Scholar 

  116. Jiang, Y.; Shen, L. X.; Ma, H. T.; Ma, J. L.; Yang, K.; Geng, X. D.; Zhang, H. W.; Liu, Q. L.; Zhu, N. A low-strain metal organic framework for ultra-stable and long-life sodium-ion batteries. J. Power Sources 2022, 541, 231701.

    Article  CAS  Google Scholar 

  117. Jin, W. W.; Zou, J. Z.; Zeng, S. Z.; Inguva, S.; Xu, G. Z.; Li, X. H.; Peng, M.; Zeng, X. R. Tailoring the structure of clew-like carbon skeleton with 2D Co-MOF for advanced Li-S cells. Appl. Surf. Sci. 2019, 469, 404–413.

    Article  CAS  Google Scholar 

  118. Liu, Z. C.; Wang, D.; Mu, H. L.; Zhang, C. J.; Wu, L. Q.; Feng, L.; Sun, X. Y.; Zhang, G. S.; Wu, J.; Wen, G. W. Nanosized monometallic selenides heterostructures implanted into metal organic frameworks-derived carbon for efficient lithium storage. J. Alloys Compd. 2021, 884, 161151.

    Article  CAS  Google Scholar 

  119. Liu, K. Y.; Meng, X. H.; Yan, L. J.; Fan, M. Q.; Wu, Y. C.; Li, C.; Ma, T. L. Sn/SnO, core-shell structure encapsulated in nitrogen-doped porous carbon frameworks for enhanced lithium storage. J. Alloys Compd. 2022, 896, 163009.

    Article  CAS  Google Scholar 

  120. Li, L.; Luo, Y. H.; Wang, Y. N.; Zhang, Z. S.; Wu, F. C.; Li, J. D. Rational design of a well-aligned metal-organic framework nanopillar array for superior lithium-sulfur batteries. Chem. Eng. J. 2023, 454, 140043.

    Article  CAS  Google Scholar 

  121. Han, D. D.; Wang, P. F.; Li, P.; Shi, J.; Liu, J.; Chen, P. J.; Zhai, L. P.; Mi, L. W.; Fu, Y. Z. Homogeneous and fast Li-ion transport enabled by a novel metal-organic-framework-based succinonitrile electrolyte for dendrite-free Li deposition. ACS Appl. Mater. Interfaces 2021, 13, 52688–52696.

    Article  CAS  PubMed  Google Scholar 

  122. Zheng, Y.; Yang, N.; Gao, R.; Li, Z. Q.; Dou, H. Z.; Li, G. R.; Qian, L. T.; Deng, Y. P.; Liang, J. Q.; Yang, L. X. et al. “Tree-trunk” design for flexible quasi-solid-state electrolytes with hierarchical ion-channels enabling ultralong-life lithium-metal batteries. Adv. Mater. 2022, 34, 2203417

    Article  CAS  Google Scholar 

  123. Hao, Z. D.; Wu, Y.; Zhao, Q.; Tang, J. D.; Zhang, Q. Q.; Ke, X. X.; Liu, J. B.; Jin, Y. H.; Wang, H. Functional separators regulating ion transport enabled by metal-organic frameworks for dendrite-free lithium metal anodes. Adv. Funct. Mater. 2021, 31, 2102938.

    Article  CAS  Google Scholar 

  124. Li, D. X.; Wang, J.; Guo, S. J.; Xiao, Y. B.; Zeng, Q. H.; He, W. C.; Gan, L. Y.; Zhang, Q.; Huang, S. M. Molecular-scale interface engineering of metal-organic frameworks toward ion transport enables high-performance solid lithium metal battery. Adv. Funct. Mater. 2020, 30, 2003945.

    Article  CAS  Google Scholar 

  125. Li, Z. J.; Liu, Q. Q.; Gao, L. N.; Xu, Y. F.; Kong, X. Q.; Luo, Y.; Peng, H. X.; Ren, Y. R.; Wu, H. B. Quas-solid electrolyte membranes with percolated metal-organic frameworks for practical lithium-metal batteries. J. Energy Chem. 2021, 52, 354–360.

    Article  CAS  Google Scholar 

  126. Jiang, X. B.; Shao, M. Y.; Li, K.; Ding, L.; Zeng, M. Facile synthesis and lithium storage mechanism study of directly usable tin-based metal organic framework. J. Electroanal. Chem. 2022, 912, 116268.

    Article  CAS  Google Scholar 

  127. Zhou, D.; Ni, J. F.; Li, L. Self-supported multicomponent CPO-27 MOF nanoarrays as high-performance anode for lithium storage. Nano Energy 2019, 57, 711–717.

    Article  CAS  Google Scholar 

  128. Chen, G. L.; Li, Y. J.; Zhong, W. T.; Zheng, F. H.; Hu, J. H.; Ji, X. H.; Liu, W. Z.; Yang, C. H.; Lin, Z.; Liu, M. L. MOFs-derived porous Mo2C-C nano-octahedrons enable high-performance lithium-sulfur batteries. Energy Stor. Mater. 2020, 21, 547–554.

    Google Scholar 

  129. Liu, L.; Sun, C. W. Flexible quasi-solid-state composite electrolyte membrane derived from a metal-organic framework for lithium-metal batteries. ChemElectroChem 2020, 7, 707–715.

    Article  CAS  Google Scholar 

  130. Zhu, X. Y.; Chang, Z.; Yang, H. J.; Qian, Y. M.; He, P.; Zhou, H. S. Sifting weakly-coordinated solvents within solvation sheath through an electrolyte filter for high-voltage lithium-metal batteries. Energy Stor. Mater. 2022, 44, 360–369.

    Google Scholar 

  131. Liu, Y.; Liu, Q. Q.; Hong, Y. R.; Xu, Y. F.; Chen, Z. R.; Zhao, W.; Hu, Z. K.; Wang, J. W.; Wu, H. B. Solvent sieving separators implement dual electrolyte for high-voltage lithium-metal batteries. Nano Res. 2023, 16, 4901–1907.

    Article  CAS  Google Scholar 

  132. Wu, Q. P.; Zheng, Y. J.; Guan, X.; Xu, J.; Cao, F. H.; Li, C. L. Dynamical SEI reinforced by open-architecture MOF film with stereoscopic lithiophilic sites for high-performance lithium-metal batteries. Adv. Funct. Mater. 2021, 31, 2101034.

    Article  CAS  Google Scholar 

  133. Chen, D. C.; Mukherjee, S.; Zhang, C.; Li, Y.; Xiao, B. B.; Singh, C. V. Two-dimensional square metal organic framework as promising cathode material for lithium-sulfur battery with high theoretical energy density. J. Colloid Interface Sci. 2022, 613, 435–446.

    Article  CAS  PubMed  Google Scholar 

  134. Park, J. S.; Kim, J. H.; Yang, S. J. Rational design of metal-organic framework-based materials for advanced Li-S batteries. Bull. Korean Chem. Soc. 2021, 42, 148–158.

    Article  CAS  Google Scholar 

  135. Wu, H.; Yang, Y. Q.; Jia, W.; Xiao, R.; Wang, H. Z. Derfect-engineered bilayer MOFs separator for high stability lithium-sulfur batteries. J. Alloys Compd. 2021, 874, 159917.

    Article  CAS  Google Scholar 

  136. Bo, R. H.; Taheri, M.; Liu, B. R.; Ricco, R.; Chen, H. J.; Amenitsch, H.; Fusco, Z.; Tsuzuki, T.; Yu, G. H.; Ameloot, R. et al. Hierarchical metal-organic framework films with controllable meso/macroporosity. Adv. Sci. 2020, 7, 2002368.

    Article  CAS  Google Scholar 

  137. Zhang, X. M.; Li, G. R.; Zhang, Y. G.; Luo, D.; Yu, A. P.; Wang, X.; Chen, Z. W. Amorphizing metal-organic framework towards multifunctional polysulfide barrier for high-performance lithium-sulfur batteries. Nano Energy 2021, 86, 106094.

    Article  CAS  Google Scholar 

  138. Wang, Y.; Deng, Z.; Huang, J. Y.; Li, H. J.; Li, Z. Y.; Peng, X. S.; Tian, Y.; Lu, J. G.; Tang, H. C.; Chen, L. X. et al. 2D Zr-Fc metal-organic frameworks with highly efficient anchoring and catalytic conversion ability towards polysulfides for advanced Li-S battery. Energy Stor. Mater. 2021, 36, 466–477

    Google Scholar 

  139. Jin, G. F.; Zhang, J. L.; Dang, B. Y.; Wu, F. C.; Li, J. D. Engineering zirconium-based metal-organic framework-801 films on carbon cloth as shuttle-inhibiting interlayers for lithium-sulfur batteries. Front. Chem. Sci. Eng. 2022, 16, 511–522.

    Article  CAS  Google Scholar 

  140. Li, C.; Zhang, X. F.; Zhang, Q.; Xiao, Y. H.; Fu, Y. Y.; Tan, H. H.; Liu, J. Q.; Wu, Y. C. Theoretical understanding for anchoring effect of MOFs for lithium-sulfur batteries. Comput. Theor. Chem. 2021, 1196, 113110.

    Article  CAS  Google Scholar 

  141. Yao, M. J.; Wang, R.; Zhao, Z. F.; Liu, Y.; Niu, Z. Q.; Chen, J. A flexible all-in-one lithium-sulfur battery. ACS Nano 2018, 12, 12503–12511.

    Article  CAS  PubMed  Google Scholar 

  142. Zheng, Z. J.; Ye, H.; Guo, Z. P. Recent progress on pristine metal/covalent-organic frameworks and their composites for lithium-sulfur batteries. Energy Environ. Sci. 2021, 14, 1835–1853.

    Article  CAS  Google Scholar 

  143. Li, Y. J.; Lin, S. Y.; Wang, D. D.; Gao, T. T.; Song, J. W.; Zhou, P.; Xu, Z. K.; Yang, Z. H.; Xiao, N.; Guo, S. J. Single atom array mimic on ultrathin MOF nanosheets boosts the safety and life of lithium-sulfur batteries. Adv. Mater. 2020, 32, 1906722.

    Article  CAS  Google Scholar 

  144. Dang, B. Y.; Gao, D. Y.; Luo, Y. H.; Zhang, Z. S.; Li, J. D.; Wu, F. C. Bifunctional design of cerium-based metal-organic framework-808 membrane modified separator for polysulfide shuttling and dendrite growth inhibition in lithium-sulfur batteries. J. Energy Storage 2022, 12, 104981.

    Article  Google Scholar 

  145. Zhou, C.; Li, Z. H.; Xu, X.; Mai, L. Q. Metal-organic frameworks enable broad strategies for lithium-sulfur batteries. Natl. Sci. Rev. 2021, 8, nwab055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Benitez, A.; Amaro-Gahete, J.; Esquivel, D.; Romero-Salguero, F. J.; Morales, J.; Caballero, A. MIL-88A metal-organic framework as a stable sulfur-host cathode for long-cycle Li-S batteries. Nanomaterials 2020, 10, 424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yang, D. W.; Liang, Z. F.; Tang, P. Y.; Zhang, C. Q.; Tang, M. X.; Li, Q. Z.; Biendicho, J. J.; Li, J. S.; Heggen, M.; Dunin-Borkowski, R. E. et al. A high conductivity 1D n-d conjugated metal-organic framework with efficient polysulfide trapping-diffusion-catalysis in lithium-sulfur batteries. Adv. Mater. 2022, 34, 2108835.

    Article  CAS  Google Scholar 

  148. Geng, P. B.; Du, M.; Guo, X. T.; Pang, H.; Tian, Z. Q.; Braunstein, P.; Xu, Q. Bimetallic metal-organic framework with high-adsorption capacity toward lithium polysulfides for lithium-sulfur batteries. Energy Environ. Mater. 2022, 5, 599–607.

    Article  CAS  Google Scholar 

  149. Wang, S.; Huang, F. Y.; Zhang, Z. F.; Cai, W. B.; Jie, Y. L.; Wang, S. Y.; Yan, P. F.; Jiao, S. H.; Cao, R. G. Conductive metal-organic frameworks promoting polysulfides transformation in lithium-sulfur batteries. J. Energy Chem. 2021, 63, 336–343.

    Article  CAS  Google Scholar 

  150. Li, Q.; Zhang, Y. F.; Zhang, G. X.; Wang, Y. X.; Pang, H. Recent advances in the development of perovskite@metal-organic frameworks composites. Natl. Sci. Open 2023, 2, 20220065.

    Article  Google Scholar 

  151. Cui, G. L.; Li, G. R.; Luo, D.; Zhang, Y. G.; Zhao, Y.; Wang, D. R.; Wang, J. Y.; Zhang, Z.; Wang, X.; Chen, Z. W. Three-dimensionally ordered macro-microporous metal organic frameworks with strong sulfur immobilization and catalyzation for high-performance lithium-sulfur batteries. Nano Energy 2020, 72, 104685.

    Article  CAS  Google Scholar 

  152. Qi, X. H.; Cai, D.; Wang, X. L.; Xia, X. H.; Gu, C. D.; Tu, J. P. Ionic liquid-impregnated ZIF-8/polypropylene solid-like electrolyte for dendrite-free lithium-metal batteries. ACS Appl. Mater. Interfaces 2022, 14, 6859–6868.

    Article  CAS  PubMed  Google Scholar 

  153. Rana, M.; Al-Fayaad, H. A.; Luo, B.; Lin, T.; Ran, L. B.; Clegg, J. K.; Gentle, I.; Knibbe, R. Oriented nanoporous MOFs to mitigate polysulfides migration in lithium-sulfur batteries. Nano Energy 2020, 75, 105009.

    Article  CAS  Google Scholar 

  154. Chu, Z. H.; Gao, X. C.; Wang, C. Y.; Wang, T. Y.; Wang, G. X. Metal-organic frameworks as separators and electrolytes for lithium-sulfur batteries. J. Mater. Chem. A 2021, 9, 7301–7316.

    Article  CAS  Google Scholar 

  155. Chang, Z.; Qiao, Y.; Wang, J.; Deng, H.; He, P.; Zhou, H. S. Fabricating better metal-organic frameworks separators for Li-S batteries: Pore sizes effects inspired channel modification strategy. Energy Stor. Mater. 2020, 25, 164–171.

    Google Scholar 

  156. Chang, Z.; Qiao, Y.; Wang, J.; Deng, H.; Zhou, H. S. Two-dimensional metal-organic framework with perpendicular one-dimensional nano-channel as precise polysulfide sieves for highly efficient lithium-sulfur batteries. J. Mater. Chem. A 2021, 9, 4870–4879.

    Article  CAS  Google Scholar 

  157. Parse, H. B.; Patil, I.; Kakade, B.; Swami, A. Cobalt nanoparticles encapsulated in N-doped carbon on the surface of MXene (Ti3C2) play a key role for electroreduction of oxygen. Energy Fuels 2021, 35, 17909–17918.

    Article  CAS  Google Scholar 

  158. Majidi, L.; Ahmadiparidari, A.; Shan, N. N.; Kumar Singh, S.; Zhang, C. J.; Huang, Z. H.; Rastegar, S.; Kumar, K.; Hemmat, Z.; Ngo, A. T. et al. Nanostructured conductive metal organic frameworks for sustainable low charge overpotentials in Li-air batteries. Small 2022, 18, 2102902.

    Article  CAS  Google Scholar 

  159. Zhan, Y.; Yu, S. Z.; Luo, S. H.; Feng, J.; Wang, Q. Nitrogen-coordinated CoS2@NC yolk-shell polyhedrons catalysts derived from a metal-organic framework for a highly reversible Li-O2 battery. ACS Appl. Mater. Interfaces 2021, 13, 17658–17667.

    Article  CAS  PubMed  Google Scholar 

  160. Zhao, Y. J.; Ding, L.; Wang, X. M.; Yang, X. M.; He, J. B.; Yang, B. J.; Wang, B. N.; Zhang, D. W.; Li, Z. W. Yolk-shell ZIF-8@ZIF-67 derived Co3O4@NiCo2O4 catalysts with effective electrochemical properties for Li-O2 batteries. J. Alloys Compd. 2021, 861, 157945.

    Article  CAS  Google Scholar 

  161. Guo, S. Q.; Sun, Y. X.; Wang, J. N.; Peng, L. C.; Li, H. Y.; Li, C. J. Bimetallic ZIF-derived cobalt nanoparticles anchored on N- and S-codoped porous carbon nanofibers as cathode catalyst for Li-O2 batteries. Electrochim. Acta 2022, 418, 140279.

    Article  CAS  Google Scholar 

  162. Li, J.; Deng, Y. J.; Leng, L. M.; Liu, M. R.; Huang, L. L.; Tian, X. L.; Song, H. Y.; Lu, X. Y.; Liao, S. J. MOF-templated sword-like Co3O4@NiCo2O4 sheet arrays on carbon cloth as highly efficient Li-O2 battery cathode. J. Power Sources 2020, 450, 227725.

    Article  CAS  Google Scholar 

  163. Liu, D.; Zhang, X. M.; Wang, Y. J.; Song, S. Y.; Cui, L. F.; Fan, H. B.; Qiao, X. C.; Fang, B. Z. A new perspective of lanthanide metal-organic frameworks: Tailoring Dy-BTC nanospheres for rechargeable Li-O2 batteries. Nanoscale 2020, 12, 9524–9532.

    Article  CAS  PubMed  Google Scholar 

  164. Wei, L.; Ma, Y.; Gu, Y. T.; Yuan, X. Z.; He, Y.; Li, X. J.; Zhao, L.; Peng, Y.; Deng, Z. Ru-embedded highly porous carbon nanocubes derived from metal-organic frameworks for catalyzing reversible Li2O2 formation. ACS Appl. Mater. Interfaces 2021, 13, 28295–28303.

    Article  CAS  PubMed  Google Scholar 

  165. Liu, H. X.; Zhao, L. Y.; Xing, Y.; Lai, J. N.; Li, L.; Wu, F.; Chen, N.; Chen, R. J. Enhancing the long cycle performance of Li-O2 batteries at high temperatures using metal-organic framework-based electrolytes. ACS Appl. Energy Mater. 2022, 5, 7185–7191.

    Article  CAS  Google Scholar 

  166. Wang, X. X.; Du, D. Y.; Xu, H. Y.; Yan, Y.; Wen, X. J.; Ren, L. F.; Shu, C. Z. NiMn-based metal-organic framework with optimized eg orbital occupancy as efficient bifunctional electrocatalyst for lithium-oxygen batteries. Chem. Eng. J. 2023, 452, 139524.

    Article  CAS  Google Scholar 

  167. Zhao, G. Y.; Liu, Y. F.; Tang, L.; Zhang, L.; Sun, K. N. Capacitive behavior based on the ultrafast mass transport in a self-supported lithium oxygen battery cathode. ACS Appl. Energy Mater. 2019, 2, 2113–2121.

    Article  CAS  Google Scholar 

  168. Zheng, S. S.; Li, Q.; Xue, H. G.; Pang, H.; Xu, Q. A highly alkaline-stable metal oxide@metal-organic framework composite for highperformance electrochemical energy storage. Natl. Sci. Rev. 2020, 7, 305–314.

    Article  CAS  PubMed  Google Scholar 

  169. Palani, R.; Karuppiah, C.; Yang, C. C.; Piraman, S. Metal-organic frameworks derived spinel NiCo2O4/graphene nanosheets composite as a Bi-functional cathode for high energy density Li-O2 battery applications. Int. J. Hydrogen Energy 2021, 46, 14288–14300.

    Article  CAS  Google Scholar 

  170. Dou, Y. Y.; Lian, R. Q.; Zhang, Y. T.; Zhao, Y. Y.; Chen, G.; Wei, Y. J.; Peng, Z. Q. Co9S8@carbon porous nanocages derived from a metal-organic framework: A highly efficient bifunctional catalyst for aprotic Li-O2 batteries. J. Mater. Chem. A 2018, 6, 8595–8603.

    Article  CAS  Google Scholar 

  171. Lv, T. T.; Zhu, G. Y.; Dong, S. Y.; Kong, Q. Q.; Peng, Y.; Jiang, S.; Zhang, G. X.; Yang, Z. L.; Yang, S. Y.; Dong, X. C. et al. Co-intercalation of dual charge carriers in metal-ion-confining layered vanadium oxide nanobelts for aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2023, 62, e202216089.

    Article  CAS  Google Scholar 

  172. Zheng, S. S.; Sun, Y.; Xue, H. G.; Braunstein, P.; Huang, W.; Pang, H. Dual-ligand and hard-soft-acid-base strategies to optimize metal-organic framework nanocrystals for stable electrochemical cycling performance. Natl. Sci. Rev. 2022, 9, nwab197.

    Article  CAS  PubMed  Google Scholar 

  173. Zhen, S. Y.; Wu, H. T.; Wang, Y.; Li, N.; Chen, H. S.; Song, W. L.; Wang, Z. H.; Sun, W.; Sun, K. N. Metal-organic framework derived hollow porous CuO-CuCo2O4 dodecahedrons as a cathode catalyst for Li-O2 batteries. RSC Adv. 2019, 9, 16288–16295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Lang, X. S.; Dong, C. X.; Cai, K. D.; Li, L.; Zhang, Q. G. Highly active cluster structure manganese-based metal organic frameworks (Mn-MOFs) like corals in the sea synthesized by facile solvothermal method as gas electrode catalyst for lithium-oxygen batteries. Int. J. Energy Res. 2020, 44, 1256–1263.

    Article  CAS  Google Scholar 

  175. Wang, J. J.; Yue, X. Y.; Liu, Z.; Xie, Z. K.; Zhao, Q.; Abudula, A.; Guan, G. Q. Trimetallic sulfides derived from tri-metal-organic frameworks as anode materials for advanced sodium ion batteries. J. Colloid Interface Sci. 2022, 625, 248–256.

    Article  CAS  PubMed  Google Scholar 

  176. Zhang, W. M.; Yue, Z. W.; Wang, Q. M.; Zeng, X. X.; Fu, C. C.; Li, Q.; Li, X. T.; Fang, L. D.; Li, L. Carbon-encapsulated CoS2 nanoparticles anchored on n-doped carbon nanofibers derived from ZIF-8/ZIF-67 as anode for sodium-ion batteries. Chem. Eng. J. 2020, 380, 122548.

    Article  CAS  Google Scholar 

  177. Xu, Z. P.; Huang, Y.; Chen, C.; Ding, L.; Zhu, Y. D.; Zhang, Z.; Guang, Z. X. MOF-derived hollow Co(Ni)Se2/N-doped carbon composite material for preparation of sodium ion battery anode. Ceram. Int. 2020, 46, 4532–4542.

    Article  CAS  Google Scholar 

  178. Zhou, H. J.; Zhu, G. Y.; Dong, S. Y.; Liu, P.; Lu, Y. Y.; Zhou, Z.; Cao, S.; Zhang, Y. Z.; Pang, H. Ethanol-induced Ni2+-intercalated cobalt organic frameworks on vanadium pentoxide for synergistically enhancing the performance of 3D-printed micro-supercapacitors. Adv. Mater. 2023, 35, 2211523.

    Article  CAS  Google Scholar 

  179. Liu, S. T.; Li, D.; Zhang, G. J.; Sun, D. D.; Zhou, J. S.; Song, H. H. Two-dimensional NiSe2/N-rich carbon nanocomposites derived from Ni-hexamine frameworks for superb Na-ion storage. ACS Appl. Mater. Interfaces 2018, 10, 34193–34201.

    Article  CAS  PubMed  Google Scholar 

  180. Chen, L.; Han, L. J.; Liu, X. J.; Li, Y. F.; Wei, M. D. General synthesis of sulfonate-based metal-organic framework derived composite of MxSy@N/S-doped carbon for high-performance lithium/sodium ion batteries. Chem.—Eur. J. 2021, 27, 2104–2111.

    Article  CAS  PubMed  Google Scholar 

  181. Atangana Etogo, C.; Huang, H. W.; Hong, H.; Liu, G. X.; Zhang, L. Metal-organic-frameworks-engaged formation of Co0.85Se@C nanoboxes embedded in carbon nanofibers film for enhanced potassium-ion storage. Energy Stor. Mater. 2020, 24, 167–176.

    Google Scholar 

  182. Ma, G. Y.; Li, C. J.; Liu, F.; Majeed, M. K.; Feng, Z. Y.; Cui, Y. H.; Yang, J.; Qian, Y. T. Metal-organic framework-derived Co0.85Se nanoparticles in N-doped carbon as a high-rate and longlifespan anode material for potassium ion batteries. Mater. Today Energy 2018, 10, 241–248.

    Article  Google Scholar 

  183. Jiang, Q. Q.; Wang, L.; Zhao, W. F.; Xu, X. Y.; Li, Z.; Li, Y. X.; Zhou, T. F.; Hu, J. C. Carbon dots decorated on the ultrafine metal sulfide nanoparticles implanted hollow layered double hydroxides nanocages as new-type anodes for potassium-ion batteries. Chem. Eng. J. 2022, 433, 133539.

    Article  CAS  Google Scholar 

  184. Xie, J. P.; Zhu, Y. Q.; Zhuang, N.; Lei, H.; Zhu, W. L.; Fu, Y.; Javed, M. S.; Li, J. L.; Mai, W. J. Rational design of metal organic framework-derived FeS2 hollow nanocages@reduced graphene oxide for K-ion storage. Nanoscale 2018, 10, 17092–17098.

    Article  CAS  PubMed  Google Scholar 

  185. Deng, Q. J.; Feng, S. S.; Hui, P.; Chen, H. T.; Tian, C. C.; Yang, R.; Xu, Y. H. Exploration of low-cost microporous Fe(HI)-based organic framework as anode material for potassium-ion batteries. J. Alloys Compd. 2020, 830, 154714.

    Article  CAS  Google Scholar 

  186. Liu, L. L.; Meng, X. H.; Hu, L.; Liang, S.; Yu, L.; Liang, D. W.; Wang, L. L.; Zhou, N. N.; Yang, L.; Yang, X. L. Regular mesoporous structural FeSe@C composite with enhanced reversibility for fast and stable potassium storage. J. Phys. Chem. C 2021, 125, 15812–15820.

    Article  CAS  Google Scholar 

  187. Xie, Y. D.; Zhang, H. W.; Wu, K. D.; Wang, X. Q.; Xiong, D. P.; He, M. Fe3 C encapsulated in N-doped carbon as potassium ion battery anode with high capacity and long-term cycling performance. J. Alloys Compd. 2022, 910, 164845.

    Article  CAS  Google Scholar 

  188. Lu, X. L.; Zhang, D. D.; Zhong, J.; Wang, L.; Jiang, L.; Liu, Q.; Shao, G.; Fu, D. F.; Teng, J.; Yang, W. Y. MOF-5 as anodes for high-temperature potassium-ion batteries with ultrahigh stability. Chem. Eng. J. 2022, 432, 134416.

    Article  CAS  Google Scholar 

  189. Mahmood, A.; Ali, Z.; Tabassum, H.; Akram, A.; Aftab, W.; Ali, R.; Khan, M. W.; Loomba, S.; Alluqmani, A.; Adil Riaz, M. et al. Carbon fibers embedded with iron selenide (Fe3Se4) as anode for high-performance sodium and potassium ion batteries. Front. Chem. 2020, 8, 408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Nazir, A.; Le, H. T. T.; Nguyen, A. G.; Kim, J.; Park, C. J. Conductive metal organic framework mediated Sb nanoparticles as high-capacity anodes for rechargeable potassium-ion batteries. Chem. Eng. J. 2022, 450, 138408.

    Article  CAS  Google Scholar 

  191. Li, C.; Wang, K. B.; Li, J. Z.; Zhang, Q. C. Nanotrructueed potassium-organic framework as an effective anode for potassium-ion batteries with a long cycle life. Nanoscale 2020, 12, 7870–7874.

    Article  CAS  PubMed  Google Scholar 

  192. Deng, Q. J.; Luo, Z. B.; Liu, H. X.; Wang, Y. M.; Zhou, Y. Y.; Yang, R. Self-formed carbon layer on calcium metal-organic framework and RGO composite with high-stable K-storage performance in K-ion batteries. Appl. Surf. Sci. 2022, 571, 151387.

    Article  CAS  Google Scholar 

  193. Li, A.; Li, C. F.; Xiong, P. X.; Zhang, J. F.; Geng, D. L.; Xu, Y. H. Rapid synthesis of layered K;cMnO2 cathodes from metal-organic frameworks for potassium-ion batteries. Chem. Sci. 2022, 13, 7575–7580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Deng, Q. J.; Luo, Z. B.; Liu, H. X.; Zhou, Y. Y.; Zhou, C.; Yang, R.; Wang, L. L.; Yan, Y. L.; Xu, Y. H. Facile synthesis of Fe-based metal-organic framework and graphene composite as an anode material for K-ion batteries. Ionics 2020, 26, 5565–5573.

    Article  CAS  Google Scholar 

  195. Wang, L.; Wang, H. L.; Cheng, M. R.; Hong, Y. R.; Li, M. J.; Su, H.; Sun, J.; Wang, J. W.; Xu, Y. H. Metal-organic framework@polyacrylonitrile-derived potassiophilic nanoporous carbon nanofiber paper enables stable potassium metal anodes. ACS Appl. Energy Mater. 2021, 4, 6245–6252.

    Article  CAS  Google Scholar 

  196. Yang, H. J.; Chang, Z.; Qiao, Y.; Deng, H.; Mu, X. W.; He, P.; Zhou, H. S. Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem., Int. Ed. 2020, 59, 9377–9381.

    Article  CAS  Google Scholar 

  197. Gou, L.; Mou, K. L.; Fan, X. Y.; Zhao, M. J.; Wang, Y.; Xue, D.; Li, D. L. Mn2O3/Al2O3 cathode material derived from a metal-organic framework with enhanced cycling performance for aqueous zinc-ion batteries. Dalton Trans. 2020, 49, 711–718.

    Article  CAS  PubMed  Google Scholar 

  198. Maeboonruan, N.; Lohitkarn, J.; Poochai, C.; Lomas, T.; Wisitsoraat, A.; Kheawhom, S.; Siwamogsatham, S.; Tuantranont, A.; Sriprachuabwong, C. Dendrite suppression with zirconium(IV) based metal-organic frameworks modified glass microfiber separator for ultralong-life rechargeable zinc-ion batteries. J. Sci.: Adv. Mater. Dev. 2022, 7, 100467.

    CAS  Google Scholar 

  199. Chen, T.; Wang, F. F.; Cao, S.; Bai, Y.; Zheng, S. S.; Li, W. T.; Zhang, S. T.; Hu, S. X.; Pang, H. In situ synthesis of MOF-74 family for high areal energy density of aqueous nickel-zinc batteries. Adv. Mater. 2022, 34, 2201779.

    Article  CAS  Google Scholar 

  200. Wang, F. F.; Lu, H.; Li, H. T.; Li, J.; Wang, L.; Han, D. L.; Gao, J. C.; Geng, C. N.; Cui, C. J.; Zhang, Z. C. et al. Demonstrating U-shaped zinc deposition with 2D metal-organic framework nanoarrays for dendrite-free zinc batteries. Energy Stor. Mater. 2022, 50, 641–647.

    Google Scholar 

  201. Deng, S. Z.; Yuan, Z. S.; Tie, Z.; Wang, C. D.; Song, L.; Niu, Z. Q. Electrochemically induced metal-organic-framework-derived amorphous V2O5 for superior rate aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 22002–22006.

    Article  CAS  Google Scholar 

  202. Xiong, P. X.; Zhao, X. X.; Xu, Y. H. Nitrogen-doped carbon nanotubes derived from metal-organic frameworks for potassium-ion battery anodes. ChemSusChem 2018, 11, 202–208.

    Article  CAS  PubMed  Google Scholar 

  203. He, B.; Zhang, Q. C.; Man, P.; Zhou, Z. Y.; Li, C. W.; Li, Q. L.; Xie, L. Y.; Wang, X. N.; Pang, H.; Yao, Y. G. Self-sacrificed synthesis of conductive vanadium-based metal-organic framework nanowire-bundle arrays as binder-free cathodes for high-rate and high-energy-density wearable Zn-ion batteries. Nano Energy 2019, 64, 103935.

    Article  CAS  Google Scholar 

  204. Yang, X. Y.; Sha, J. Q.; Li, W. J.; Tan, Z. L.; Hou, L. R.; Jiang, J. Z. Ternary cross-vanadium tetra-capped POMOFs@PPy/RGO nanocomposites with hybrid battery-supercapacitor behavior for enhancing lithium battery storage. ACS Sustain. Chem. Eng. 2020, 8, 4667–4675.

    Article  CAS  Google Scholar 

  205. Li, W. T.; Guo, X. T.; Geng, P. B.; Du, M.; Jing, Q. L.; Chen, X. D.; Zhang, G. X.; Li, H. P.; Xu, Q.; Braunstein, P. et al. Rational design and general synthesis of multimetallic metal-organic framework nano-octahedra for enhanced Li-S battery. Adv. Mater. 2021, 33, 2105163.

    Article  CAS  Google Scholar 

  206. Yin, C. J.; Pan, C. L.; Liao, X. B.; Pan, Y. S.; Yuan, L. Coordinately unsaturated manganese-based metal-organic frameworks as a high-performance cathode for aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 35837–35847.

    Article  CAS  PubMed  Google Scholar 

  207. Li, H. H.; Ma, Y.; Zhang, H.; Diemant, T.; Behm, R. J.; Varzi, A.; Passerini, S. Metal-organic framework derived Fe7S8 nanoparticles embedded in heteroatom-doped carbon with lithium and sodium storage capability. Small Methods 2020, 4, 2000637.

    Article  CAS  Google Scholar 

  208. Li, S. Y.; Luo, W. B.; He, Q.; Lu, J.; Du, J.; Tao, Y. H.; Cheng, Y.; Wang, H. S. A lignin-based carbon anode with long-cycle stability for Li-ion batteries. Int. J. Mol. Sci. 2023, 24, 284.

    Article  CAS  Google Scholar 

  209. Wan, J.; Li, J. F.; Xiao, Z. H.; Tang, D. D.; Wang, B.; Xiao, Y. J.; Xu, W. L. Transition bimetal based MOF nanosheets for robust aqueous Zn battery. Front. Mater. 2020, 7, 194.

    Article  Google Scholar 

  210. Wang, K. N.; Qin, M. R.; Wang, C. T.; Yan, T.; Zhen, Y. Z.; Sun, X. L.; Wang, J. W.; Fu, F. CeO2/MnOx@C hollow cathode derived from self-assembly of Ce-Mn-MOFs for high-performance aqueous zinc-ion batteries. J. Colloid Interface Sci. 2023, 629, 733–743.

    Article  CAS  PubMed  Google Scholar 

  211. Pu, X. C.; Jiang, B. Z.; Wang, X. L.; Liu, W. B.; Dong, L. B.; Kang, F. Y.; Xu, C. J. High-performance aqueous zinc-ion batteries realized by MOF materials. Nano-Micro Lett. 2020, 12, 152.

    Article  CAS  Google Scholar 

  212. Wu, X. T.; Yin, C. S.; Zhang, M. F.; Xie, Y. Q.; Hu, J. J.; Long, R. L.; Wu, X. M.; Wu, X. W. The intercalation cathode of MOFs-driven vanadium-based composite embedded in N-doped carbon for aqueous zinc ion batteries. Chem. Eng. J. 2023, 452, 139573.

    Article  CAS  Google Scholar 

  213. Geng, P. B.; Wang, L.; Du, M.; Bai, Y.; Li, W. T.; Liu, Y. F.; Chen, S. Q.; Braunstein, P.; Xu, Q.; Pang, H. MIL-96-Al for Li-S batteries: Shape or size. Adv. Mater. 2022, 34, 2107836.

    Article  CAS  Google Scholar 

  214. Lv, T. T.; Luo, X.; Yuan, G. Q.; Yang, S. Y.; Pang, H. Layered VO2@N-doped carbon composites for high-performance rechargeable aqueous zinc-ion batteries. Chem. Eng. J. 2022, 428, 131211.

    Article  CAS  Google Scholar 

  215. Lv, T. T.; Zhang, G. X.; Zheng, S. S.; Guo, X. T.; Chen, T. T.; Yang, S. Y.; Pang, H. In-situ growth of MnO2 nanoflakes on Co3V2O8 generating a hollow hexahedron: Zn-storage properties, and investigation of electrochemical mechanism. Chem. Eng. J. 2022, 440, 135931.

    Article  CAS  Google Scholar 

  216. Guan, C.; Sumboja, A.; Zang, W. J.; Qian, Y. H.; Zhang, H.; Liu, X. M.; Liu, Z. L.; Zhao, D.; Pennycook, S. J.; Wang, J. Decorating Co/CoNx nanoparticles in nitrogen-doped carbon nanoarrays for flexible and rechargeable zinc-air batteries. Energy Stor. Mater. 2019, 16, 243–250.

    Google Scholar 

  217. Ren, D. Z.; Ying, J.; Xiao, M. L.; Deng, Y. P.; Ou, J. H.; Zhu, J. B.; Liu, G. H.; Pei, Y.; Li, S.; Jauhar, A. M. et al. Hierarchically porous multimetal-based carbon nanorod hybrid as an efficient oxygen catalyst for rechargeable zinc-air batteries. Adv. Funct. Mater. 2020, 30, 1908167.

    Article  CAS  Google Scholar 

  218. Hou, C. C.; Zou, L. L.; Wang, Y.; Xu, Q. MOF-mediated fabrication of a porous 3D superstructure of carbon nanosheets decorated with ultrafine cobalt phosphide nanoparticles for efficient electrocatalysis and zinc-air batteries. Angew. Chem., Int. Ed. 2020, 59, 21360–21366.

    Article  CAS  Google Scholar 

  219. Bhardwaj, U.; Janjani, P.; Sharma, R.; Kushwaha, H. S. Investigation of single-metal Fe-based metal-organic framework as an electrocatalyst for a rechargeable zinc-air battery. J. Electron. Mater. 2023, 52, 917–924.

    Article  CAS  Google Scholar 

  220. Li, T. Z.; Chen, Y. H.; Tang, Z. H.; Liu, Z.; Wang, C. H. Palladium nanoparticles supported by metal-organic frameworks derived FeNi3Cx nanorods as efficient oxygen reversible catalysts for rechargeable Zn-air batteries. Electrochim. Acta 2019, 307, 403–413.

    Article  CAS  Google Scholar 

  221. Zhong, Y. T.; Pan, Z. H.; Wang, X. S.; Yang, J.; Qiu, Y. C.; Xu, S. Y.; Lu, Y. T.; Huang, Q. M.; Li, W. S. Hierarchical Co3O4 nano-micro arrays featuring superior activity as cathode in a flexible and rechargeable zinc-air battery. Adv. Sci. 2019, 6, 1802243.

    Article  Google Scholar 

  222. Li, J. T.; Meng, Z.; Brett, D. J. L.; Shearing, P. R.; Skipper, N. T.; Parkin, I. P.; Gadipelli, S. High-performance zinc-air batteries with scalable metal-organic frameworks and platinum carbon black bifunctional catalysts. ACS Appl. Mater. Interfaces 2020, 12, 42696–42703.

    Article  CAS  PubMed  Google Scholar 

  223. Zhang, K. X.; Zhang, Y. L.; Zhang, Q. H.; Liang, Z. B.; Gu, L.; Guo, W. H.; Zhu, B. J.; Guo, S. J.; Zou, R. Q. Metal-organic framework-derived Fe/Cu-substituted Co nanoparticles embedded in CNTs-grafted carbon polyhedron for Zn-air batteries. Carbon Energy 2020, 2, 283–293.

    Article  CAS  Google Scholar 

  224. Lv, T. T.; Liu, Y. Y.; Wang, H.; Yang, S. Y.; Liu, C. S.; Pang, H. Crystal water enlarging the interlayer spacing of ultrathin V2O5·4VO2·2.72H2O Nanobelts for high-performance aqueous zinc-ion battery. Chem. Eng. J. 2021, 411, 128533.

    Article  CAS  Google Scholar 

  225. Pourfarzad, H.; Shabani-Nooshabadi, M.; Ganjali, M. R. Novel Bi-functional electrocatalysts based on the electrochemical synthesized bimetallicmetal organic frameworks: Towards high energy advanced reversible zinc-air batteries. J. Power Sources 2020, 451, 227768.

    Article  CAS  Google Scholar 

  226. Fan, F.; Zhou, H. R.; Yan, R.; Yang, C. D.; Zhu, H.; Gao, Y.; Ma, L.; Cao, S. J.; Cheng, C.; Wang, Y. H. Anchoring Fe-N-C sites on hierarchically porous carbon sphere and CNT interpenetrated nanostructures as efficient cathodes for zinc-air batteries. ACS Appl. Mater. Interfaces 2021, 13, 41609–41618.

    Article  CAS  PubMed  Google Scholar 

  227. Wang, C. H.; Kim, J. T.; Wang, C. S.; Sun, X. L. Progress and prospects of inorganic solid-state electrolyte-based all-solid-state pouch cells. Adv. Mater. 2023, 35, 2209074.

    Article  CAS  Google Scholar 

  228. Li, W. X.; Wu, C.; Ren, H.; Fang, W.; Zhao, L.; Dinh, K. N. Hybrid cobalt and iron based metal organic framework composites as efficient bifunctional electrocatalysts towards long-lasting flexible zinc-air batteries. Batter. Supercaps 2020, 3, 1321–1328.

    Article  CAS  Google Scholar 

  229. Yan, Q.; Sun, R. M.; Wang, L. P.; Feng, J. J.; Zhang, L.; Wang, A. J. Cobalt nanoparticles/nitrogen, sulfur-codoped ultrathin carbon nanotubes derived from metal organic frameworks as high-efficiency electrocatalyst for robust rechargeable zinc-air battery. J. Colloid Interface Sci. 2021, 603, 559–571.

    Article  CAS  PubMed  Google Scholar 

  230. Zhang, G. X.; Jin, L.; Zhang, R. X.; Bai, Y.; Zhu, R. M.; Pang, H. Recent advances in the development of electronically and ionically conductive metal-organic frameworks. Coord. Chem. Rev. 2021, 439, 213915.

    Article  CAS  Google Scholar 

  231. Hossain, M. A.; Tulaphol, S.; Thapa, A. K.; Rahaman, M. S.; Jasinski, J. B.; Wang, H.; Sunkara, M. K.; Syzdek, J.; Ozdemir, O. K.; Ornstein, J. M. et al. Metal-organic framework separator as a polyselenide filter for high-performance lithium-selenium batteries. ACS Appl. Energy Mater. 2021, 4, 13450–13460.

    Article  CAS  Google Scholar 

  232. Yang, H. J.; Qiao, Y.; Chang, Z.; Deng, H.; He, P.; Zhou, H. S. A metal-organic framework as a multifunctional ionic sieve membrane for long-life aqueous zinc-iodide batteries. Adv. Mater. 2020, 32, 2004240.

    Article  CAS  Google Scholar 

  233. Li, C. W.; Zhang, Q. C.; Li, T. T.; He, B.; Man, P.; Zhu, Z. Z.; Zhou, Z. Y.; Wei, L.; Zhang, K.; Hong, G. et al. Nickel metal-organic framework nanosheets as novel binder-free cathode for advanced fibrous aqueous rechargeable Ni-Zn battery. J. Mater. Chem. A 2020, 8, 3262–3269.

    Article  CAS  Google Scholar 

  234. Li, R. R.; Ke, H. Z.; Shi, C.; Long, Z. W.; Dai, Z. X.; Qiao, H.; Wang, K. L. Mesoporous RGO/NiCo2O4@carbon composite nanofibers derived from metal-organic framework compounds for lithium storage. Chem. Eng. J. 2021, 415, 128874.

    Article  CAS  Google Scholar 

  235. Li, C. F.; Li, A.; Li, M. J.; Xiong, P. X.; Liu, Y. S.; Cheng, M. R.; Geng, D. L.; Xu, Y. H. Ultrafast synthesis of layered transition-metal oxide cathodes from metal-organic frameworks for high-capacity sodium-ion batteries. ACS Appl. Mater. Interfaces 2022, 14, 24462–24468.

    Article  CAS  PubMed  Google Scholar 

  236. Zhang, X. J.; Gao, X. Y.; Hong, K.; Jiang, J. L.; Zhang, L. J.; Chen, J.; Rao, Z. H. Hierarchically porous carbon materials derived from MIL-88(Fe) for superior high-rate and long cycling-life sodium ions batteries. J. Electroanal. Chem. 2019, 852, 113525.

    Article  CAS  Google Scholar 

  237. Tan, X. H.; Liu, J. W.; Huang, Q. H.; Wu, Y. J.; Lin, X. M.; Zeb, A.; Yuan, Z. Z.; Xu, X.; Luo, Y. F. Efficient vapor-solid fluorination synthesis of MOF-derived MnF2/C for superior lithium storage with boosted kinetics. J. Alloys Compd. 2022, 895, 162569.

    Article  CAS  Google Scholar 

  238. Kon, K.; Uchida, K.; Fuku, K.; Yamanaka, S.; Wu, B.; Yamazui, D.; Iguchi, H.; Kobayashi, H.; Gambe, Y.; Honma, I. et al. Electron-conductive metal-organic framework, Fe(dhbq) (dhbq = 2,5-dihydroxy-1,4-benzoquinone): Coexistence of microporosity and solid-state redox activity. ACS Appl. Mater. Interfaces 2021, 13, 38188–38193.

    Article  CAS  PubMed  Google Scholar 

  239. Na, Z.; Yao, R. F.; Yan, Q.; Wang, X. R.; Sun, X. D. Metal-organic frameworks derived in-based nanoparticles encapsulated by carbonaceous matrix for highly efficient energy storage. Appl. Surf. Sci. 2020, 513, 145894.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. U1904215), Natural Science Foundation of Jiangsu Province (No. BK20200044), and Changjiang scholars program of the Ministry of Education (No. Q2018270).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Pang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Geng, P., Feng, W. et al. Recent advances in metal-organic frameworks for electrochemical performance of batteries. Nano Res. 17, 3472–3492 (2024). https://doi.org/10.1007/s12274-023-6251-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6251-4

Keywords

Navigation