Skip to main content
Log in

Amorphous vanadium oxides for electrochemical energy storage

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Vanadium oxides have attracted extensive interest as electrode materials for many electrochemical energy storage devices owing to the features of abundant reserves, low cost, and variable valence. Based on the in-depth understanding of the energy storage mechanisms and reasonable design strategies, the performances of vanadium oxides as electrodes for batteries have been significantly optimized. Compared to crystalline vanadium oxides, amorphous vanadium oxides (AVOs) show many unique properties, including large specific surface area, excellent electrochemical stability, lots of defects and active sites, fast ion kinetics, and high elasticity. This review gives a comprehensive overview of the recent progress on AVOs for different energy storage systems, such as alkali metal ion batteries, multivalent ion batteries, and supercapacitors with a special focus on the preparation strategies. The basic mechanisms for energy storage performance improvements of AVOs as compared to their crystalline counterparts are also introduced. Finally, challenges faced by AVOs are discussed and future development prospects are also proposed. This review aims to provide a comprehensive knowledge of AVOs and is expected to promote the development of high-performance electrodes for batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    CAS  Google Scholar 

  2. Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

    CAS  Google Scholar 

  3. Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

    CAS  Google Scholar 

  4. Zhang, S. L.; Ao, X.; Huang, J.; Wei, B.; Zhai, Y. L.; Zhai, D.; Deng, W. Q.; Su, C. L.; Wang, D. S.; Li, Y. D. Isolated single-atom Ni-N5 catalytic site in hollow porous carbon capsules for efficient lithium-sulfur batteries. Nano Lett. 2021, 21, 9691–9698.

    CAS  Google Scholar 

  5. Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

    CAS  Google Scholar 

  6. Min, X.; Xiao, J.; Fang, M. H.; Wang, W.; Zhao, Y. J.; Liu, Y. G.; Abdelkader, A. M.; Xi, K.; Kumar, R. V.; Huang, Z. H. Potassium-ion batteries: Outlook on present and future technologies. Energy Environ. Sci. 2021, 14, 2186–2243.

    CAS  Google Scholar 

  7. Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

    CAS  Google Scholar 

  8. Zhang, E. H.; Hu, X.; Meng, L. Z.; Qiu, M.; Chen, J. X.; Liu, Y. J.; Liu, G. Y.; Zhuang, Z. C.; Zheng, X. B.; Zheng, L. R. et al. Single-atom yttrium engineering janus electrode for rechargeable Na-S batteries. J. Am. Chem. Soc. 2022, 144, 18995–19007.

    CAS  Google Scholar 

  9. Boyd, S.; Augustyn, V. Transition metal oxides for aqueous sodium-ion electrochemical energy storage. Inorg. Chem. Front. 2018, 5, 999–1015.

    CAS  Google Scholar 

  10. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.

    CAS  Google Scholar 

  11. Gao, R. M.; Zheng, Z. J.; Wang, P. F.; Wang, C. Y.; Ye, H.; Cao, F. F. Recent advances and prospects of layered transition metal oxide cathodes for sodium-ion batteries. Energy Storage Mater. 2020, 30, 9–26.

    Google Scholar 

  12. Zhang, M. H.; Kitchaev, D. A.; Lebens-Higgins, Z.; Vinckeviciute, J.; Zuba, M.; Reeves, P. J.; Grey, C. P.; Whittingham, M. S.; Piper, L. F. J.; Van der Ven, A. et al. Pushing the limit of 3d transition metal-based layered oxides that use both cation and anion redox for energy storage. Nat. Rev. Mater. 2022, 7, 522–540.

    Google Scholar 

  13. Xu, X. M.; Xiong, F. Y.; Meng, J. S.; Wang, X. P.; Niu, C. J.; An, Q. Y.; Mai, L. Q. Vanadium-based nanomaterials: A promising family for emerging metal-ion batteries. Adv. Funct. Mater. 2020, 30, 1904398.

    CAS  Google Scholar 

  14. Li, S. D.; Zhuang, Z. C.; Xia, L. X.; Zhu, J. X.; Liu, Z. A.; He, R. H.; Luo, W.; Huang, W. Z.; Shi, C. W.; Zhao, Y. et al. Improving the electrophilicity of nitrogen on nitrogen-doped carbon triggers oxygen reduction by introducing covalent vanadium nitride. Sci. China Mater. 2023, 66, 160–168.

    CAS  Google Scholar 

  15. Rui, X. H.; Lu, Z. Y.; Yu, H.; Yang, D.; Hng, H. H.; Lim, T. M.; Yan, Q. Y. Ultrathin V2O5 nanosheet cathodes: Realizing ultrafast reversible lithium storage. Nanoscale 2013, 5, 556–560.

    CAS  Google Scholar 

  16. Xia, C.; Lin, Z. F.; Zhou, Y. G.; Zhao, C.; Liang, H. F.; Rozier, P.; Wang, Z. G.; Alshareef, H. N. Large intercalation pseudocapacitance in 2D VO2 (B): Breaking through the kinetic barrier. Adv. Mater. 2018, 30, 1803594.

    Google Scholar 

  17. Luo, H.; Wang, B.; Wang, F.; Yang, J.; Wu, F. D.; Ning, Y.; Zhou, Y.; Wang, D. L.; Liu, H. K.; Dou, S. X. Anodic oxidation strategy toward structure-optimized V2O3 cathode via electrolyte regulation for Zn-ion storage. ACS Nano 2020, 14, 7328–7337.

    CAS  Google Scholar 

  18. Meng, W.; Pigliapochi, R.; Bayley, P. M.; Pecher, O.; Gaultois, M. W.; Seymour, I. D.; Liang, H. P.; Xu, W. Q.; Wiaderek, K. M.; Chapman, K. W. et al. Unraveling the complex delithiation and lithiation mechanisms of the high capacity cathode material V6O13. Chem. Mater. 2017, 29, 5513–5524.

    CAS  Google Scholar 

  19. Zhao, D.; Zheng, L. R.; Xiao, Y.; Wang, X.; Cao, M. H. Lithium storage in microstructures of amorphous mixed-valence vanadium oxide as anode materials. ChemSusChem 2015, 8, 2212–2222.

    CAS  Google Scholar 

  20. Wang, X.; Xi, B. J.; Ma, X. J.; Feng, Z. Y.; Jia, Y. X.; Feng, J. K.; Qian, Y. T.; Xiong, S. L. Boosting zinc-ion storage capability by effectively suppressing vanadium dissolution based on robust layered barium vanadate. Nano Lett. 2020, 20, 2899–2906.

    CAS  Google Scholar 

  21. Liu, X.; Xu, G. B.; Zhang, Q.; Huang, S. J.; Li, L.; Wei, X. L.; Cao, J. X.; Yang, L. W.; Chu, P. K. Ultrathin hybrid nanobelts of single-crystalline VO2 and poly(3,4-ethylenedioxythiophene) as cathode materials for aqueous zinc ion batteries with large capacity and high-rate capability. J. Power Sources 2020, 463, 228223.

    CAS  Google Scholar 

  22. Le Van, K.; Groult, H.; Mantoux, A.; Perrigaud, L.; Lantelme, F.; Lindström, R.; Badour-Hadjean, R.; Zanna, S.; Lincot, D. Amorphous vanadium oxide films synthesised by ALCVD for lithium rechargeable batteries. J. Power Sources 2006, 160, 592–601.

    CAS  Google Scholar 

  23. Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

    CAS  Google Scholar 

  24. Yan, S. H.; Abhilash, K. P.; Tang, L. Y.; Yang, M.; Ma, Y. F.; Xia, Q. Y.; Guo, Q. B.; Xia, H. Research advances of amorphous metal oxides in electrochemical energy storage and conversion. Small 2019, 15, 1804371.

    Google Scholar 

  25. Wei, Z. X.; Wang, D. X.; Yang, X.; Wang, C. Z.; Chen, G.; Du, F. From crystalline to amorphous: An effective avenue to engineer high-performance electrode materials for sodium-ion batteries. Adv. Mater. Interfaces 2018, 5, 1800639.

    Google Scholar 

  26. Charles, D. S.; Feygenson, M.; Page, K.; Neuefeind, J.; Xu, W. Q.; Teng, X. W. Structural water engaged disordered vanadium oxide nanosheets for high capacity aqueous potassium-ion storage. Nat. Commun. 2017, 8, 15520.

    CAS  Google Scholar 

  27. Wang, X. L.; Han, W. Q.; Chen, H. Y.; Bai, J. M.; Tyson, T. A.; Yu, X. Q.; Wang, X. J.; Yang, X. Q. Amorphous hierarchical porous GeOx as high-capacity anodes for Li ion batteries with very long cycling life. J. Am. Chem. Soc. 2011, 133, 20692–20695.

    CAS  Google Scholar 

  28. Wang, X.; Li, Y. G.; Wang, S.; Zhou, F.; Das, P.; Sun, C. L.; Zheng, S. H.; Wu, Z. S. 2D amorphous V2O5/graphene heterostructures for high-safety aqueous Zn-ion batteries with unprecedented capacity and ultrahigh rate capability. Adv. Energy Mater. 2020, 10, 2000081.

    CAS  Google Scholar 

  29. Hu, Y. J.; Zhang, Y. M.; Bao, S. X.; Liu, T. Effects of the mineral phase and valence of vanadium on vanadium extraction from stone coal. Int. J. Miner. Metall. Mater. 2012, 19, 893–898.

    CAS  Google Scholar 

  30. Tang, H.; Peng, Z.; Wu, L.; Xiong, F. Y.; Pei, C. Y.; An, Q. Y.; Mai, L. Q. Vanadium-based cathode materials for rechargeable multivalent batteries: Challenges and opportunities. Electrochem. Energy Rev. 2018, 1, 169–199.

    CAS  Google Scholar 

  31. Liu, C. F.; Neale, Z.; Zheng, J. Q.; Jia, X. X.; Huang, J. J.; Yan, M. Y.; Tian, M.; Wang, M. S.; Yang, J. H.; Cao, G. Z. Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 2019, 12, 2273–2285.

    CAS  Google Scholar 

  32. Song, Y.; Liu, T. Y.; Yao, B.; Kou, T. Y.; Feng, D. Y.; Liu, X. X.; Li, Y. Amorphous mixed-valence vanadium oxide/exfoliated carbon cloth structure shows a record high cycling stability. Small 2017, 13, 1700067.

    Google Scholar 

  33. Zhang, S. S.; Liu, Z. J.; Li, L.; Tang, Y. D.; Li, S. K.; Huang, H. T.; Zhang, H. Y. Electrochemical activation strategies of a novel high entropy amorphous V-based cathode material for high-performance aqueous zinc-ion batteries. J. Mater. Chem. A 2021, 9, 18488–18497.

    CAS  Google Scholar 

  34. Li, Q.; Xu, Y. X.; Zheng, S. S.; Guo, X. T.; Xue, H. G.; Pang, H. Recent progress in some amorphous materials for supercapacitors. Small 2018, 14, 1800426.

    Google Scholar 

  35. Tepavcevic, S.; Xiong, H.; Stamenkovic, V. R.; Zuo, X. B.; Balasubramanian, M.; Prakapenka, V. B.; Johnson, C. S.; Rajh, T. Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries. ACS Nano 2012, 6, 530–538.

    CAS  Google Scholar 

  36. Cai, Y.; Chua, R.; Huang, S. Z.; Ren, H.; Srinivasan, M. Amorphous manganese dioxide with the enhanced pseudocapacitive performance for aqueous rechargeable zinc-ion battery. Chem. Eng. J. 2020, 396, 125221.

    CAS  Google Scholar 

  37. Zhuang, Z. C.; Huang, J. Z.; Li, Y.; Zhou, L.; Mai, L. Q. The holy grail in platinum-free electrocatalytic hydrogen evolution: Molybdenum-based catalysts and recent advances. ChemElectroChem 2019, 6, 3570–3589.

    CAS  Google Scholar 

  38. Wei, S. Q.; Chen, S. M.; Su, X. Z.; Qi, Z. H.; Wang, C. D.; Ganguli, B.; Zhang, P. J.; Zhu, K. F.; Cao, Y. Y.; He, Q. et al. Manganese buffer induced high-performance disordered MnVO cathodes in zinc batteries. Energy Environ. Sci. 2021, 14, 3954–3964.

    CAS  Google Scholar 

  39. Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

    CAS  Google Scholar 

  40. Medvedeva, J. E.; Buchholz, D. B.; Chang, R. P. H. Recent advances in understanding the structure and properties of amorphous oxide semiconductors. Adv. Electron. Mater. 2017, 3, 1700082.

    Google Scholar 

  41. Zhao, H. W.; Chen, X. J.; Wang, G. Z.; Qiu, Y. F.; Guo, L. Two-dimensional amorphous nanomaterials: Synthesis and applications. 2D Mater. 2019, 6, 032002.

    CAS  Google Scholar 

  42. Huang, H. M.; Liu, J. H.; Zhang, P.; Zhang, D. D.; Gao, F. M. Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation. Chem. Eng. J. 2017, 307, 696–706.

    CAS  Google Scholar 

  43. Kim, D.; Ryu, J. H. Amorphous V2O5 positive electrode materials by precipitation method in magnesium rechargeable batteries. Electron. Mater. Lett. 2019, 15, 415–420.

    Google Scholar 

  44. Chae, O. B.; Kim, J.; Park, I.; Jeong, H.; Ku, J. H.; Ryu, J. H.; Kang, K.; Oh, S. M. Reversible lithium storage at highly populated vacant sites in an amorphous vanadium pentoxide electrode. Chem. Mater. 2014, 26, 5874–5881.

    CAS  Google Scholar 

  45. Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

    CAS  Google Scholar 

  46. Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

    CAS  Google Scholar 

  47. Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

    CAS  Google Scholar 

  48. Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

    CAS  Google Scholar 

  49. Chiku, M.; Takeda, H.; Matsumura, S.; Higuchi, E.; Inoue, H. Amorphous vanadium oxide/carbon composite positive electrode for rechargeable aluminum battery. ACS Appl. Mater. Interfaces 2015, 7, 24385–24389.

    CAS  Google Scholar 

  50. Qin, W.; Liu, Y.; Liu, X. Y.; Yang, G. W. Facile and scalable production of amorphous nickel borate for high performance hybrid supercapacitors. J. Mater. Chem. A 2018, 6, 19689–19695.

    CAS  Google Scholar 

  51. Luo, Y.; Wei, L. C.; Geng, H. B.; Zhang, Y. F.; Yang, Y.; Li, C. C. Amorphous bimetallic oxides Fe-V-O with tunable compositions toward rechargeable Zn-ion batteries with excellent low-temperature performance. ACS Appl. Mater. Interfaces 2020, 12, 11753–11760.

    CAS  Google Scholar 

  52. Uchaker, E.; Zheng, Y. Z.; Li, S.; Candelaria, S. L.; Hu, S.; Cao, G. Z. Better than crystalline: Amorphous vanadium oxide for sodium-ion batteries. J. Mater. Chem. A 2014, 2, 18208–18214.

    CAS  Google Scholar 

  53. Li, S. L.; Wei, X. J.; Chen, H. P.; Lai, G. Y.; Wang, X. P.; Zhang, S. J.; Wu, S. X.; Tang, W. T.; Lin, Z. Mixed-valent vanadium oxide cathode with ultrahigh rate capability for aqueous zinc-ion battery. J. Mater. Chem. A 2021, 9, 22392–22398.

    CAS  Google Scholar 

  54. Niu, C. J.; Huang, M.; Wang, P. Y.; Meng, J. S.; Liu, X.; Wang, X. P.; Zhao, K. N.; Yu, Y.; Wu, Y. Z.; Lin, C. et al. Carbon-supported and nanosheet-assembled vanadium oxide microspheres for stable lithium-ion battery anodes. Nano Res. 2016, 9, 128–138.

    CAS  Google Scholar 

  55. Jiang, W. J.; Zeng, W. Y.; Ma, Z. S.; Pan, Y.; Lin, J. G.; Lu, C. S. Advanced amorphous nanoporous stannous oxide composite with carbon nanotubes as anode materials for lithium-ion batteries. RSC Adv. 2014, 4, 41281–41286.

    CAS  Google Scholar 

  56. Deng, S. Z.; Yuan, Z. S.; Tie, Z. W.; Wang, C. D.; Song, L.; Niu, Z. Q. Electrochemically induced metal-organic-framework-derived amorphous V2O5 for superior rate aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 22002–22006.

    CAS  Google Scholar 

  57. Wang, X.; Zhang, Z. C. Y.; Huang, M.; Feng, J. K.; Xiong, S. L.; Xi, B. J. In-situ electrochemically activated vanadium oxide cathode for advanced aqueous Zn-ion batteries. Nano Lett. 2022, 22, 119–127.

    Google Scholar 

  58. Ju, B.; Song, H. J.; Yoon, H.; Kim, D. W. Amorphous hydrated vanadium oxide with enlarged interlayer spacing for aqueous zinc-ion batteries. Chem. Eng. J. 2021, 420, 130528.

    CAS  Google Scholar 

  59. Liu, W.; Liu, H.; Dang, L. N.; Zhang, H. X.; Wu, X. L.; Yang, B.; Li, Z. J.; Zhang, X. W.; Lei, L. C.; Jin, S. Amorphous cobalt-iron hydroxide nanosheet electrocatalyst for efficient electrochemical and photo-electrochemical oxygen evolution. Adv. Funct. Mater. 2017, 27, 1603904.

    Google Scholar 

  60. Schreckenbach, J. P.; Butte, D.; Marx, G.; Johnson, B. R.; Kriven, W. M. Electrosynthesis and microstructural characterization of anodic VOx films. J. Mater. Res. 2000, 15, 1483–1489.

    CAS  Google Scholar 

  61. Liu, S. K.; Tong, Z. Q.; Zhao, J. P.; Liu, X. S.; Wang, J.; Ma, X. X.; Chi, C. X.; Yang, Y.; Liu, X. X.; Li, Y. Rational selection of amorphous or crystalline V2O5 cathode for sodium-ion batteries. Phys. Chem. Chem. Phys. 2010, 18, 25645–25654.

    Google Scholar 

  62. Jeon, H.; Jeong, B.; Lee, J. K.; Kim, H. S.; Lee, S. H.; Lee, J. Improved specific capacitance of amorphous vanadium pentoxide in a nanoporous alumina template. Electrochem. Solid-State Lett. 2010, 13, A25–A28.

    CAS  Google Scholar 

  63. Wang, G.; Li, Q.; Gao, Y.; Gao, J. N.; Zhu, Y. Y.; Chao, Z. G. Influence of ball milling parameters on preparation of Ti50Cu23Ni20Sn7 amorphous alloys powder. Appl. Mech. Mater. 2011, 55–57, 819–824.

    Google Scholar 

  64. Niu, X. G.; Zhang, Y. C.; Tan, L. L.; Yang, Z.; Yang, J.; Liu, T.; Zeng, L.; Zhu, Y. J.; Guo, L. Amorphous FeVO4 as a promising anode material for potassium-ion batteries. Energy Storage Mater. 2019, 22, 160–167.

    Google Scholar 

  65. Arthur, T. S.; Kato, K.; Germain, J.; Guo, J. H.; Glans, P. A.; Liu, Y. S.; Holmes, D.; Fan, X. D.; Mizuno, F. Amorphous V2O5-P2O5 as high-voltage cathodes for magnesium batteries. Chem. Commun. 2015, 57, 15657–15660.

    Google Scholar 

  66. Mattelaer, F.; Geryl, K.; Rampelberg, G.; Dendooven, J.; Detavernier, C. Amorphous and crystalline vanadium oxides as high-energy and high-power cathodes for three-dimensional thin-film lithium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 13121–13131.

    CAS  Google Scholar 

  67. Huang, G. F.; Li, C. P.; Bai, J.; Sun, X. W.; Liang, H. O. Controllable-multichannel carbon nanofibers-based amorphous vanadium as binder-free and conductive-free electrode materials for supercapacitor. Int. J. Hydrogen Energy 2010, 41, 22144–22154.

    Google Scholar 

  68. Chen, S.; Jiang, H.; Cheng, Q. L.; Wang, G. C.; Petr, S.; Li, C. Z. Amorphous vanadium oxides with metallic character for asymmetric supercapacitors. Chem. Eng. J. 2021, 403, 126380.

    CAS  Google Scholar 

  69. Fan, L. L.; Li, X. F.; Yan, B.; Feng, J. M.; Xiong, D. B.; Li, D. J.; Gu, L.; Wen, Y. R.; Lawes, S.; Sun, X. L. Controlled SnO2 crystallinity effectively dominating sodium storage performance. Adv. Energy Mater. 2010, 6, 1502057.

    Google Scholar 

  70. Clites, M.; Hart, J. L.; Taheri, M. L.; Pomerantseva, E. Annealing-assisted enhancement of electrochemical stability of Na-preintercalated bilayered vanadium oxide electrodes in Na-ion batteries. ACS Appl. Energy Mater. 2020, 3, 1063–1075.

    CAS  Google Scholar 

  71. Semenenko, D. A.; Itkis, D. M.; Pomerantseva, E. A.; Goodilin, E. A.; Kulova, T. L.; Skundin, A. M.; Tretyakov, Y. D. LixV2O5 nanobelts for high capacity lithium-ion battery cathodes. Electrochem. Commun. 2010, 12, 1154–1157.

    CAS  Google Scholar 

  72. Cao, Z. Y.; Chu, H.; Zhang, H.; Ge, Y. C.; Clemente, R.; Dong, P.; Wang, L. P.; Shen, J. F.; Ye, M. X.; Ajayan, P. M. An in situ electrochemical oxidation strategy for formation of nanogrid-shaped V3O7H2O with enhanced zinc storage properties. J. Mater. Chem. A 2019, 7, 25262–25267.

    CAS  Google Scholar 

  73. Merupo, V. I.; Velumani, S.; Oza, G.; Tabellout, M.; Bizarro, M.; Coste, S.; Kassiba, A. H. High energy ball-milling synthesis of nanostructured Ag-doped and BiVO4-based photocatalysts. Chemistry Select 2010, 1, 1278–1286.

    Google Scholar 

  74. Xue, H. Y.; Zhang, H. Q.; Fricke, S.; Lüther, M.; Yang, Z. J.; Meng, A. L.; Bremser, W.; Li, Z. J. Scalable and energy-efficient synthesis of CoxP for overall water splitting in alkaline media by high energy ball milling. Sustain. Energ. Fuels 2020, 4, 1723–1729.

    CAS  Google Scholar 

  75. Zou, P. C.; Sui, Y. M.; Zhan, H. C.; Wang, C. Y.; Xin, H. L.; Cheng, H. M.; Kang, F. Y.; Yang, C. Polymorph evolution mechanisms and regulation strategies of lithium metal anode under multiphysical fields. Chem. Rev. 2021, 121, 5986–6056.

    CAS  Google Scholar 

  76. Huang, B.; Pan, Z. F.; Su, X. Y.; An, L. Recycling of lithium-ion batteries: Recent advances and perspectives. J. Power Sources 2018, 399, 274–286.

    CAS  Google Scholar 

  77. Zhou, G. M.; L. F.; Cheng, H. M. Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 2014, 7, 1307–1338.

    CAS  Google Scholar 

  78. Li, J. L.; Fleetwood, J.; Hawley, W. B.; Kays, W. From materials to cell: State-of-the-art and prospective technologies for lithium-ion battery electrode processing. Chem. Rev. 2022, 122, 903–956.

    CAS  Google Scholar 

  79. Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Cheng, H. M.; Li, F. More reliable lithium-sulfur batteries: Status, solutions and prospects. Adv. Mater. 2017, 29, 1606823.

    Google Scholar 

  80. Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634.

    CAS  Google Scholar 

  81. Chung, S. H.; Manthiram, A. Current status and future prospects of metal-sulfur batteries. Adv. Mater. 2019, 31, 1901125.

    Google Scholar 

  82. Hu, B.; Xu, J.; Fan, Z. J.; Xu, C.; Han, S. C.; Zhang, J. X.; Ma, L. B.; Ding, B.; Zhuang, Z. C.; Kang, Q. et al. Covalent organic framework based lithium-sulfur batteries: Materials, interfaces, and solid-state electrolytes. Adv. Energy Mater., in press, https://doi.org/10.1002/aenm.202203540.

  83. Li, X.; Sun, X. L. Interface design and development of coating materials in lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1801323.

    Google Scholar 

  84. Zhuang, T. Z.; Huang, J. Q.; Peng, H. J.; He, L. Y.; Cheng, X. B.; Chen, C. M.; Zhang, Q. Rational integration of polypropylene/graphene oxide/nafion as ternary-layered separator to retard the shuttle of polysulfides for lithium-sulfur batteries. Small 2010, 12, 381–389.

    Google Scholar 

  85. Chen, K.; Zhang, G. D.; Xiao, L. P.; Li, P. W.; Li, W. L.; Xu, Q. C.; Xu, J. Polyaniline encapsulated amorphous V2O5 nanowire-modified multi-functional separators for lithium-sulfur batteries. Small Methods 2021, 5, 2001056.

    CAS  Google Scholar 

  86. Xie, F.; Xu, Z.; Guo, Z. Y.; Titirici, M. M. Hard carbons for sodium-ion batteries and beyond. Prog. Energy 2020, 2, 042002.

    Google Scholar 

  87. Nayak, P. K.; Yang, L. T.; Brehm, W.; Adelhelm, P. From lithiumion to sodium-ion batteries: Advantages, challenges, and surprises. Angew. Chem., Int. Ed. 2018, 57, 102–120.

    CAS  Google Scholar 

  88. Ellis, B. L.; Nazar, L. F. Sodium and sodium-ion energy storage batteries. Curr. Opin. Solid State Mater. Sci. 2012, 16, 168–177.

    CAS  Google Scholar 

  89. Pu, X. J.; Wang, H. M.; Zhao, D.; Yang, H. X.; Ai, X. P.; Cao, S. N.; Chen, Z. X.; Cao, Y. L. Recent progress in rechargeable sodium-ion batteries: Toward high-power applications. Small 2019, 15, 1805427.

    Google Scholar 

  90. Wei, Q. L.; Jiang, Z. Y.; Tan, S. S.; Li, Q. D.; Huang, L.; Yan, M. Y.; Zhou, L.; An, Q. Y.; Mai, L. Q. Lattice breathing inhibited layered vanadium oxide ultrathin nanobelts for enhanced sodium storage. ACS Appl. Mater. Interfaces 2015, 7, 18211–18217.

    CAS  Google Scholar 

  91. Chen, M. Z.; Liu, Q. N.; Hu, Z.; Zhang, Y. Y.; Xing, G. C.; Tang, Y. X.; Chou, S. L. Designing advanced vanadium-based materials to achieve electrochemically active multielectron reactions in sodium/potassium-ion batteries. Adv. Energy Mater. 2020, 10, 2002244.

    CAS  Google Scholar 

  92. Qin, Z. Z.; Lv, C. D.; Pei, J.; Yan, C. S.; Hu, Y. Y.; Chen, G. A 1D honeycomb-like amorphous zincic vanadate for stable and fast sodium-ion storage. Small 2020, 16, 1906214.

    CAS  Google Scholar 

  93. Zhang, W.; Peng, J.; Hua, W. B.; Liu, Y.; Wang, J. S.; Liang, Y. R.; Lai, W. H.; Jiang, Y.; Huang, Y.; Zhang, W. et al. Architecting amorphous vanadium oxide/MXene nanohybrid via tunable anodic oxidation for high-performance sodium-ion batteries. Adv. Energy Mater. 2021, 11, 2100757.

    CAS  Google Scholar 

  94. Venkatesh, G.; Pralong, V.; Lebedev, O. I.; Caignaert, V.; Bazin, P.; Raveau, B. Amorphous sodium vanadate Na15+yVO3, a promising matrix for reversible sodium intercalation. Electrochem. Commun. 2011, 40, 100–102.

    Google Scholar 

  95. Kim, H.; Kim, J. C.; Bianchini, M.; Seo, D. H.; Rodriguez-Garcia, J.; Ceder, G. Recent progress and perspective in electrode materials for K-ion batteries. Adv. Energy Mater. 2018, 8, 1702384.

    Google Scholar 

  96. Rajagopalan, R.; Tang, Y. G.; Ji, X. B.; Jia, C. K.; Wang, H. Y. Advancements and challenges in potassium ion batteries: A comprehensive review. Adv. Funct. Mater. 2020, 30, 1909486.

    CAS  Google Scholar 

  97. Pramudita, J. C.; Sehrawat, D.; Goonetilleke, D.; Sharma, N. An initial review of the status of electrode materials for potassium-ion batteries. Adv. Energy Mater. 2017, 7, 1602911.

    Google Scholar 

  98. Li, Y. P.; Zhang, Q. B.; Yuan, Y. F.; Liu, H. D.; Yang, C. H.; Lin, Z.; Lu, J. Surface amorphization of vanadium dioxide (B) for K-ion battery. Adv. Energy Mater. 2020, 10, 2000717.

    CAS  Google Scholar 

  99. Liu, T.; Li, L.; Yao, T. H.; Li, Y. N.; Zhu, L.; Li, F.; Han, X. G.; Cheng, Y. H.; Wang, H. K. Integrating amorphous vanadium oxide into carbon nanofibers via electrospinning as high-performance anodes for alkaline ion (Li+/Na+/K+) batteries. Electrochim. Acta. 2021, 369, 137711.

    CAS  Google Scholar 

  100. Guduru, R. K.; Icaza, J. C. A brief review on multivalent intercalation batteries with aqueous electrolytes. Nanomaterials 2016, 6, 41.

    Google Scholar 

  101. Zhang, F. L.; Zhang, W. C.; Wexler, D.; Guo, Z. P. Recent progress and future advances on aqueous monovalent-ion batteries towards safe and high-power energy storage. Adv. Mater. 2022, 34, 2107965.

    CAS  Google Scholar 

  102. Karapidakis, E.; Vernardou, D. Progress on V2O5 cathodes for multivalent aqueous batteries. Materials 2021, 14, 2310.

    CAS  Google Scholar 

  103. Chen, J. Y.; Qiao, X.; Han, X. R.; Zhang, J. H.; Wu, H. B.; He, Q.; Chen, Z. B.; Shi, L.; Wang, Y. Z.; Xie, Y. N. et al. Releasing plating-induced stress for highly reversible aqueous Zn metal anodes. Nano Energy 2022, 103, 107814.

    CAS  Google Scholar 

  104. Ruan, P. C.; Liang, S. Q.; Lu, B. G.; Fan, H. J.; Zhou, J. Design strategies for high-energy-density aqueous zinc batteries. Angew. Chem., Int. Ed. 2022, 61, e202200598.

    CAS  Google Scholar 

  105. Blanc, L. E.; Kundu, D.; Nazar, L. F. Scientific challenges for the implementation of Zn-ion batteries. Joule 2020, 4, 771–799.

    CAS  Google Scholar 

  106. Li, Y.; Wang, S. Y.; Salvador, J. R.; Wu, J. P.; Liu, B.; Yang, W. L.; Yang, J.; Zhang, W. Q.; Liu, J.; Yang, J. H. Reaction mechanisms for long-life rechargeable Zn/MnO2 batteries. Chem. Mater. 2019, 31, 2036–2047.

    CAS  Google Scholar 

  107. Kasiri, G.; Trócoli, R.; Hashemi, A. B.; Mantia, F. L. An electrochemical investigation of the aging of copper hexacyanoferrate during the operation in zinc-ion batteries. Electrochim. Acta. 2016, 222, 74–83.

    CAS  Google Scholar 

  108. Xie, X. Q.; Zhao, M. Q.; Anasori, B.; Maleski, K.; Ren, C. E.; Li, J. W.; Byles, B. W.; Pomerantseva, E.; Wang, G. X.; Gogotsi, Y. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 2016, 26, 513–523.

    CAS  Google Scholar 

  109. Zhang, S. S.; Zhang, H. Y.; Li, S. K.; Li, L.; Zhang, S. Q.; Liu, Z. J. Phosphate synergism activation strategy for amorphous vanadium oxide cathode materials of high-performance aqueous zinc ion batteries. J. Power Sources 2022, 543, 231825.

    CAS  Google Scholar 

  110. Guo, J.; Ming, J.; Lei, Y. J.; Zhang, W. L.; Xia, C.; Cui, Y.; Alshareef, H. N. Artificial solid electrolyte interphase for suppressing surface reactions and cathode dissolution in aqueous zinc ion batteries. ACS Energy Lett. 2019, 4, 2776–2781.

    CAS  Google Scholar 

  111. Zhang, S. S.; Li, S. K.; Zhang, H. Y.; Wen, D. F.; Zhang, S. Q.; Li, L.; Liu, Z. J. Phosphate interphase reinforced amorphous vanadium oxide cathode materials for aqueous zinc ion batteries. Chem. Commun. 2022, 58, 8089–8092.

    CAS  Google Scholar 

  112. Yu, X. Y.; Yu, L.; Lou, X. W. Hollow nanostructures of molybdenum sulfides for electrochemical energy storage and conversion. Small Methods 2017, 1, 1600020.

    Google Scholar 

  113. Chen, L. L.; Yang, Z. H.; Huang, Y. G. Monoclinic VO2 (D) hollow nanospheres with super-long cycle life for aqueous zinc ion batteries. Nanoscale 2019, 11, 13032–13039.

    CAS  Google Scholar 

  114. Li, C. L.; Li, M.; Xu, H. T.; Zhao, F.; Gong, S. Q.; Wang, H. H.; Qi, J. J.; Wang, Z. Y.; Fan, X. B.; Peng, W. C. et al. Constructing hollow nanotube-like amorphous vanadium oxide and carbon hybrid via in-situ electrochemical induction for high-performance aqueous zinc-ion batteries. J. Colloid Interface Sci. 2022, 623, 277–284.

    CAS  Google Scholar 

  115. Wu, S. G.; Ding, Y. C.; Hu, L. H.; Zhang, X. X.; Huang, Y.; Chen, S. H. Amorphous V2O5 as high performance cathode for aqueous zinc ion battery. Mater. Lett. 2020, 277, 128268.

    CAS  Google Scholar 

  116. Diem, A. M.; Fenk, B.; Bill, J.; Burghard, Z. Binder-free V2O5 cathode for high energy density rechargeable aluminum-ion batteries. Nanomaterials 2020, 10, 247.

    CAS  Google Scholar 

  117. Tepavcevic, S.; Liu, Y. Z.; Zhou, D. H.; Lai, B.; Maser, J.; Zuo, X. B.; Chan, H.; Král, P.; Johnson, C. S.; Stamenkovic, V. et al. Nanostructured layered cathode for rechargeable Mg-ion batteries. ACS Nano 2015, 9, 8194–8205.

    CAS  Google Scholar 

  118. Zhang, W. L.; Xu, C.; Ma, C. Q.; Li, G. X.; Wang, Y. Z.; Zhang, K. Y.; Li, F.; Liu, C.; Cheng, H. M.; Du, Y. W. et al. Nitrogen-superdoped 3D graphene networks for high-performance supercapacitors. Adv. Mater. 2017, 29, 1701677.

    Google Scholar 

  119. Shao, Y. Y.; Sun, Z. T.; Tian, Z. N.; Li, S.; Wu, G. Q.; Wang, M. L.; Tong, X. L.; Shen, F.; Xia, Z.; Tung, V. et al. Regulating oxygen substituents with optimized redox activity in chemically reduced graphene oxide for aqueous Zn-ion hybrid capacitor. Adv. Funct. Mater. 2021, 31, 2007843.

    CAS  Google Scholar 

  120. Yang, M.; Zhou, Z. Recent breakthroughs in supercapacitors boosted by nitrogen-rich porous carbon materials. Adv. Sci. 2017, 4, 1600408.

    Google Scholar 

  121. Reddy, R. N.; Reddy, R. G. Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material. J. Power Sources 2004, 132, 315–320.

    CAS  Google Scholar 

  122. Perera, S. D.; Patel, B.; Nijem, N.; Roodenko, K.; Seitz, O.; Ferraris, J. P.; Chabal, Y. J.; Balkus, K. J. Jr. Vanadium oxide nanowire-carbon nanotube binder-free flexible electrodes for supercapacitors. Adv. Energy Mater. 2011, 1, 936–945.

    CAS  Google Scholar 

  123. Kandalkar, S. G.; Lokhande, C. D.; Mane, R. S.; Han, S. H. A non-thermal chemical synthesis of hydrophilic and amorphous cobalt oxide films for supercapacitor application. Appl. Surf. Sci. 2007, 253, 3952–3956.

    CAS  Google Scholar 

  124. Pan, X.; Ren, G. F.; Hoque, M. N. F.; Bayne, S.; Zhu, K.; Fan, Z. Y. Fast supercapacitors based on graphene-bridged V2O3/VOx core–shell nanostructure electrodes with a power density of 1 MW·kg−1. Adv. Mater. Interfaces 2014, 1, 1400398.

    Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the Project of State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications (Nos. GZR2022010017 and GDX2022010010), the National Natural Science Foundation of China (Nos. 52102265 and 91963119), China Postdoctoral Science Foundation (No. 2020M681681), Natural Science Foundation of Jiangsu Province of China (No. BK20210604), and Nanjing University of Posts and Telecommunications Start-up Fund (Nos. NY220069 and NY220085).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanwen Ma or Jin Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Q., Chen, Z., Niu, X. et al. Amorphous vanadium oxides for electrochemical energy storage. Nano Res. 16, 9195–9213 (2023). https://doi.org/10.1007/s12274-023-5657-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5657-3

Keywords

Navigation