Skip to main content
Log in

Novel metastable Bi:Co and Bi:Fe alloys nanodots@carbon as anodes for high rate K-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Bi is a promising anode material for potassium-ion batteries (PIBs) due to its high theoretical capacity. However, severe pulverization upon cycling limits its practical applications. In this work, we propose a new approach of using metastable alloys with Bi elements. Metastable Bi:Co and Bi:Fe alloys nanodots@carbon anode materials (Bi:Co and Bi:Fe@C) are synthesized for the first time via simple annealing of their metal-organic frameworks (MOF) precursors. These prepared materials are demonstrated as ideal hosts for high-rate K-ion storage. Bi0.85Co0.15@C and Bi0.83Fe0.17@C electrodes respectively deliver superior 178 and 253 mAh·g−1 at 20 A·g−1, as well as stable cycling performance at 2 A·g−1. Ex situ scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) studies on Bi:Co@C indicate that the elemental Co separates out during the initial potassiation and stands during the following discharge/charge cycles. In situ formed Co precipitates can act as (1) “conductive binders” as well as (2) “separators” to prevent the severe aggregation of adjacent active elemental Bi nanoparticles and (3) accelerate the potassiation/de-potassiation kinetics in elemental Bi precipitates after initial discharge/charge cycles. This work could inspire the development of metal-type anodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, S. Q.; Guo, Z. Q.; Yan, K.; Guo, X.; Wan, S. W.; He, F. R.; Sun, B.; Wang, G. X. The rise of Prussian blue analogs: Challenges and opportunities for high-performance cathode materials in potassium-ion batteries. Small Struct. 2021, 2, 2000054.

    Article  CAS  Google Scholar 

  2. Wang, H. G.; Wang, H. D.; Si, Z. J.; Li, Q.; Wu, Q.; Shao, Q.; Wu, L. L.; Liu, Y.; Wang, Y. H.; Song, S. et al. A bipolar and self-polymerized phthalocyanine complex for fast and tunable energy storage in dual-ion batteries. Angew. Chem., Int. Ed. 2019, 131, 10310–10314.

    Article  Google Scholar 

  3. Wang, H. G.; Wu, Q.; Wang, Y. H.; Wang, X.; Wu, L. L.; Song, S. Y.; Zhang, H. J. Molecular engineering of monodisperse SnO2 nanocrystals anchored on doped graphene with high-performance lithium/sodium-storage properties in half/full cells. Adv. Energy Mater. 2019, 9, 1802993.

    Article  Google Scholar 

  4. Huang, H. W.; Wang, J. W.; Yang, X. F.; Hu, R. Z.; Liu, J. L.; Zhang, L.; Zhu, M. Unveiling the advances of nanostructure design for alloy-type potassium-ion battery anodes via in situ TEM. Angew. Chem., Int. Ed. 2020, 132, 14612–14618.

    Article  Google Scholar 

  5. Zhang, X. D.; Yue, F. S.; Liang, J. Y.; Shi, J. L.; Li, H.; Guo, Y. G. Structure design of cathode electrodes for solid-state batteries: Challenges and progress. Small Struct. 2020, 1, 2000042.

    Article  Google Scholar 

  6. Xu, D.; Chen, L.; Su, X. Z.; Jiang, H. L.; Lian, C.; Liu, H. L.; Chen, L.; Hu, Y. J.; Jiang, H.; Li, C. Z. Heterogeneous MoSe2/nitrogen-doped-carbon nanoarrays: Engineering atomic interface for potassium-ion storage. Adv. Funct. Mater. 2022, 32, 2110223.

    Article  CAS  Google Scholar 

  7. Hu, C.; Ma, K.; Hu, Y. J.; Chen, A.; Saha, P.; Jiang, H.; Li, C. Z. Confining MoS2 nanocrystals in MOF-derived carbon for high performance lithium and potassium storage. Green Energy Environ. 2021, 6, 75–82.

    Article  CAS  Google Scholar 

  8. Song, K. M.; Liu, C. T.; Mi, L. W.; Chou, S. L.; Chen, W. H.; Shen, C. Y. Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries. Small 2021, 17, 1903194.

    Article  CAS  Google Scholar 

  9. Heligman, B. T.; Kreder, K. J.; Manthiram, A. Zn-Sn interdigitated eutectic alloy anodes with high volumetric capacity for lithium-ion batteries. Joule 2019, 3, 1051–1063.

    Article  CAS  Google Scholar 

  10. Chen, K. T.; Tuan, H. Y. Bi-Sb nanocrystals embedded in phosphorus as high-performance potassium ion battery electrodes. ACS Nano 2020, 14, 11648–11661.

    Article  CAS  Google Scholar 

  11. Wang, J.; Fan, L.; Liu, Z. M.; Chen, S. H.; Zhang, Q. F.; Wang, L. L.; Yang, H. G.; Yu, X. Z.; Lu, B. G. In situ alloying strategy for exceptional potassium ion batteries. ACS Nano 2019, 13, 3703–3713.

    Article  CAS  Google Scholar 

  12. Wang, S. H.; Yi, Z.; Wang, X. X.; Sun, Q. J.; Cheng, Y.; Wang, L. M. A rational design to buffer volume expansion of CoSn intermetallic in lithium and sodium storage: Multicore-shell versus monocore-shell. Energy Storage Mater. 2019, 23, 629–635.

    Article  Google Scholar 

  13. Gao, H.; Guo, X.; Wang, S. J.; Zhang, F.; Liu, H.; Wang, G. X. Antimony-based nanomaterials for high-performance potassium-ion batteries. EcoMat 2020, 2, e12027.

    Article  CAS  Google Scholar 

  14. Xu, J. Y.; Lai, C. L.; Duan, L. P.; Zhang, Y. X.; Xu, Y. F.; Bao, J. C.; Zhou, X. S. Anchoring ultrafine CoP and CoSb nanoparticles into rich N-doped carbon nanofibers for efficient potassium storage. Sci. China Mater. 2022, 65, 43–50.

    Article  CAS  Google Scholar 

  15. Imtiaz, S.; Amiinu, I. S.; Xu, Y.; Kennedy, T.; Blackman, C.; Ryan, K. M. Progress and perspectives on alloying-type anode materials for advanced potassium-ion batteries. Mater. Today 2021, 48, 241–269.

    Article  CAS  Google Scholar 

  16. Raabe, D.; Li, Z. M.; Ponge, D. Metastability alloy design. MRS Bull. 2019, 44, 266–272.

    Article  CAS  Google Scholar 

  17. Tan, H. T.; Chen, D.; Rui, X. H.; Yu, Y. Peering into alloy anodes for sodium-ion batteries: Current trends, challenges, and opportunities. Adv. Funct. Mater. 2019, 29, 1808745.

    Article  Google Scholar 

  18. Li, B.; Shang, S. L.; Zhao, J. W.; Itkis, D. M.; Jiao, X. X.; Zhang, C. F.; Liu, Z. K.; Song, J. X. Metastable trigonal SnP: A promising anode material for potassium-ion battery. Carbon 2020, 168, 468–474.

    Article  CAS  Google Scholar 

  19. Gabaudan, V.; Berthelot, R.; Stievano, L.; Monconduit, L. Inside the alloy mechanism of Sb and Bi electrodes for K-ion batteries. J. Phys. Chem. C 2018, 122, 18266–18273.

    Article  CAS  Google Scholar 

  20. Lei, K. X.; Wang, C. C.; Liu, L. J.; Luo, Y. W.; Mu, C. N.; Li, F. J.; Chen, J. A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 4687–4691.

    Article  CAS  Google Scholar 

  21. Jiao, T. P.; Wu, S. L.; Cheng, J. Y.; Chen, D.; Shen, D.; Wang, H.; Tong, Z. Q.; Li, H.; Liu, B.; Kai, J. J. et al. Bismuth nanorod networks confined in a robust carbon matrix as long-cycling and high-rate potassium-ion battery anodes. J. Mater. Chem. A 2020, 8, 8440–8446.

    Article  CAS  Google Scholar 

  22. Yang, H.; Xu, R.; Yao, Y.; Ye, S. F.; Zhou, X. F.; Yu, Y. Multicore-shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium-and potassium-ion anodes. Adv. Funct. Mater. 2019, 29, 1809195.

    Article  Google Scholar 

  23. Sun, X. P.; Zhang, B.; Chen, M.; Wang, L.; Wang, D. B.; Man, R. X.; Iqbal, S.; Tian, F.; Qian, Y. T.; Xu, L. Q. Space-confined growth of Bi2Se3 nanosheets encapsulated in N-doped carbon shell lollipoplike composite for full/half potassium-ion and lithium-ion batteries. Nano Today 2022, 43, 101408.

    Article  CAS  Google Scholar 

  24. Tong, Z. Q.; Yang, R.; Wu, S. L.; Shen, D.; Jiao, T. P.; Zhang, K. L.; Zhang, W. J.; Lee, C. S. Defect-engineered vanadium trioxide nanofiber bundle@graphene hybrids for high-performance all-vanadate Na-ion and K-ion full batteries. J. Mater. Chem. A 2019, 7, 19581–19588.

    Article  Google Scholar 

  25. Su, S. L.; Liu, Q.; Wang, J.; Fan, L.; Ma, R. F.; Chen, S. H.; Han, X.; Lu, B. G. Control of SEI formation for stable potassium-ion battery anodes by Bi-MOF-derived nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 22474–22480.

    Article  CAS  Google Scholar 

  26. Cheng, X. L.; Li, D. J.; Wu, Y.; Xu, R.; Yu, Y. Bismuth nanospheres embedded in three-dimensional (3D) porous graphene frameworks as high performance anodes for sodium- and potassium-ion batteries. J. Mater. Chem. A 2019, 7, 4913–4921.

    Article  CAS  Google Scholar 

  27. Zhang, R. D.; Bao, J. Z.; Wang, Y. H.; Sun, C. F. Concentrated electrolytes stabilize bismuth-potassium batteries. Chem. Sci. 2018, 9, 6193–6198.

    Article  CAS  Google Scholar 

  28. Zhang, W. C.; Mao, J. F.; Li, S. A.; Chen, Z. X.; Guo, Z. P. Phosphorus-based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 2017, 139, 3316–3319.

    Article  CAS  Google Scholar 

  29. Wang, H.; Wu, X.; Qi, X. J.; Zhao, W.; Ju, Z. C. Sb nanoparticles encapsulated in 3D porous carbon as anode material for lithium-ion and potassium-ion batteries. Mater. Res. Bull. 2018, 103, 32–37.

    Article  Google Scholar 

  30. Zhang, W. C.; Pang, W. K.; Sencadas, V.; Guo, Z. P. Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries. Joule 2018, 2, 1534–1547.

    Article  CAS  Google Scholar 

  31. Wang, L. P.; Yang, J. Y.; Li, J.; Chen, T.; Chen, S. L.; Wu, Z. R.; Qiu, J. L.; Wang, B. J.; Gao, P.; Niu X. et al. Graphite as a potassium ion battery anode in carbonate-based electrolyte and ether-based electrolyte. J. Power Sources 2019, 409, 24–30.

    Article  CAS  Google Scholar 

  32. Wang, W.; Zhou, J. H.; Wang, Z. P.; Zhao, L. Y.; Li, P. H.; Yang, Y.; Yang, C.; Huang H. X.; Guo, S. J. Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv. Energy Mater. 2018, 8, 1701648.

    Article  Google Scholar 

  33. Tong, Z. Q.; Yang, R.; Wu, S. L.; Shen, D.; Jiao, T. P.; Zhang, K. L.; Zhang, W. J.; Lee, C. S. Surface-engineered black niobium Oxide@Graphene nanosheets for high-performance sodium/potassium-ion full batteries. Small 2019, 15, 1901272.

    Article  Google Scholar 

  34. Wang, X.; Qian, K.; Chen, X. Y.; Sun, X. L.; Guo, C.; Li, J. F. In situ perfusing Sb particles into porous N-doped carbon microspheres and their electrochemical properties in potassium ion batteries. J. Alloys Compd. 2022, 906, 164263.

    Article  CAS  Google Scholar 

  35. Tong, Z. Q.; Kang, T. X.; Wan, Y. P.; Yang, R.; Wu, Y.; Shen, D.; Liu, S. H.; Tang, Y. B.; Lee, C. S. A Ca-ion electrochromic battery via a water-in-salt electrolyte. Adv. Funct. Mater. 2021, 31, 2104639.

    Article  CAS  Google Scholar 

  36. Tong, Z. Q.; Hao, J.; Zhang, K.; Zhao, J. P.; Su, B. L.; Li, Y. Improved electrochromic performance and lithium diffusion coefficient in three-dimensionally ordered macroporous V2O5 films. J. Mater. Chem. C 2014, 2, 3651–3658.

    Article  CAS  Google Scholar 

  37. Tong, Z. Q.; Tian, S.; Wang, H.; Shen, D.; Yang R.; Lee, C. S. Tailored redox kinetics, electronic structures and electrode/electrolyte interfaces for fast and high energy-density potassium-organic battery. Adv. Funct. Mater. 2020, 30, 1907656.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSFC/RGC Joint Research Scheme 2020/21 (No. N_CityU104/20).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongbing Tang or Chun-Sing Lee.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, Z., Kang, T., Wu, Y. et al. Novel metastable Bi:Co and Bi:Fe alloys nanodots@carbon as anodes for high rate K-ion batteries. Nano Res. 15, 7220–7226 (2022). https://doi.org/10.1007/s12274-022-4398-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4398-z

Keywords

Navigation