Skip to main content
Log in

Diversiform gas sensors based on two-dimensional nanomaterials

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) nanomaterials have been widely used in gas sensing due to their large specific surface area, high surface reactivity, and excellent gas adsorption properties. This paper reviews the typical synthesis methods of various types of 2D nanomaterials and summarizes the recent progress in gas sensors based on 2D materials, such as noble metal nanoparticles (NPs), metal oxides (MOS), conductive polymers, other new 2D materials. The methods of doping, modification, and photoexcitation can effectively improve the gas-sensing properties of 2D materials. The sensitive mechanisms of heterojunction, Schottky junction, and photoexcitation in 2D material sensors are discussed in detail. This paper discusses the application prospects of 2D materials in wearable gas sensors, food safety, and self-powered sensing, and provides ideas for further applications in environmental quality monitoring and disease diagnosis. In addition, the opportunities and challenges for gas sensors based on 2D materials are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zheng, J. Z.; Zhang, T. M.; Zeng, H. J.; Guo, W.; Zhao, B.; Sun, Y. H.; Li, Y. Y.; Jiang, L. Multishelled hollow structures of yttrium oxide for the highly selective and ultrasensitive detection of methanol. Small 2019, 15, 1804688.

    Google Scholar 

  2. Dhawale, D. S.; Gujar, T. P.; Lokhande, C. D. TiO2 nanorods decorated with Pd nanoparticles for enhanced liquefied petroleum gas sensing performance. Anal. Chem. 2017, 89, 8531–8537.

    CAS  Google Scholar 

  3. Patil, V. L.; Vanalakar, S. A.; Patil, P. S.; Kim, J. H. Fabrication of nanostructured ZnO thin films based NO2 gas sensor via SILAR technique. Sens. Actuators B: Chem. 2017, 239, 1185–1193.

    CAS  Google Scholar 

  4. Li, B.; Li, M. Q.; Meng, F. L.; Liu, J. H. Highly sensitive ethylene sensors using Pd nanoparticles and rGO modified flower-like hierarchical porous α-Fe2O3. Sens. Actuators B: Chem. 2019, 290, 396–405.

    CAS  Google Scholar 

  5. Zhang, D. Z.; Wu, Z. L.; Zong, X. Q. Metal-organic frameworks-derived zinc oxide nanopolyhedra/S, N: Graphene quantum dots/polyaniline ternary nanohybrid for high-performance acetone sensing. Sens. Actuators B: Chem. 2019, 288, 232–242.

    CAS  Google Scholar 

  6. Kim, Y.; Choi, Y. S.; Park, S. Y.; Kim, T.; Hong, S. P.; Lee, T. H.; Moon, C. W.; Lee, J. H.; Lee, D.; Hong, B. H. et al. Au decoration of a graphene microchannel for self-activated chemoresistive flexible gas sensors with substantially enhanced response to hydrogen. Nanoscale 2019, 11, 2966–2973.

    CAS  Google Scholar 

  7. Pham, T.; Li, G. H.; Bekyarova, E.; Itkis, M. E.; Mulchandani, A. MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano 2019, 13, 3196–3205.

    CAS  Google Scholar 

  8. Gao, D. Q.; Xia, B. R.; Zhu, C. R.; Du, Y. H.; Xi, P. X.; Xue, D. S.; Ding, J.; Wang, J. Activation of the MoSe2 basal plane and Se-edge by B doping for enhanced hydrogen evolution. J. Mater. Chem. A 2018, 6, 510–515.

    CAS  Google Scholar 

  9. Weber, M.; Kim, J. Y.; Lee, J. H.; Kim, J. H.; Iatsunskyi, I.; Coy, E.; Miele, P.; Bechelany, M.; Kim, S. S. Highly efficient hydrogen sensors based on Pd nanoparticles supported on boron nitride coated ZnO nanowires. J. Mater. Chem. A 2019, 7, 8107–8116.

    CAS  Google Scholar 

  10. Faye, O.; Eduok, U.; Szpunar, J. A. Boron-decorated graphitic carbon nitride (g-C3N4): An efficient sensor for H2S, SO2, and NH3 capture. J. Phys. Chem. C 2019, 123, 29513–29523.

    CAS  Google Scholar 

  11. Lee, E.; VahidMohammadi, A.; Prorok, B. C.; Yoon, Y. S.; Beidaghi, M.; Kim, D. J. Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl. Mater. Interfaces 2017, 9, 37184–37190.

    CAS  Google Scholar 

  12. Kim, H. G.; Lee, H. B. R. Atomic layer deposition on 2D materials. Chem. Mater. 2017, 29, 3809–3826.

    CAS  Google Scholar 

  13. Ko, K. Y.; Park, K.; Lee, S.; Kim, Y.; Woo, W. J.; Kim, D.; Song, J. G.; Park, J.; Kim, H. Recovery improvement for large-area tungsten diselenide gas sensors. ACS Appl. Mater. Interfaces 2018, 10, 23910–23917.

    CAS  Google Scholar 

  14. Zhang, D. Z.; Wu, J. F.; Cao, Y. H. Ultrasensitive H2S gas detection at room temperature based on copper oxide/molybdenum disulfide nanocomposite with synergistic effect. Sens. Actuators B: Chem. 2019, 287, 346–355.

    CAS  Google Scholar 

  15. Lee, E.; VahidMohammadi, A.; Yoon, Y. S.; Beidaghi, M.; Kim, D. J. Two-dimensional vanadium carbide MXene for gas sensors with ultrahigh sensitivity toward nonpolar gases. ACS Sens. 2019, 4, 1603–1611.

    CAS  Google Scholar 

  16. Gottam, S. R.; Tsai, C. T.; Wang, L. W.; Wang, C. T.; Lin, C. C.; Chu, S. Y. Highly sensitive hydrogen gas sensor based on a MoS2-Pt nanoparticle composite. Appl. Surf. Sci. 2020, 506, 144981.

    CAS  Google Scholar 

  17. Kim, J. H.; Mirzaei, A.; Kim, H. W.; Kim, S. S. Realization of Au-decorated WS2 nanosheets as low power-consumption and selective gas sensors. Sens. Actuators B: Chem. 2019, 296, 126659.

    CAS  Google Scholar 

  18. Chen, X. W.; Wang, S.; Su, C.; Han, Y. T.; Zou, C.; Zeng, M.; Hu, N. T.; Su, Y. J.; Zhou, Z. H.; Yang, Z. Two-dimensional Cd-doped porous Co3O4 nanosheets for enhanced room-temperature NO2 sensing performance. Sens. Actuators B: Chem. 2020, 305, 127393.

    CAS  Google Scholar 

  19. Zhang, D. Z.; Wang, D. Y.; Pan, W. J.; Tang, M. C.; Zhang, H. Construction and DFT study of Pd decorated WSe2 nanosheets for highly sensitive CO detection at room temperature. Sens. Actuators B: Chem. 2022, 360, 131634.

    CAS  Google Scholar 

  20. Ouyang, C.; Chen, Y. X.; Qin, Z. Y.; Zeng, D. W.; Zhang, J.; Wang, H.; Xie, C. S. Two-dimensional WS2-based nanosheets modified by Pt quantum dots for enhanced room-temperature NH3 sensing properties. Appl. Surf. Sci. 2018, 455, 45–52.

    CAS  Google Scholar 

  21. Wang, J. X.; Zhou, Q.; Lu, Z. R.; Wei, Z. J.; Zeng, W. Gas sensing performances and mechanism at atomic level of Au-MoS2 microspheres. Appl. Surf. Sci. 2019, 490, 124–136.

    CAS  Google Scholar 

  22. Qin, S. W.; Tang, P. G.; Feng, Y. J.; Li, D. Q. Novel ultrathin mesoporous ZnO-SnO2 n-n heterojunction nanosheets with high sensitivity to ethanol. Sens. Actuators B: Chem. 2020, 309, 127801.

    CAS  Google Scholar 

  23. Choi, P. G.; Izu, N.; Shirahata, N.; Masuda, Y. Improvement of sensing properties for SnO2 gas sensor by tuning of exposed crystal face. Sens. Actuators B: Chem. 2019, 296, 126655.

    CAS  Google Scholar 

  24. Zhu, L.; Zeng, W.; Yang, J. D.; Li, Y. Q. One-step hydrothermal fabrication of nanosheet-assembled NiO/ZnO microflower and its ethanol sensing property. Ceram. Int. 2018, 44, 19825–19830.

    CAS  Google Scholar 

  25. Ge, W. Y.; Jiao, S. Y.; Chang, Z.; He, X. M.; Li, Y. X. Ultrafast response and high selectivity toward acetone vapor using hierarchical structured TiO2 nanosheets. ACS Appl. Mater. Interfaces 2020, 12, 13200–13207.

    CAS  Google Scholar 

  26. Zhang, D. Z.; Yu, S. J.; Wang, X. W.; Huang, J. K.; Pan, W. J.; Zhang, J. H.; Meteku, B. E.; Zeng, J. B. UV illumination-enhanced ultrasensitive ammonia gas sensor based on (001)TiO2/MXene heterostructure for food spoilage detection. J. Hazard. Mater. 2022, 423, 127160.

    CAS  Google Scholar 

  27. Wang, D.; Zhang, D.; Yang, Y.; Mi, Q.; Zhang, J.; Yu, L. Multifunctional latex/polytetrafluoroethylene-based triboelectric nanogenerator for self-powered organ-like MXene/metal organic frameworks-derived CuO nanohybrid ammonia sensor. ACS Nano 2021, 15, 2911–2919.

    CAS  Google Scholar 

  28. Samsonau, S. V.; Shvarkov, S. D.; Meinerzhagen, F.; Wieck, A. D.; Zaitsev, A. M. Growth of graphene-like films for NO2 detection. Sens. Actuators B: Chem. 2013, 182, 66–70.

    CAS  Google Scholar 

  29. Kumar, R.; Goel, N.; Kumar, M. UV-activated MoS2 based fast and reversible NO2 sensor at room temperature. ACS Sens. 2017, 2, 1744–1752.

    CAS  Google Scholar 

  30. Kang, Y.; Pyo, S.; Jo, E.; Kim, J. Light-assisted recovery of reacted MoS2 for reversible NO2 sensing at room temperature. Nanotechnology 2019, 30, 355504.

    CAS  Google Scholar 

  31. Huo, N. J.; Yang, S. X.; Wei, Z. M.; Li, S. S.; Xia, J. B.; Li, J. B. Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Sci. Rep. 2014, 4, 5209.

    CAS  Google Scholar 

  32. Huang, Y. F.; Jiao, W. C.; Chu, Z. M.; Ding, G. M.; Yan, M. L.; Zhong, X.; Wang, R. G. Ultrasensitive room temperature ppb-level NO2 gas sensors based on SnS2/rGO nanohybrids with P-N transition and optoelectronic visible light enhancement performance. J. Mater. Chem. C 2019, 7, 8616–8625.

    CAS  Google Scholar 

  33. Tyagi, D.; Wang, H. D.; Huang, W. C.; Hu, L. P.; Tang, Y. F.; Guo, Z. N.; Ouyang, Z. B.; Zhang, H. Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. Nanoscale 2020, 12, 3535–3559.

    CAS  Google Scholar 

  34. Liu, X. H.; Ma, T. T.; Pinna, N.; Zhang, J. Two-dimensional nanostructured materials for gas sensing. Adv. Funct. Mater. 2017, 27, 1702168.

    Google Scholar 

  35. Park, S. H.; Xia, Y. N. Fabrication of three-dimensional macroporous membranes with assemblies of microspheres as templates. Chem. Mater. 1998, 10, 1745–1747.

    CAS  Google Scholar 

  36. Shendage, S. S.; Patil, V. L.; Vanalakar, S. A.; Patil, S. P.; Harale, N. S.; Bhosale, J. L.; Kim, J. H.; Patil, P. S. Sensitive and selective NO2 gas sensor based on WO3 nanoplates. Sens. Actuators B: Chem. 2017, 240, 426–433.

    CAS  Google Scholar 

  37. Wang, D. W.; Yang, A. J.; Lan, T. S.; Fan, C. Y.; Pan, J. B.; Liu, Z.; Chu, J. F.; Yuan, H.; Wang, X. H.; Rong, M. Z. et al. Tellurene based chemical sensor. J. Mater. Chem. A 2019, 7, 26326–26333.

    CAS  Google Scholar 

  38. He, L.; Lv, H.; Ma, L. F.; Li, W. N.; Si, J. Q.; Ikram, M.; Ullah, M.; Wu, H. Y.; Wang, R. H.; Shi, K. Y. Controllable synthesis of intercalated γ-Bi2MoO6/graphene nanosheet composites for high performance NO2 gas sensor at room temperature. Carbon 2020, 157, 22–32.

    CAS  Google Scholar 

  39. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    CAS  Google Scholar 

  40. Sajid, M.; Kim, H. B.; Lim, J. H.; Choi, K. H. Liquid-assisted exfoliation of 2D hBN flakes and their dispersion in PEO to fabricate highly specific and stable linear humidity sensors. J. Mater. Chem. C 2018, 6, 1421–1432.

    CAS  Google Scholar 

  41. Palleschi, S.; D’Olimpio, G.; Benassi, P.; Nardone, M.; Alfonsetti, R.; Moccia, G.; Renzelli, M.; Cacioppo, O. A.; Hichri, A.; Jaziri, S. et al. On the role of nano-confined water at the 2D/SiO2 interface in layer number engineering of exfoliated MoS2 via thermal annealing. 2D Mater. 2020, 7, 025001.

    CAS  Google Scholar 

  42. Li, H.; Lu, G.; Wang, Y. L.; Yin, Z. Y.; Cong, C. X.; He, Q. Y.; Wang, L.; Ding, F.; Yu, T.; Zhang, H. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small 2013, 9, 1974–1981.

    CAS  Google Scholar 

  43. Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem., Int. Ed. 2011, 50, 11093–11097.

    CAS  Google Scholar 

  44. Li, H.; Wu, J. M. A. T.; Yin, Z. Y.; Zhang, H. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 2014, 47, 1067–1075.

    CAS  Google Scholar 

  45. Wu, E. X.; Xie, Y.; Yuan, B.; Zhang, H.; Hu, X. D.; Liu, J.; Zhang, D. H. Ultrasensitive and fully reversible NO2 gas sensing based on p-type MoTe2 under ultraviolet illumination. ACS Sens. 2018, 3, 1719–1726.

    CAS  Google Scholar 

  46. Yang, K.; Yuan, W. J.; Hua, Z. Q.; Tang, Y. T.; Yin, F. X.; Xia, D. Triazine-based two-dimensional organic polymer for selective NO2 sensing with excellent performance. ACS Appl. Mater. Interfaces 2020, 12, 3919–3927.

    CAS  Google Scholar 

  47. Hao, J. Y.; Zhang, D.; Sun, Q.; Zheng, S. L.; Sun, J. Y.; Wang, Y. Hierarchical SnS2/SnO2 nanoheterojunctions with increased active-sites and charge transfer for ultrasensitive NO2 detection. Nanoscale 2018, 10, 7210–7217.

    CAS  Google Scholar 

  48. Zhang, S. H.; Wang, J. Y.; Torad, N. L.; Xia, W.; Aslam, M. A.; Kaneti, Y. V.; Hou, Z. F.; Ding, Z. J.; Da, B.; Fatehmulla, A. et al. Rational design of nanoporous MoS2/VS2 heteroarchitecture for ultrahigh performance ammonia sensors. Small 2020, 16, 1901718.

    CAS  Google Scholar 

  49. Chen, K.; Chen, Z. F.; Wan, X.; Zheng, Z. B.; Xie, F. Y.; Chen, W. J.; Gui, X. C.; Chen, H. J.; Xie, W. G.; Xu, J. B. A simple method for synthesis of high-quality millimeter-scale 1T′ transition-metal telluride and near-field nanooptical properties. Adv. Mater. 2017, 29, 1700704.

    Google Scholar 

  50. Gao, B.; Du, X. Y.; Li, Y. H.; Song, Z. X. Wettability transition of Ni3B4-doped MoS2 for hydrogen evolution reaction by magnetron sputtering. Appl. Surf. Sci. 2020, 510, 145368.

    CAS  Google Scholar 

  51. Zhuiykov, S.; Kawaguchi, T.; Hai, Z. Y.; Akbari, M. K.; Heynderickx, P. M. Interfacial engineering of two-dimensional nano-structured materials by atomic layer deposition. Appl. Surf. Sci. 2017, 392, 231–243.

    CAS  Google Scholar 

  52. Chen, A. M.; Liu, R.; Peng, X.; Chen, Q. F.; Wu, J. M. 2D hybrid nanomaterials for selective detection of NO2 and SO2 using “light on and off” strategy. ACS Appl. Mater. Interfaces 2017, 9, 37191–37200.

    CAS  Google Scholar 

  53. Alhabeb, M.; Maleski, K.; Mathis, T. S.; Sarycheva, A.; Hatter, C. B.; Uzun, S.; Levitt, A.; Gogotsi, Y. Selective etching of silicon from Ti3SiC2 (MAX) to obtain 2D titanium carbide (MXene). Angew. Chem., Int. Ed. 2018, 57, 5444–5448.

    CAS  Google Scholar 

  54. Ciesielski, A.; Samorì, P. Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 2014, 43, 381–398.

    CAS  Google Scholar 

  55. Wei, P. P.; Shen, J.; Wu, K. B.; Yang, N. J. Defect-dependent electrochemistry of exfoliated graphene layers. Carbon 2019, 154, 125–131.

    CAS  Google Scholar 

  56. Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.

    CAS  Google Scholar 

  57. Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N. Liquid exfoliation of layered materials. Science 2013, 304, 1226419.

    Google Scholar 

  58. Ding, Y. H.; Chen, Y.; Xu, N.; Lian, X. T.; Li, L. L.; Hu, Y. X.; Peng, S. J. Facile synthesis of FePS3 anoosheets@MXnne composite as a high-performance anode material for sodium storage. Nano-Micro Lett. 2020, 12, 54.

    CAS  Google Scholar 

  59. Smith, R. J.; King, P. J.; Lotya, M.; Wirtz, C.; Khan, U.; De, S.; O’Neill, A.; Duesberg, G. S.; Grunlan, J. C.; Moriarty, G. et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 2011, 23, 39443948.

    Google Scholar 

  60. Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’Ko, Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol 2008, 3, 563–568.

    CAS  Google Scholar 

  61. Sun, Z. Y.; Fan, Q.; Zhang, M. L.; Liu, S. Z.; Tao, H. C.; Texter, J. Supercritical fluid-facilitated exfoliation and processing of 2D materials. Adv. Sci. 2019, 6, 1901084.

    CAS  Google Scholar 

  62. Tao, H. C.; Zhang, Y. Q.; Gao, Y. N.; Sun, Z. Y.; Yan, C.; Texter, J. Scalable exfoliation and dispersion of two-dimensional materials—An update. Phys. Chem. Chem. Phys. 2017, 19, 921–960.

    CAS  Google Scholar 

  63. Shih, C. J.; Vijayaraghavan, A.; Krishnan, R.; Sharma, R.; Han, J. H.; Ham, M. H.; Jin, Z.; Lin, S. C.; Paulus, G. L. C.; Forest Reuel, N. et al. Bi- and trilayer graphene solutions. Nat. Nanotechnol. 2011, 6, 439–445.

    CAS  Google Scholar 

  64. Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111–5116.

    CAS  Google Scholar 

  65. Yu, F. F.; Liu, Q. W.; Gan, X.; Hu, M. X.; Zhang, T. Y.; Li, C.; Kang, F. Y.; Terrones, M.; Lv, R. T. Ultrasensitive pressure detection of few-layer MoS2. Adv. Mater. 2017, 29, 1603266.

    Google Scholar 

  66. Tang, H. Y.; Li, Y. T.; Sokolovskij, R.; Sacco, L.; Zheng, H. Z.; Ye, H. Y.; Yu, H. Y.; Fan, X. J.; Tian, H.; Ren, T. L. et al. Ultrahigh sensitive NO2 gas sensor based on tunable polarity transport in CVD-WS2/IGZO p-N heterojunction. ACS Appl. Mater. Interfaces 2019, 11, 40850–40859.

    CAS  Google Scholar 

  67. Marichy, C.; Bechelany, M.; Pinna, N. Atomic layer deposition of nanostructured materials for energy and environmental applications. Adv. Mater. 2012, 24, 1017–1032.

    CAS  Google Scholar 

  68. Kim, S. M.; Kim, H. J.; Jung, H. J.; Park, J. Y.; Seok, T. J.; Choa, Y. H.; Park, T. J.; Lee, S. W. High-performance, transparent thin film hydrogen gas sensor using 2D electron gas at interface of oxide thin film heterostructure grown by atomic layer deposition. Adv. Funct. Mater. 2019, 29, 1807760.

    Google Scholar 

  69. de Villiers, M. M.; Otto, D. P.; Strydom, S. J.; Lvov, Y. M. Introduction to nanocoatings produced by layer-by-layer (LbL) self-assembly. Adv. Drug Deliv. Rev. 2011, 63, 701–715.

    CAS  Google Scholar 

  70. Zhou, J.; Zha, X. H.; Zhou, X. B.; Chen, F. Y.; Gao, G. L.; Wang, S. W.; Shen, C.; Chen, T.; Zhi, C. Y.; Eklund, P. et al. Synthesis and electrochemical properties of two-dimensional hafnium carbide. ACS Nano 2017, 11, 3841–3850.

    CAS  Google Scholar 

  71. Zhang, D. Z.; Wu, J. F.; Li, P.; Cao, Y. H.; Yang, Z. M. Hierarchical nanoheterostructure of tungsten disulfide nanoflowers doped with zinc oxide hollow spheres: Benzene gas sensing properties and first-principles study. ACS Appl. Mater. Interfaces 2019, 11, 31245–31256.

    CAS  Google Scholar 

  72. Li, X.; Wang, J.; Xie, D.; Xu, J. L.; Xia, Y.; Xiang, L.; Komarneni, S. Reduced graphene oxide/MoS2 hybrid films for room-temperature formaldehyde detection. Mater. Lett. 2017, 189, 42–45.

    CAS  Google Scholar 

  73. Naguib, M.; Gogotsi, Y. Synthesis of two-dimensional materials by selective extraction. Acc. Chem. Res. 2015, 48, 128–135.

    CAS  Google Scholar 

  74. Zhu, K.; Jin, Y. M.; Du, F.; Gao, S.; Gao, Z. M.; Meng, X.; Chen, G.; Wei, Y. J.; Gao, Y. Synthesis of Ti2CTx MXene as electrode materials for symmetric supercapacitor with capable volumetric capacitance. J. Energy Chem. 2019, 31, 11–18.

    Google Scholar 

  75. Persson, I.; El Ghazaly, A.; Tao, Q. Z.; Halim, J.; Kota, S.; Darakchieva, V.; Palisaitis, J.; Barsoum, M. W.; Rosen, J.; Persson, P. O. Å. Tailoring structure, composition, and energy storage properties of MXenes from selective etching of in-plane, chemically ordered MAX phases. Small 2018, 14, 1703676.

    Google Scholar 

  76. Zhou, J.; Zha, X. H.; Chen, F. Y.; Ye, Q.; Eklund, P.; Du, S. Y.; Huang, Q. A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angew. Chem., Int. Ed. 2016, 55, 5008–5013.

    CAS  Google Scholar 

  77. Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.

    CAS  Google Scholar 

  78. Joshi, N.; Hayasaka, T.; Liu, Y. M.; Liu, H. L.; Oliveira, O. N.; Lin, L. W. A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim. Acta 2018, 185, 213.

    Google Scholar 

  79. Kim, Y. H.; Kim, S. J.; Kim, Y. J.; Shim, Y. S.; Kim, S. Y.; Hong, B. H.; Jang, H. W. Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending. ACS Nano 2015, 9, 10453–10460.

    CAS  Google Scholar 

  80. Bollella, P.; Fusco, G.; Tortolini, C.; Sanzò, G.; Favero, G.; Gorton, L.; Antiochia, R. Beyond graphene: Electrochemical sensors and biosensors for biomarkers detection. Biosens. Bioelectron. 2017, 89, 152–166.

    CAS  Google Scholar 

  81. Tsang, C. H. A.; Huang, H. B.; Xuan, J.; Wang, H. Z.; Leung, D. Y. C. Graphene materials in green energy applications: Recent development and future perspective. Renew. Sustain. Energy Rev. 2020, 120, 109656.

    CAS  Google Scholar 

  82. Deng, S. K.; Berry, V. Wrinkled, rippled and crumpled graphene: An overview of formation mechanism, electronic properties, and applications. Mater. Today 2016, 19, 197–212.

    CAS  Google Scholar 

  83. Li, X.; Yu, J. G.; Wageh, S.; Al-Ghamdi, A. A.; Xie, J. Graphene in photocatalysis: A review. Small 2016, 12, 6640–6696.

    CAS  Google Scholar 

  84. Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on grapheme. Nat. Mater. 2007, 6, 652–655.

    CAS  Google Scholar 

  85. Seekaew, Y.; Phokharatkul, D.; Wisitsoraat, A.; Wongchoosuk, C. Highly sensitive and selective room-temperature NO2 gas sensor based on bilayer transferred chemical vapor deposited graphene. Appl. Surf. Sci. 2017, 404, 357–363.

    CAS  Google Scholar 

  86. Zhang, H.; Fan, L. W.; Dong, H. L.; Zhang, P. P.; Nie, K. Q.; Zhong, J.; Li, Y. Y.; Guo, J. H.; Sun, X. H. Spectroscopic investigation of plasma-fluorinated monolayer graphene and application for gas sensing. ACS Appl. Mater. Interfaces 2016, 8, 8652–8661.

    CAS  Google Scholar 

  87. Xing, F.; Zhang, S.; Yang, Y.; Jiang, W. S.; Liu, Z. B.; Zhu, S. W.; Yuan, X. C. Chemically modified graphene films for highperformance optical NO2 sensors. Analyst 2016, 141, 4725–4732.

    CAS  Google Scholar 

  88. Zhang, J.; Liu, X. H.; Neri, G.; Pinna, N. Nanostructured materials for room-temperature gas sensors. Adv. Mater. 2016, 28, 795–831.

    CAS  Google Scholar 

  89. Wang, T.; Huang, D.; Yang, Z.; Xu, S. S.; He, G. L.; Li, X. L.; Hu, N. T.; Yin, G. L.; He, D. N.; Zhang, L. Y. A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett. 2016, 8, 95–119.

    Google Scholar 

  90. Xu, Q.; Xu, H.; Chen, J. R.; Lv, Y. Z.; Dong, C. B.; Sreeprasad, T. S. Graphene and graphene oxide: Advanced membranes for gas separation and water purification. Inorg. Chem. Front. 2015, 2, 417–424.

    CAS  Google Scholar 

  91. Yang, W.; Gan, L.; Li, H. Q.; Zhai, T. Y. Two-dimensional layered nanomaterials for gas-sensing applications. Inorg. Chem. Front. 2016, 3, 433–451.

    CAS  Google Scholar 

  92. Choi, Y. R.; Yoon, Y. G.; Choi, K. S.; Kang, J. H.; Shim, Y. S.; Kim, Y. H.; Chang, H. J.; Lee, J. H.; Park, C. R.; Kim, S. Y. et al. Role of oxygen functional groups in graphene oxide for reversible room-temperature NO2 sensing. Carbon 2015, 91, 178–187.

    CAS  Google Scholar 

  93. Luan, Y. G.; Zhang, S. L.; Nguyen, T. H.; Yang, W.; Noh, J. S. Polyurethane sponges decorated with reduced graphene oxide and silver nanowires for highly stretchable gas sensors. Sens. Actuators B: Chem. 2018, 265, 609–616.

    CAS  Google Scholar 

  94. Wang, J.; Yu, M. Y.; Xia, Y.; Li, X.; Yang, C.; Komarneni, S. On-chip grown ZnO nanosheet-array with interconnected nanojunction interfaces for enhanced optoelectronic NO2 gas sensing at room temperature. J. Colloid Interface Sci. 2019, 554, 19–28.

    CAS  Google Scholar 

  95. Zhu, L.; Li, Y. Q.; Zeng, W. Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties. Appl. Surf. Sci. 2018, 427, 281–287.

    CAS  Google Scholar 

  96. Liu, X.; Sun, Y.; Yu, M.; Yin, Y. Q.; Du, B. S.; Tang, W.; Jiang, T. T.; Yang, B.; Cao, W. W.; Ashfold, M. N. R. Enhanced ethanol sensing properties of ultrathin ZnO nanosheets decorated with CuO nanoparticles. Sens. Actuators B: Chem. 2018, 255, 3384–3390.

    CAS  Google Scholar 

  97. Cao, F. F.; Li, C. P.; Li, M. J.; Li, H. J.; Huang, X.; Yang, B. H. Direct growth of Al-doped ZnO ultrathin nanosheets on electrode for ethanol gas sensor application. Appl. Surf. Sci. 2018, 447, 173–181.

    CAS  Google Scholar 

  98. Wu, T.; Wang, Z. B.; Tian, M. H.; Miao, J. Y.; Zhang, H. X.; Sun, J. B. UV excitation NO2 gas sensor sensitized by ZnO quantum dots at room temperature. Sens. Actuators B: Chem. 2018, 259, 526–531.

    CAS  Google Scholar 

  99. Niu, G. Q.; Zhao, C. H.; Gong, H. M.; Yang, Z. T.; Leng, X. H.; Wang, F. NiO nanoparticle-decorated SnO2 nanosheets for ethanol sensing with enhanced moisture resistance. Microsyst. Nanoeng. 2019, 5, 21.

    Google Scholar 

  100. Miao, J. S.; Chen, C.; Lin, J. Y. S. Humidity independent hydrogen sulfide sensing response achieved with monolayer film of CuO nanosheets. Sens. Actuators B: Chem. 2020, 309, 127785.

    CAS  Google Scholar 

  101. Miao, J. S.; Chen, C.; Meng, L.; Lin, Y. S. Self-assembled monolayer of metal oxide nanosheet and structure and gas-sensing property relationship. ACS Sens. 2019, 4, 1279–1290.

    CAS  Google Scholar 

  102. Chang, X.; Li, X. F.; Qiao, X. R.; Li, K.; Xiong, Y.; Li, X.; Guo, T. C.; Zhu, L.; Xue, Q. Z. Metal-organic frameworks derived ZnO@MoS2 nanosheets core/shell heterojunctions for ppb-level acetone detection: Ultra-fast response and recovery. Sens. Actuators B: Chem. 2020, 304, 127430.

    CAS  Google Scholar 

  103. Zhao, P. D.; Kiriya, D.; Azcatl, A.; Zhang, C. X.; Tosun, M.; Liu, Y. S.; Hettick, M.; Kang, J. S.; McDonnell, S.; Santosh, K. C. et al. Air stable P-doping of WSe2 by covalent functionalization. ACS Nano 2014, 8, 10808–10814.

    CAS  Google Scholar 

  104. Wang, X. D.; Liu, C. S.; Chen, Y.; Wu, G. J.; Yan, X.; Huang, H.; Wang, P.; Tian, B. B.; Hong, Z. C.; Wang, Y. T. et al. Ferroelectric FET for nonvolatile memory application with two-dimensional MoSe2 channels. 2D Mater. 2017, 4, 025036.

    Google Scholar 

  105. Jung, K. H.; Yun, S. J.; Choi, Y.; Cho, J. H.; Lim, J. W.; Chai, H. J.; Cho, D. H.; Chung, Y. D.; Kim, G. Metal-agglomeration-suppressed growth of MoS2 and MoSe2 films with small sulfur and selenium molecules for high mobility field effect transistor applications. Nanoscale 2018, 10, 15213–15221.

    CAS  Google Scholar 

  106. Eftekhari, A. Molybdenum diselenide (MoSe2) for energy storage, catalysis, and optoelectronics. Appl. Mater. Today 2017, 8, 1–17.

    Google Scholar 

  107. Perea-Lõpez, N.; Elías, A. L.; Berkdemir, A.; Castro-Beltran, A.; Gutiérrez, H. R.; Feng, S. M.; Lv, R. T.; Hayashi, T.; Lõpez-Urías, F.; Ghosh, S. et al. Photosensor device based on few-layered WS2 films. Adv. Funct. Mater. 2013, 23, 5511–5517.

    Google Scholar 

  108. Dwivedi, P.; Das, S.; Dhanekar, S. Wafer-scale synthesized MoS2/porous silicon nanostructures for efficient and selective ethanol sensing at room temperature. ACS Appl. Mater. Interfaces 2017, 9, 21017–21024.

    CAS  Google Scholar 

  109. Yang, Z. M.; Zhang, D. Z.; Chen, H. N. MOF-derived indium oxide hollow microtubes/MoS2 nanoparticles for NO2 gas sensing. Sens. Actuators B: Chem. 2019, 300, 127037.

    CAS  Google Scholar 

  110. Liu, J. Y.; Hu, Z. X.; Zhang, Y. Z.; Li, H. Y.; Gao, N. B.; Tian, Z. L.; Zhou, L. C.; Zhang, B. H.; Tang, J.; Zhang, J. B. et al. MoS2 nanosheets sensitized with quantum dots for room-temperature gas sensors. Nano-Micro Lett. 2020, 12, 59.

    Google Scholar 

  111. Reddeppa, M.; Park, B. G.; Murali, G.; Choi, S. H.; Chinh, N. D.; Kim, D.; Yang, W.; Kim, M. NOx gas sensors based on layer-transferred n-MoS2/p-GaN heterojunction at room temperature: Study of UV light illuminations and humidity. Sens. Actuators B: Chem. 2020, 308, 127700.

    CAS  Google Scholar 

  112. Koo, W. T.; Cha, J. H.; Jung, J. W.; Choi, S. J.; Jang, J. S.; Kim, D. H.; Kim, I. D. Few-layered WS2 nanoplates confined in Co, N-doped hollow carbon nanocages: Abundant WS2 edges for highly sensitive gas sensors. Adv. Funct. Mater. 2018, 28, 1802575.

    Google Scholar 

  113. Sharma, D.; Kamboj, N.; Agarwal, K.; Mehta, B. R. Structural, optical and photoelectrochemical properties of phase pure SnS and SnS2 thin films prepared by vacuum evaporation method. J. Alloys Compd. 2020, 822, 153653.

    CAS  Google Scholar 

  114. Yang, Z.; Su, C.; Wang, S. T.; Han, Y. H.; Chen, X. W.; Xu, S. S.; Zhou, Z. H.; Hu, N. T.; Su, Y. J.; Zeng, M. Highly sensitive NO2 gas sensors based on hexagonal SnS2 nanoplates operating at room temperature. Nanotechnology 2020, 31, 075501.

    CAS  Google Scholar 

  115. Gu, D.; Wang, X. Y.; Liu, W.; Li, X. G.; Lin, S. W.; Wang, J.; Rumyantseva, M. N.; Gaskov, A. M.; Akbar, S. A. Visible-light activated room temperature NO2 sensing of SnS2 nanosheets based chemiresistive sensors. Sens. Actuators B: Chem. 2020, 305, 127455.

    CAS  Google Scholar 

  116. Ko, K. Y.; Song, J. G.; Kim, Y.; Choi, T.; Shin, S.; Lee, C. W.; Lee, K.; Koo, J.; Lee, H.; Kim, J. et al. Improvement of gas-sensing performance of large-area tungsten disulfide nanosheets by surface functionalization. ACS Nano 2016, 10, 9287–9296.

    CAS  Google Scholar 

  117. Kim, S.; Maassen, J.; Lee, J.; Kim, S. M.; Han, G.; Kwon, J.; Hong, S.; Park, J.; Liu, N.; Park, Y. C. et al. Interstitial Mo-assisted photovoltaic effect in multilayer MoSe2 phototransistors. Adv. Mater. 2018, 30, 1705542.

    Google Scholar 

  118. Zhang, D. Z.; Yang, Z. M.; Li, P.; Pang, M. S.; Xue, Q. Z. Flexible self-powered high-performance ammonia sensor based on Au-decorated MoSe2 nanoflowers driven by single layer MoS2-flake piezoelectric nanogenerator. Nano Energy 2019, 65, 103974.

    CAS  Google Scholar 

  119. Jha, R. K.; D’Costa, J. V.; Sakhuja, N.; Bhat, N. MoSe2 nanoflakes based chemiresistive sensors for ppb-level hydrogen sulfide gas detection. Sens. Actuators B: Chem. 2019, 297, 126687.

    CAS  Google Scholar 

  120. Guo, R. S.; Han, Y. T.; Su, C.; Chen, X. W.; Zeng, M.; Hu, N. T.; Su, Y. J.; Zhou, Z. H.; Wei, H.; Yang, Z. Ultrasensitive room temperature NO2 sensors based on liquid phase exfoliated WSe2 nanosheets. Sens. Actuators B: Chem. 2019, 300, 127013.

    CAS  Google Scholar 

  121. Mukhokosi, E. P.; Krupanidhi, S. B.; Nanda, K. K. Band gap engineering of hexagonal SnSe2 nanostructured thin films for infrared photodetection. Sci. Rep. 2017, 7, 15215.

    Google Scholar 

  122. Moreira, Ó. L. C.; Cheng, W. Y.; Fuh, H. R.; Chien, W. C.; Yan, W. J.; Fei, H. F.; Xu, H. J.; Zhang, D.; Chen, Y. H.; Zhao, Y. F. et al. High selectivity gas sensing and charge transfer of SnSe2. ACS Sens. 2019, 4, 2546–2552.

    Google Scholar 

  123. Chen, M.; Li, Z. K.; Li, W. M.; Shan, C. W.; Li, W. J.; Li, K. W.; Gu, G. Q.; Feng, Y.; Zhong, G. H.; Wei, L. et al. Large-scale synthesis of single-crystalline self-standing SnSe2 nanoplate arrays for wearable gas sensors. Nanotechnology 2018, 29, 455501.

    Google Scholar 

  124. Fathipour, S.; Ma, N.; Hwang, W. S.; Protasenko, V.; Vishwanath, S.; Xing, H. G.; Xu, H.; Jena, D.; Appenzeller, J.; Seabaugh, A. Exfoliated multilayer MoTe2 field-effect transistors. Appl. Phys. Lett. 2014, 105, 192101.

    Google Scholar 

  125. Feng, Z. H.; Xie, Y.; Chen, J. C.; Yu, Y. Y.; Zheng, S. J.; Zhang, R.; Li, Q. N.; Chen, X. J.; Sun, C. L.; Zhang, H. et al. Highly sensitive MoTe2 chemical sensor with fast recovery rate through gate biasing. 2D Mater. 2017, 4, 025018.

    Google Scholar 

  126. Wu, E. X.; Xie, Y.; Yuan, B.; Hao, D. Y.; An, C. H.; Zhang, H.; Wu, S.; Hu, X. D.; Liu, J.; Zhang, D. H. Specific and highly sensitive detection of ketone compounds based on p-type MoTe2 under ultraviolet illumination. ACS Appl. Mater. Interfaces 2018, 10, 35664–35669.

    CAS  Google Scholar 

  127. Shackery, I.; Pezeshki, A.; Park, J. Y.; Palanivel, U.; Kwon, H. J.; Yoon, H. S.; Im, S.; Cho, J. S.; Jun, S. C. Few-layered α-MoTe2 Schottky junction for a high sensitivity chemical-vapour sensor. J. Mater. Chem. C 2018, 6, 10714–10722.

    CAS  Google Scholar 

  128. Ma, D. W.; Ju, W. W.; Tang, Y. N.; Chen, Y. First-principles study of the small molecule adsorption on the InSe monolayer. Appl. Surf. Sci. 2017, 426, 244–252.

    CAS  Google Scholar 

  129. Chen, D. C.; Zhang, X. X.; Cui, H.; Tang, J.; Pi, S. M.; Cui, Z. L.; Li, Y.; Zhang, Y. High selectivity n-type InSe monolayer toward decomposition products of sulfur hexafluoride: A density functional theory study. Appl. Surf. Sci. 2019, 479, 852–862.

    CAS  Google Scholar 

  130. Hu, F. F.; Tang, H. Y.; Tan, C. J.; Ye, H. Y.; Chen, X. P.; Zhang, G. Q. Nitrogen dioxide gas sensor based on monolayer SnS: A first-principle study. IEEE Electron Device Lett. 2017, 38, 983–986.

    CAS  Google Scholar 

  131. Baek, I. H.; Pyeon, J. J.; Song, Y. G.; Chung, T. M.; Kim, H. R.; Baek, S. H.; Kim, J. S.; Kang, C. Y.; Choi, J. W.; Hwang, C. S. et al. Synthesis of SnS thin films by atomic layer deposition at low temperatures. Chem. Mater. 2017, 29, 8100–8110.

    CAS  Google Scholar 

  132. Liu, J. J.; Lyu, P.; Zhang, Y.; Nachtigall, P.; Xu, Y. X. New layered triazine framework/exfoliated 2D polymer with superior sodium-storage properties. Adv. Mater. 2018, 30, 1705401.

    Google Scholar 

  133. Rodríguez-San-Miguel, D.; Amo-Ochoa, P.; Zamora, F. MasterChem: Cooking 2D-polymers. Chem. Commun. 2016, 52, 4113–4127.

    Google Scholar 

  134. Huang, H. P.; Feng, X. M.; Zhu, J. J. Synthesis, characterization and application in electrocatalysis of polyaniline/Au composite nanotubes. Nanotechnology 2008, 19, 145607.

    Google Scholar 

  135. Velev, O. D.; Lenhoff, A. M. Colloidal crystals as templates for porous materials. Curr. Opin. Colloid Interf. Sci. 2000, 5, 56–63.

    CAS  Google Scholar 

  136. Zhang, T.; Qi, H. Y.; Liao, Z. Q.; Horev, Y. D.; Panes-Ruiz, L. A.; Petkov, P. S.; Zhang, Z.; Shivhare, R.; Zhang, P. P.; Liu, K. J. et al. Engineering crystalline quasi-two-dimensional polyaniline thin film with enhanced electrical and chemiresistive sensing performances. Nat. Commun. 2019, 10, 4225.

    Google Scholar 

  137. Jiang, S.; Chen, J. Y.; Tang, J.; Jin, E.; Kong, L. R.; Zhang, W. J.; Wang, C. Au nanoparticles-functionalized two-dimensional patterned conducting PANI nanobowl monolayer for gas sensor. Sens. Actuators B: Chem. 2009, 140, 520–524.

    CAS  Google Scholar 

  138. Wen, Y.; Wei, F. C.; Zhang, W. Q.; Cui, A. Y.; Cui, J.; Jing, C. B.; Hu, Z. G.; He, Q. G.; Fu, J. W.; Liu, S. H. et al. Two-dimensional mesoporous sensing materials. Chin. Chem. Lett. 2020, 31, 521–524.

    CAS  Google Scholar 

  139. Cui, F. Z.; Xie, J. J.; Jiang, S. Y.; Gan, S. X.; Ma, D. L.; Liang, R. R.; Jiang, G. F.; Zhao, X. A gaseous hydrogen chloride chemosensor based on a 2D covalent organic framework. Chem. Commun. 2019, 55, 4550–4553.

    CAS  Google Scholar 

  140. Ling, X.; Wang, H.; Huang, S. X.; Xia, F. N.; Dresselhaus, M. S. The renaissance of black phosphorus. Proc. Natl. Acad. Sci. USA 2015, 112, 4523–4530.

    CAS  Google Scholar 

  141. Zhang, H. P.; Kou, L. Z.; Jiao, Y.; Du, A. J.; Tang, Y. H.; Ni, Y. X. Strain engineering of selective chemical adsorption on monolayer black phosphorous. Appl. Surf. Sci. 2020, 503, 144033.

    CAS  Google Scholar 

  142. Chen, W. S.; Ouyang, J.; Liu, H.; Chen, M.; Zeng, K.; Sheng, J. P.; Liu, Z. J.; Han, Y. J.; Wang, L. Q.; Li, J. et al. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv. Mater. 2017, 29, 1603864.

    Google Scholar 

  143. Gusain, R.; Kumar, N.; Ray, S. S. Recent advances in carbon nanomaterial-based adsorbents for water purification. Coord. Chem. Rev. 2020, 405, 213111.

    CAS  Google Scholar 

  144. Sakthivel, T.; Huang, X. Y.; Wu, Y. C.; Rtimi, S. Recent progress in black phosphorus nanostructures as environmental photocatalysts. Chem. Eng. J. 2020, 379, 122297.

    CAS  Google Scholar 

  145. Tao, W.; Zhu, X. B.; Yu, X. H.; Zeng, X. W.; Xiao, Q. L.; Zhang, X. D.; Ji, X. Y.; Wang, X. S.; Shi, J. J.; Zhang, H. et al. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv. Mater. 2017, 29, 1603276.

    Google Scholar 

  146. Miao, J. S.; Zhang, L.; Wang, C. Black phosphorus electronic and optoelectronic devices. 2D Mater. 2019, 6, 032003.

    CAS  Google Scholar 

  147. Donarelli, M.; Ottaviano, L.; Giancaterini, L.; Fioravanti, G.; Perrozzi, F.; Cantalini, C. Exfoliated black phosphorus gas sensing properties at room temperature. 2D Mater. 2016, 3, 025002.

    Google Scholar 

  148. Cho, S. Y.; Lee, Y.; Koh, H. J.; Jung, H.; Kim, J. S.; Yoo, H. W.; Kim, J.; Jung, H. T. Superior chemical sensing performance of black phosphorus: Comparison with MoS2 and graphene. Adv. Mater. 2016, 28, 7020–7028.

    CAS  Google Scholar 

  149. Babenko, V.; Fan, Y.; Veigang-Radulescu1, V. P.; Brennan, B.; Pollard, A. J.; Burton, O.; Alexander-Webber, J. A.; Weatherup, R. S.; Canto, B.; Otto, M. et al. Oxidising and carburising catalyst conditioning for the controlled growth and transfer of large crystal monolayer hexagonal boron nitride. 2D Mater. 2020, 7, 024005.

    CAS  Google Scholar 

  150. Zhou, C. Y.; Lai, C.; Zhang, C.; Zeng, G. M.; Huang, D. L.; Cheng, M.; Hu, L.; Xiong, W. P.; Chen, M.; Wang, J. J. et al. Semiconductor/boron nitride composites: Synthesis, properties, and photocatalysis applications. Appl. Catal. B: Environ. 2018, 238, 6–18.

    CAS  Google Scholar 

  151. Sheng, Y. Y.; Yang, J.; Wang, F.; Liu, L. C.; Liu, H.; Yan, C.; Guo, Z. H. Sol-gel synthesized hexagonal boron nitride/titania nanocomposites with enhanced photocatalytic activity. Appl. Surf. Sci. 2019, 465, 154–163.

    CAS  Google Scholar 

  152. Falin, A.; Cai, Q. R.; Santos, E. J. G.; Scullion, D.; Qian, D.; Zhang, R.; Yang, Z.; Huang, S. M.; Watanabe, K.; Taniguchi, T. et al. Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nat. Commun. 2017, 8, 15815.

    CAS  Google Scholar 

  153. Li, M.; Wang, M. J.; Hou, X.; Zhan, Z. L.; Wang, H.; Fu, H.; Lin, C. T.; Fu, L.; Jiang, N.; Yu, J. H. Highly thermal conductive and electrical insulating polymer composites with boron nitride. Compos. Part B: Eng. 2020, 184, 107746.

    CAS  Google Scholar 

  154. Lin, L. Y.; Liu, T. M.; Zhang, Y.; Sun, R.; Zeng, W.; Wang, Z. C. Synthesis of boron nitride nanosheets with a few atomic layers and their gas-sensing performance. Ceram. Int. 2016, 42, 971–975.

    CAS  Google Scholar 

  155. Roondhe, B.; Jha, P. K.; Ahuja, R. Haeckelite boron nitride as nano sensor for the detection of hazardous methyl mercury. Appl. Surf. Sci. 2020, 506, 144860.

    CAS  Google Scholar 

  156. Zhang, H. P.; Du, A. J.; Gandhi, N. S.; Jiao, Y.; Zhang, Y. P.; Lin, X. Y.; Lu, X.; Tang, Y. H. Metal-doped graphitic carbon nitride (g-C3N4) as selective NO2 sensors: A first-principles study. Appl. Surf. Sci. 2018, 455, 1116–1122.

    CAS  Google Scholar 

  157. Wang, Y.; Zhang, R.; Zhang, Z. Y.; Cao, J. L.; Ma, T. Y. Host-guest recognition on 2D graphitic carbon nitride for nanosensing. Adv. Mater. Interfaces 2019, 6, 1901429.

    CAS  Google Scholar 

  158. Wang, D.; Huang, S. M.; Li, H. J.; Chen, A. Y.; Wang, P.; Yang, J.; Wang, X. Y.; Yang, J. H. Ultrathin WO3 nanosheets modified by g- C3N4 for highly efficient acetone vapor detection. Sens. Actuators B: Chem. 2019, 282, 961–971.

    CAS  Google Scholar 

  159. Yu, X. F.; Li, Y. C.; Cheng, J. B.; Liu, Z. B.; Li, Q. Z.; Li, W. Z.; Yang, X.; Xiao, B. Monolayer Ti2CO2: A promising candidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Appl. Mater. Interfaces 2015, 7, 13707–13713.

    CAS  Google Scholar 

  160. Kim, S. J.; Koh, H. J.; Ren, C. E.; Kwon, O.; Maleski, K.; Cho, S. Y.; Anasori, B.; Kim, C. K.; Choi, Y. K.; Kim, J. et al. Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 2018, 12, 986–993.

    CAS  Google Scholar 

  161. Wu, M.; He, M.; Hu, Q. K.; Wu, Q. H.; Sun, G.; Xie, L. L.; Zhang, Z. Y.; Zhu, Z. G.; Zhou, A. G. Ti3C2 MXene-based sensors with high selectivity for NH3 detection at room temperature. ACS Sens. 2019, 4, 2763–2770.

    CAS  Google Scholar 

  162. Lee, S. H.; Eom, W.; Shin, H.; Ambade, R. B.; Bang, J. H.; Kim, H. W.; Han, T. H. Room-temperature, highly durable Ti3C2Tx MXene/graphene hybrid fibers for NH3 gas sensing. ACS Appl. Mater. Interfaces 2020, 12, 10434–10442.

    CAS  Google Scholar 

  163. Koh, H. J.; Kim, S. J.; Maleski, K.; Cho, S. Y.; Kim, Y. J.; Ahn, C. W.; Gogotsi, Y.; Jung, H. T. Enhanced selectivity of MXene gas sensors through metal ion intercalation: In situ X-ray diffraction study. ACS Sens. 2019, 4, 1365–1372.

    CAS  Google Scholar 

  164. Yang, Z. J.; Liu, A.; Wang, C. L.; Liu, F. M.; He, J. M.; Li, S. Q.; Wang, J.; You, R.; Yan, X.; Sun, P. et al. Improvement of gas and humidity sensing properties of organ-like MXene by alkaline treatment. ACS Sens. 2019, 4, 1261–1269.

    CAS  Google Scholar 

  165. Kang, G. Y.; Zhu, Z.; Tang, B. H.; Wu, C. H.; Wu, R. J. Rapid detection of ozone in the parts per billion range using a novel Ni-Al layered double hydroxide. Sens. Actuators B: Chem. 2017, 241, 1203–1209.

    CAS  Google Scholar 

  166. Qin, Y. X.; Wang, L. P.; Wang, X. F. Hierarchical layered double hydroxides with Ag nanoparticle modification for ethanol sensing. Nanotechnology 2018, 29, 275502.

    Google Scholar 

  167. Sun, Z. B.; Yu, S. H.; Zhao, L. L.; Wang, J. F.; Li, Z. F.; Li, G. A highly stable two-dimensional copper(II) organic framework for proton conduction and ammonia impedance sensing. Chem.—Eur. J. 2018, 24, 10829–10839.

    CAS  Google Scholar 

  168. Li, Y.; Zhang, X. X.; Chen, D. C.; Xiao, S.; Tang, J. Adsorption behavior of COF2 and CF4 gas on the MoS2 monolayer doped with Ni: A first-principles study. Appl. Surf. Sci. 2018, 443, 274–279.

    CAS  Google Scholar 

  169. Zhang, D. Z.; Wu, J. F.; Li, P.; Cao, Y. H. Room-temperature SO2 gas-sensing properties based on a metal-doped MoS2 nanoflower: An experimental and density functional theory investigation. J. Mater. Chem. A 2017, 5, 20666–20677.

    CAS  Google Scholar 

  170. Ikram, M.; Liu, L. J.; Liu, Y.; Ullah, M.; Ma, L. F.; Bakhtiar, S. U. H.; Wu, H. Y.; Yu, H. T.; Wang, R. H.; Shi, K. Y. Controllable synthesis of MoS2@MoO2 nanonetworks for enhanced NO2 room temperature sensing in air. Nanoscale 2019, 11, 8554–8564.

    CAS  Google Scholar 

  171. Tai, H. L.; Duan, Z. H.; He, Z. Z.; Li, X.; Xu, J. L.; Liu, B. H.; Jiang, Y. D. Enhanced ammonia response of Ti3C2Tx nanosheets supported by TiO2 nanoparticles at room temperature. Sens. Actuators B: Chem. 2019, 298, 126874.

    CAS  Google Scholar 

  172. Wang, H. T.; Bai, J. H.; Dai, M.; Liu, K. P.; Liu, Y. Y.; Zhou, L. S.; Liu, F. M.; Liu, F. M.; Gao, Y.; Yan, X. et al. Visible light activated excellent NO2 sensing based on 2D/2D ZnO/g-C3N4 heterojunction composites. Sens. Actuators B: Chem. 2020, 304, 127287.

    CAS  Google Scholar 

  173. Zhang, S. S.; Li, Y. W.; Sun, G.; Zhang, B.; Wang, Y.; Cao, J. L.; Zhang, Z. Y. Enhanced methane sensing properties of porous NiO nanaosheets by decorating with SnO2. Sens. Actuators B: Chem. 2019, 288, 373–382.

    CAS  Google Scholar 

  174. Li, Y.; Ban, H. T.; Yang, M. J. Highly sensitive NH3 gas sensors based on novel polypyrrole-coated SnO2 nanosheet nanocomposites. Sens. Actuators B: Chem. 2016, 224, 449–457.

    CAS  Google Scholar 

  175. Tanguy, N. R.; Wiltshire, B.; Arjmand, M.; Zarifi, M. H.; Yan, N. Highly sensitive and contactless ammonia detection based on nanocomposites of phosphate-functionalized reduced graphene oxide/polyaniline immobilized on microstrip resonators. ACS Appl. Mater. Interfaces 2020, 12, 9746–9754.

    CAS  Google Scholar 

  176. Liu, L. J.; Ikram, M.; Ma, L. F.; Zhang, X. Y.; Lv, H.; Ullah, M.; Khan, M.; Yu, H. T.; Shi, K. Y. Edge-exposed MoS2 nanospheres assembled with SnS2 nanosheet to boost NO2 gas sensing at room temperature. J. Hazard. Mater. 2020, 393, 122325.

    CAS  Google Scholar 

  177. Ikram, M.; Liu, L. J.; Liu, Y.; Ma, L. F.; Lv, H.; Ullah, M.; He, L.; Wu, H. Y.; Wang, R. H.; Shi, K. Y. Fabrication and characterization of a high-surface area MoS2@WS2 heterojunction for the ultra-sensitive NO2 detection at room temperature. J. Mater. Chem. A 2019, 7, 14602–14612.

    CAS  Google Scholar 

  178. Chen, W. Y.; Jiang, X. F.; Lai, S. N.; Peroulis, D.; Stanciu, L. Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat. Commun. 2020, 11, 1302.

    CAS  Google Scholar 

  179. Wang, X. Y.; Gu, D.; Li, X. G.; Lin, S. W.; Zhao, S. H.; Rumyantseva, M. N.; Gaskov, A. M. Reduced graphene oxide hybridized with WS2 nanoflakes based heterojunctions for selective ammonia sensors at room temperature. Sens. Actuators B: Chem. 2019, 282, 290–299.

    CAS  Google Scholar 

  180. Hang, N. T.; Zhang, S. L.; Yang, W. Efficient exfoliation of g-C3N4 and NO2 sensing behavior of graphene/g-C3N4 nanocomposite. Sens. Actuators B: Chem. 2017, 248, 940–948.

    Google Scholar 

  181. Jannat, A.; Haque, F.; Xu, K.; Zhou, C. H.; Zhang, B. Y.; Syed, N.; Mohiuddin, M.; Messalea, K. A.; Li, X.; Gras, S. L. et al. Exciton-driven chemical sensors based on excitation-dependent photoluminescent two-dimensional SnS. ACS Appl. Mater. Interfaces 2019, 11, 42462–42468.

    CAS  Google Scholar 

  182. Chen, H. W.; Chen, Y. T.; Zhang, H.; Zhang, D. W.; Zhou, P.; Huang, J. Suspended SnS2 layers by light assistance for ultrasensitive ammonia detection at room temperature. Adv. Funct. Mater. 2018, 28, 1801035.

    Google Scholar 

  183. Yang, C. M.; Chen, T. C.; Yang, Y. C.; Meyyappan, M.; Lai, C. S. Enhanced acetone sensing properties of monolayer graphene at room temperature by electrode spacing effect and UV illumination. Sen. Actuators B: Chem. 2017, 253, 77–84.

    CAS  Google Scholar 

  184. Alenezi, M. R.; Alshammari, A. S.; Jayawardena, K. D. G. I.; Beliatis, M. J.; Henley, S. J.; Silva, S. R. P. Role of the exposed polar facets in the performance of thermally and UV activated ZnO nanostructured gas sensors. J. Phys. Chem. C 2013, 117, 17850–17858.

    CAS  Google Scholar 

  185. Mun, Y.; Park, S.; An, S.; Lee, C.; Kim, H. W. NO2 gas sensing properties of Au-functionalized porous ZnO nanosheets enhanced by UV irradiation. Ceram. Int. 2013, 39, 8615–8622.

    CAS  Google Scholar 

  186. Zhou, Y.; Li, X.; Wang, Y. J.; Tai, H. L.; Guo, Y. C. UV illumination-enhanced molecular ammonia detection based on a ternary-reduced graphene oxide-titanium dioxide-Au composite film at room temperature. Anal. Chem. 2019, 91, 3311–3318.

    CAS  Google Scholar 

  187. Zhou, Y.; Gao, C.; Guo, Y. C. UV assisted ultrasensitive trace NO2 gas sensing based on few-layer MoS2 nanosheet-ZnO nanowire heterojunctions at room temperature. J. Mater. Chem. A 2018, 6, 10286–10296.

    CAS  Google Scholar 

  188. Zhao, M.; Yan, L. Q.; Zhang, X. F.; Xu, L. H.; Song, Z. W.; Chen, P. P.; Dong, F. L.; Chu, W. G. Room temperature NH3 detection of Ti/graphene devices promoted by visible light illumination. J. Mater. Chem. C 2017, 5, 1113–1120.

    Google Scholar 

  189. Herrmann, J. M. Photocatalysis fundamentals revisited to avoid several misconceptions. Appl. Catal. B: Environ. 2010, 99, 461–468.

    CAS  Google Scholar 

  190. Lu, G. Y.; Xu, J.; Sun, J. B.; Yu, Y. S.; Zhang, Y. Q.; Liu, F. M. UV-enhanced room temperature NO2 sensor using ZnO nanorods modified with SnO2 nanoparticles. Sen. Actuators B: Chem. 2012, 162, 82–88.

    CAS  Google Scholar 

  191. Park, S.; An, S.; Mun, Y.; Lee, C. UV-enhanced NO2 gas sensing properties of SnO2-core/ZnO-shell nanowires at room temperature. ACS Appl. Mater. Interfaces 2013, 5, 4285–4292.

    CAS  Google Scholar 

  192. Geng, X.; Zhang, C.; Luo, Y. F.; Liao, H. L.; Debliquy, M. Light assisted room-temperature NO2 sensors with enhanced performance based on black SnO1−α@ZnO@SnO2−γ nanocomposite coatings deposited by solution precursor plasma spray. Ceram. Int. 2017, 43, 5990–5998.

    CAS  Google Scholar 

  193. Thepnurat, M.; Chairuangsri, T.; Hongsith, N.; Ruankham, P.; Choopun, S. Realization of interlinked ZnO tetrapod networks for UV sensor and room-temperature gas sensor. ACS Appl. Mater. Interfaces 2015, 7, 24177–24184.

    CAS  Google Scholar 

  194. Wang, P. L.; Fu, Y. M.; Yu, B. W.; Zhao, Y. Y.; Xing, L. L.; Xue, X. Y. Realizing room-temperature self-powered ethanol sensing of ZnO nanowire arrays by combining their piezoelectric, photoelectric and gas sensing characteristics. J. Mater. Chem. A 2015, 3, 3529–3535.

    CAS  Google Scholar 

  195. Hoa, N. D.; Hung, C. M.; Van Duy, N.; Van Hieu, N. Nanoporous and crystal evolution in nickel oxide nanosheets for enhanced gassensing performance. Sens. Actuators B: Chem. 2018, 273, 784–793.

    CAS  Google Scholar 

  196. Jamalabadi, H.; Mani-Varnosfaderani, A.; Alizadeh, N. Detection of alkyl amine vapors using PPy-ZnO hybrid nanocomposite sensor array and artificial neural network. Sens. Actuators A: Phys. 2018, 280, 228–237.

    CAS  Google Scholar 

  197. Sun, Q.; Wang, J. X.; Hao, J. Y.; Zheng, S. L.; Wan, P.; Wang, T. T.; Fang, H. T.; Wang, Y. SnS2/SnS p-n heterojunctions with an accumulation layer for ultrasensitive room-temperature NO2 detection. Nanoscale 2019, 11, 13741–13749.

    CAS  Google Scholar 

  198. Zhang, D. Z.; Cao, Y. H.; Wu, J. F.; Zhang, X. X. Tungsten trioxide nanoparticles decorated tungsten disulfide nanoheterojunction for highly sensitive ethanol gas sensing application. Appl. Surf. Sci. 2020, 503, 144063.

    CAS  Google Scholar 

  199. Yang, Z. M.; Zhang, D. Z.; Wang, D. Y. Carbon monoxide gas sensing properties of metal-organic frameworks-derived tin dioxide nanoparticles/molybdenum diselenide nanoflowers. Sens. Actuators B: Chem. 2020, 304, 127369.

    CAS  Google Scholar 

  200. Kim, J. H.; Mirzaei, A.; Zheng, Y. F.; Lee, J. H.; Kim, J. Y.; Kim, H. W.; Kim, S. S. Enhancement of H2S sensing performance of p-CuO nanofibers by loading p-reduced graphene oxide nanosheets. Sens. Actuators B: Chem. 2019, 281, 453–461.

    CAS  Google Scholar 

  201. Kim, Y.; Kang, S. K.; Oh, N. C.; Lee, H. D.; Lee, S. M.; Park, J.; Kim, H. Improved sensitivity in Schottky contacted two-dimensional MoS2 gas sensor. ACS Appl. Mater. Interfaces 2019, 11, 38902–38909.

    CAS  Google Scholar 

  202. Wang, Y.; Meng, X. N.; Cao, J. L. Rapid detection of low concentration CO using Pt-loaded ZnO nanosheets. J. Hazard. Mater. 2020, 381, 120944.

    CAS  Google Scholar 

  203. Li, T. T.; Shen, Y. B.; Zhong, X. X.; Zhao, S. K.; Li, G. D.; Cui, B. Y.; Wei, D. Z.; Wei, K. F. Effect of noble metal element on microstructure and NO2 sensing properties of WO3 nanoplates prepared from a low-grade scheelite concentrate. J. Alloys Compd. 2020, 818, 152927.

    CAS  Google Scholar 

  204. Zeng, Y. M.; Lin, S. W.; Gu, D.; Li, X. G. Two-dimensional nanomaterials for gas sensing applications: The role of theoretical calculations. Nanomaterials 2018, 8, 851.

    Google Scholar 

  205. Gao, X.; Zhou, Q.; Wang, J. X.; Xu, L. N.; Zeng, W. Performance of intrinsic and modified graphene for the adsorption of H2S and CH4: A DFT study. Nanomaterials 2020, 10, 299.

    CAS  Google Scholar 

  206. Leenaerts, O.; Partoens, B.; Peeters, F. M. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study. Phys. Rev. B 2008, 77, 125416.

    Google Scholar 

  207. Zhang, K. N.; Ding, C. C.; She, Y. H.; Wu, Z.; Zhao, C. H.; Pan, B. J.; Zhang, L. J.; Zhou, W.; Fan, Q. C. CuFe2O4/MoS2 mixed-dimensional heterostructures with improved gas sensing response. Nanoscale Res. Lett. 2020, 15, 32.

    CAS  Google Scholar 

  208. Panigrahi, P.; Hussain, T.; Karton, A.; Ahuja, R. Elemental substitution of two-dimensional transition metal dichalcogenides (MoSe2 and MoTe2): Implications for enhanced gas sensing. ACS Sens. 2019, 4, 2646–2653.

    CAS  Google Scholar 

  209. Zhou, C. J.; Yang, W. H.; Zhu, H. L. Mechanism of charge transfer and its impacts on Fermi-level pinning for gas molecules adsorbed on monolayer WS2. J. Chem. Phys. 2015, 142, 214704.

    Google Scholar 

  210. Li, X. G.; Li, X. X.; Li, Z.; Wang, J.; Zhang, J. W. WS2 nanoflakes based selective ammonia sensors at room temperature. Sens. Actuators B: Chem. 2017, 240, 273–277.

    CAS  Google Scholar 

  211. Li, X. H.; Li, S. S.; Yong, Y. L.; Zhang, Z. R. Adsorption of NH3 onto vacancy-defected Ti2CO2 monolayer by first-principles calculations. Appl. Surf. Sci. 2020, 504, 144325.

    Google Scholar 

  212. Xiao, B.; Li, Y. C.; Yu, X. F.; Cheng, J. B. MXenes: Reusable materials for NH3 sensor or capturer by controlling the charge injection. Sen. Actuators B: Chem. 2016, 235, 103–109.

    CAS  Google Scholar 

  213. Junkaew, A.; Arróyave, R. Enhancement of the selectivity of MXenes (M2C, M = Ti, V, Nb, Mo) via oxygen-functionalization: Promising materials for gas-sensing and -separation. Phys. Chem. Chem. Phys. 2018, 20, 6073–6082.

    CAS  Google Scholar 

  214. Linsebigler, L. A.; Lu, G. Q.; Yates, T. J. Jr. Photocatalysis on TiO2 surfaces:Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735–758.

    CAS  Google Scholar 

  215. Tang, S. S.; Zhang, F. Y.; Zhao, J.; Talaat, W.; Soto, F.; Karshalev, E.; Chen, C. R.; Hu, Z. H.; Lu, X. L.; Li, J. X. et al. Structure-dependent optical modulation of propulsion and collective behavior of acoustic/light-driven hybrid microbowls. Adv. Funct. Mater. 2019, 29, 1809003.

    Google Scholar 

  216. Liu, L. P.; Li, X. G.; Dutta, P. K.; Wang, J. Room temperature impedance spectroscopy-based sensing of formaldehyde with porous TiO2 under UV illumination. Sens. Actuators B: Chem. 2013, 185, 1–9.

    CAS  Google Scholar 

  217. Comini, E.; Faglia, G.; Sberveglieri, G. UV light activation of tin oxide thin films for NO2 sensing at low temperatures. Sens. Actuators B: Chem. 2001, 78, 73–77.

    CAS  Google Scholar 

  218. Zou, H. Y.; Li, X. G.; Peng, W. B.; Wu, W. Z.; Yu, R. M.; Wu, C. S.; Ding, W. B.; Hu, F.; Liu, R. Y.; Zi, Y. H. et al. Piezo-phototronic effect on selective electron or hole transport through depletion region of Vis-NIR broadband photodiode. Adv. Mater. 2017, 29, 1701412.

    Google Scholar 

  219. Prades, J. D.; Jimenez-Diaz, R.; Hernandez-Ramirez, F.; Barth, S.; Cirera, A.; Romano-Rodríguez, A.; Mathur, S.; Morante, J. R. Equivalence between thermal and room temperature UV light-modulated responses of gas sensors based on individual SnO2 nanowires. Sens. Actuators B: Chem. 2009, 140, 337–341.

    CAS  Google Scholar 

  220. Gu, D.; Li, X. G.; Wang, H. S.; Li, M. Z.; Xi, Y.; Chen, Y. P.; Wang, J.; Rumyntseva, M. N.; Gaskov, A. M. Light enhanced VOCs sensing of WS2 microflakes based chemiresistive sensors powered by triboelectronic nangenerators. Sens. Actuators B: Chem. 2018, 256, 992–1000.

    CAS  Google Scholar 

  221. Kulyuk, L.; Dumcehnko, D.; Bucher, E.; Friemelt, K.; Schenker, O.; Charron, L.; Fortin, E.; Dumouchel, T. Excitonic luminescence of the Br2-intercalated layered semiconductors 2H-WS2. Phys. Rev. B 2005, 72, 075336.

    Google Scholar 

  222. Braga, D.; Gutiérrez Lezama, I.; Berger, H.; Morpurgo, A. F. Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. Nano Lett. 2012, 12, 5218–5223.

    CAS  Google Scholar 

  223. Kuc, A.; Zibouche, N.; Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 2011, 83, 245213.

    Google Scholar 

  224. Jia, Q. Q.; Ji, H. M.; Wang, D. H.; Bai, X.; Sun, X. H.; Jin, Z. G. Exposed facets induced enhanced acetone selective sensing property of nanostructured tungsten oxide. J. Mater. Chem. A 2014, 2, 13602–13611.

    CAS  Google Scholar 

  225. Zhou, T. T.; Liu, X. P.; Zhang, R.; Wang, Y. B.; Zhang, T. NiO/NiCo2O4 truncated nanocages with PdO catalyst functionalization as sensing layers for acetone detection. ACS Appl. Mater. Interfaces 2018, 10, 37242–37250.

    CAS  Google Scholar 

  226. Haija, M. A.; Abu-Hani, A. F. S.; Hamdan, N.; Stephen, S.; Ayesh, A. I. Characterization of H2S gas sensor based on CuFe2O4 nanoparticles. J. Alloys Compd. 2017, 690, 461–468.

    Google Scholar 

  227. Liu, C. H.; Tai, H. L.; Zhang, P.; Yuan, Z.; Du, X. S.; Xie, G. Z.; Jiang, Y. D. A high-performance flexible gas sensor based on self-assembled PANI-CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature. Sens. Actuators B: Chem. 2018, 261, 587–597.

    CAS  Google Scholar 

  228. Zhang, W. Y.; Zhang, X. P.; Wu, Z. F.; Abdurahman, K.; Cao, Y. L.; Duan, H. M.; Jia, D. Z. Mechanical, electromagnetic shielding and gas sensing properties of flexible cotton fiber/polyaniline composites. Compos. Sci. Technol. 2020, 188, 107966.

    CAS  Google Scholar 

  229. Wang, S.; Jiang, Y. D.; Tai, H. L.; Liu, B. H.; Duan, Z. H.; Yuan, Z.; Pan, H.; Xie, G. Z.; Du, X. S.; Su, Y. J. An integrated flexible self-powered wearable respiration sensor. Nano Energy 2019, 63, 103829.

    CAS  Google Scholar 

  230. Wu, J.; Wu, Z. X.; Ding, H. J.; Wei, Y. M.; Huang, W. X.; Yang, X.; Li, Z. Y.; Qiu, L.; Wang, X. T. Flexible, 3D SnS2/reduced graphene oxide heterostructured NO2 sensor. Sens. Actuators B: Chem. 2020, 305, 127445.

    CAS  Google Scholar 

  231. Park, H. J.; Kim, W. J.; Lee, H. K.; Lee, D. S.; Shin, J. H.; Jun, Y.; Yun, Y. J. Highly flexible, mechanically stable, and sensitive NO2 gas sensors based on reduced graphene oxide nanofibrous mesh fabric for flexible electronics. Sens. Actuators B: Chem. 2018, 257, 846–852.

    CAS  Google Scholar 

  232. Li, W. W.; Chen, R. S.; Qi, W. Z.; Cai, L.; Sun, Y. L.; Sun, M. X.; Li, C.; Yang, X. K.; Xiang, L.; Xie, D. et al. Reduced graphene oxide/mesoporous ZnO NSs hybrid fibers for flexible, stretchable, twisted, and wearable NO2 E-textile gas sensor. ACS Sens. 2019, 4, 2809–2818.

    CAS  Google Scholar 

  233. Shen, S. K.; Zhang, X. F.; Cheng, X. L.; Xu, Y. M.; Gao, S.; Zhao, H.; Zhou, X.; Huo, L. H. Oxygen-vacancy-enriched porous α-MoO3 nanosheets for trimethylamine sensing. ACS Appl. Nano Mater. 2019, 2, 8016–8026.

    CAS  Google Scholar 

  234. Li, Z. H.; Zhou, X. C.; Shi, J. Y.; Zou, X. B.; Huang, X. W.; Tahir, H. E. Preparation of conducting polyaniline/protoporphyrin composites and their application for sensing VOCs. Food Chem. 2019, 276, 291–297.

    CAS  Google Scholar 

  235. Chen, W.; Deng, F. F.; Xu, M.; Wang, J.; Wei, Z. B.; Wang, Y. W. GO/Cu2O nanocomposite based QCM gas sensor for trimethylamine detection under low concentrations. Sens. Actuators B: Chem. 2018, 273, 498–504.

    CAS  Google Scholar 

  236. Yang, X. H.; Wang, W. W.; Wang, C. L.; Xie, H.; Fu, H. T.; An, X. Z.; Jiang, X. C.; Yu, A. B. Synthesis of Au decorated V2O5 microflowers with enhanced sensing properties towards amines. Powder Technol. 2018, 339, 408–418.

    CAS  Google Scholar 

  237. Xu, S.; Hansen, B. J.; Wang, Z. L. Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nat. Commun. 2010, 1, 93.

    Google Scholar 

  238. Qu, Z.; Fu, Y. M.; Yu, B. W.; Deng, P.; Xing, L. L.; Xue, X. Y. High and fast H2S response of NiO/ZnO nanowire nanogenerator as a self-powered gas sensor. Sens. Actuators B: Chem. 2016, 222, 78–86.

    CAS  Google Scholar 

  239. Cui, S. W.; Zheng, Y. B.; Zhang, T. T.; Wang, D. A.; Zhou, F.; Liu, W. M. Self-powered ammonia nanosensor based on the integration of the gas sensor and triboelectric nanogenerator. Nano Energy 2018, 49, 31–39.

    CAS  Google Scholar 

  240. Wang, S.; Xie, G. Z.; Tai, H. L.; Su, Y. J.; Yang, B. X.; Zhang, Q. P.; Du, X. S.; Jiang, Y. D. Ultrasensitive flexible self-powered ammonia sensor based on triboelectric nanogenerator at room temperature. Nano Energy 2018, 51, 231–240.

    CAS  Google Scholar 

  241. Zhao, K.; Gu, G. Q.; Zhang, Y. N.; Zhang, B.; Yang, F.; Zhao, L.; Zheng, M. L.; Cheng, G.; Du, Z. L. The self-powered CO2 gas sensor based on gas discharge induced by triboelectric nanogenerator. Nano Energy 2018, 53, 898–905.

    CAS  Google Scholar 

  242. Chang, J. Y.; Meng, H.; Li, C. S.; Gao, J. M.; Chen, S. Q.; Hu, Q.; Li, H.; Feng, L. A wearable toxic gas-monitoring device based on triboelectric nanogenerator for self-powered aniline early warning. Adv. Mater. Technol. 2020, 5, 1901087.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51777215), the Original Innovation Special Project of Science and Technology Plan of Qingdao West Coast New Area (No. 2020-85), and the Special Foundation of the Taishan Scholar Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongzhi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Pan, W., Tang, M. et al. Diversiform gas sensors based on two-dimensional nanomaterials. Nano Res. 16, 11959–11991 (2023). https://doi.org/10.1007/s12274-022-5233-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5233-2

Keywords

Navigation