Skip to main content

Low-Dimensional Advanced Functional Materials as Hazardous Gas Sensing

  • Chapter
  • First Online:
Advanced Functional Materials for Optical and Hazardous Sensing

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 27))

Abstract

The intriguing structural, chemical, physical, and electrical properties of low dimensional advanced functional nanomaterials have been proven to be promising ultra-sensitive gas detectors. Low-dimensional materials (i.e., 0D, 1D, and 2D) have an extraordinarily enhanced surface-area-to-volume ratio, revealing a great number of interaction points with molecular analytes. Gas sensor built from these materials responds swiftly and reliably to slight external perturbations on sensing channel material via electrical transduction, demonstrating fast response/recovery, specific selectivity, and excellent stability. In this chapter, we thoroughly discuss the capabilities of gas sensing in the area of sensitive detection of dangerous gases utilizing a range of low-dimensional sensing materials and hybrid combinations. The objective is to obtain a better knowledge of the material design of various nanostructures and to give appropriate design recommendations to help enhance the device performance of nanomaterial-based gas sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. X. Geng, S. Li, L. Mawella-Vithanage, T. Ma, M. Kilani, B. Wang, L. Ma, C.C. Hewa-Rahinduwage, A. Shafikova, E. Nikolla, G. Mao, S.L. Brock, L. Zhang, L. Luo, Atomically dispersed Pb ionic sites in PbCdSe quantum dot gels enhance room-temperature NO2 sensing. Nat. Commun. 12, 4895 (2021)

    Google Scholar 

  2. R. Ghosh, K.Y. Pin, V.S. Reddy, W.A.D.M. Jayathilaka, D. Ji, W. Serrano-García, S.K. Bhargava, S. Ramakrishna, A. Chinnappan, Micro/nanofiber-based noninvasive devices for health monitoring diagnosis and rehabilitation. Appl. Phys. Rev. 7(4), 041309 (2020)

    Google Scholar 

  3. U. Kumar, Y.-N. Li, Z.-Y. Deng, P.-C. Chiang, B.C. Yadav, C.-H. Wu, Nanoarchitectonics with lead sulfide quantum dots for room-temperature real-time ozone trace detection with different light exposure. J. Alloys Compd. 926, 166828 (2022)

    Google Scholar 

  4. Z. Zhu, Z.-X. Chiang, W. Ren-Jang, U. Kumar, W. Chiu-Hsien, A combined experimental and theoretical study of composite SnO2–BiVO4 for selective NO2 sensing. Mater. Chem. Phys. 292, 126868 (2022)

    Article  Google Scholar 

  5. U. Kumar, S.-M. Huang, Z.-I. Deng, C.-X. Yang, W.-M. Huang, C.-H. Wu, Comparative DFT dual gas adsorption model of ZnO and Ag/ZnO with experimental applications as gas detection at ppb level. Nanotechnology 33 (2021)

    Google Scholar 

  6. J.W. Birks, A.A. Turnipseed, P.C. Andersen, C.J. Williford, S. Strunk, B. Carpenter, C.A. Ennis, Portable calibrator for NO based on the photolysis of N2O and a combined NO2/NO/O3 source for field calibrations of air pollution monitors. Atmos. Meas. Tech. 13, 1001–1018 (2020)

    Google Scholar 

  7. J. Park, Y. Kim, S.Y. Park, S.J. Sung, H.W. Jang, C.R. Park, Band gap engineering of graphene oxide for ultrasensitive NO2 gas sensing. Carbon 159, 175–184 (2020)

    Google Scholar 

  8. B. Kumar, M. Llorente, J. Froehlich, T. Dang, A. Sathrum, C.P. Kubiak, Photochemical and photoelectrochemical reduction of CO2. Annu. Rev. Phys. Chem. 63, 541–569 (2012)

    Article  ADS  Google Scholar 

  9. R. Malik, V.K. Tomer, Y.K. Mishra, L. Lin, Functional gas sensing nanomaterials: a panoramic view. Appl. Phys. Rev. 7(2), 021301 (2020)

    Google Scholar 

  10. S.D. Ghongade, M.R. Waikar, R.K. Sonker, S.K. Chakarvarti, R.G. Sonkawade, Gas sensors based on hybrid nanomaterial, in Smart Nanostructure Materials and Sensor Technology (Springer Nature Singapore, Singapore, 2022), pp. 261–283

    Google Scholar 

  11. A.M. Bagwan, M.R. Waikar, R.K. Sonker, S.K. Chakarvarti, R.G. Sonkawade, Gas sensor based on ferrite materials, in Smart Nanostructure Materials and Sensor Technology (Springer Nature Singapore, Singapore, 2022), pp. 285–307

    Google Scholar 

  12. R.K. Sonker, M. Singh, U. Kumar, B.C. Yadav, MWCNT doped ZnO nanocomposite thin film as LPG sensing. J. Inorg. Organomet. Polym. Mater. 26, 1434–1440 (2016)

    Google Scholar 

  13. R.K. Sonker, B.C. Yadav, G.I. Dzhardimalieva, Preparation and properties of nanostructured PANI thin film and its application as low temperature NO2 sensor. J. Inorg. Organomet. Polym. Mater. 26, 1428–1433 (2016)

    Google Scholar 

  14. R.K. Sonker, B.C. Yadav, V. Gupta, M. Tomar, Fabrication and characterization of ZnO-TiO2-PANI (ZTP) micro/nanoballs for the detection of flammable and toxic gases. J. Hazard. Mater. 370, 126–137 (2019)

    Google Scholar 

  15. C. Gautam, C.S. Tiwary, L.D. Machado, S. Jose, S. Ozden, S. Biradar, D.S. Galvao et al., Synthesis and porous h-BN 3D architectures for effective humidity and gas sensors. RSC Adv. 6(91), 87888–87896 (2016)

    Google Scholar 

  16. R.K. Sonker, K. Singh, R. Sonkawade (eds.), Smart Nanostructure Materials and Sensor Technology (Springer Nature, 2022)

    Google Scholar 

  17. M.R. Waikar, R.K. Sonker, S. Gupta, S.K. Chakarvarti, R.G. Sonkawade, Post-γ -irradiation effects on structural, optical and morphological properties of chemical vapour deposited MWCNTs. Mater. Sci. Semicond. Process. 110, 104975 (2020)

    Google Scholar 

  18. K. Kumar, A. Singh, U. Kumar, R.K. Tripathi, B.C. Yadav, The beauty inhabited inside the modified Graphene for moisture detection at different frequencies. J. Mater. Sci. Mater. Electron. 31, 10836–10845 (2020)

    Google Scholar 

  19. Z.-Y. Deng, U. Kumar, C.-H. Ke, C.-W. Lin, W.-M. Huang, C.-H. Wu, A simple and fast method for the fabrication of p-type β-Ga2O3 by electrochemical oxidation method with DFT interpretation. Nanotechnology 34, 075704 (2023)

    Google Scholar 

  20. U. Kumar, R. Gautam, R.K. Sonker, B.C. Yadav, K.-L. Chan, C.-H. Wu, W.-M. Huang, Micro and nanofibers-based sensing devices, in Smart Nanostructure Materials and Sensor Technology (Springer Nature Singapore, Singapore, 2022), pp. 97–112

    Google Scholar 

  21. U. Kumar, H.-W. Hsieh, Y.-C. Liu, Z.-Y. Deng, K.-L. Chen, W.-M. Huang, C.-H. Wu, Revealing a highly sensitive sub-ppb-level NO2 gas-sensing capability of novel architecture 2D/0D MoS2/SnS heterostructures with DFT interpretation. ACS Appl. Mater. Interfaces 14, 32279–32288 (2022)

    Google Scholar 

  22. U. Kumar, Y.-H. Yang, Z.-Y. Deng, M.-W. Lee, W.-M. Huang, C.-H. Wu, In situ growth of ternary metal sulfide based quantum dots to detect dual gas at extremely low levels with theoretical investigations. Sens. Actuators B Chem. 353, 131192 (2022)

    Google Scholar 

  23. A. Bag, N.-E. Lee, Gas sensing with heterostructures based on two-dimensional nanostructured materials: a review. J. Mater. Chem. C 7(43), 13367–13383 (2019)

    Article  Google Scholar 

  24. B. Sutapun, Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing. Sens. Actuators B Chem. 60, 27–34 (1999)

    Article  Google Scholar 

  25. C. Xu, J. Tamaki, N. Miura, N. Yamazoe, Grain size effects on gas sensitivity of porous SnO2-based elements. Sens. Actuators, B Chem. 3(2), 147–155 (1991)

    Article  Google Scholar 

  26. C. Zhang, Y. Luo, X. Jiaqiang, M. Debliquy, Room temperature conductive type metal oxide semiconductor gas sensors for NO2 detection. Sens. Actuators, A 289, 118–133 (2019)

    Article  Google Scholar 

  27. S. Jaballah, H. Dahman, G. Neri, L. El Mir, Effect of Al and Mg Co-doping on the microstructural and gas-sensing characteristics of ZnO nanoparticles. J. Inorg. Organomet. Polym Mater. 31, 1653–1667 (2021)

    Article  Google Scholar 

  28. M. Poloju, N. Jayababu, E. Venkateshwer Rao, R.G. Rao, M.V. Ramana Reddy, Development of CdO/ZnO nanocomposites for the rapid detection and discrimination of n-butanol. Surf. Interfaces 20, 100586 (2020)

    Google Scholar 

  29. E. Cao, H. Wang, X. Wang, Y. Yang, W. Hao, L. Sun, Y. Zhang, Enhanced ethanol sensing performance for chlorine doped nanocrystalline LaFeO3-δ powders by citric sol-gel method. Sens. Actuators, B Chem. 251, 885–893 (2017)

    Article  Google Scholar 

  30. X.-T. Yin, W.-D. Zhou, J. Li, Q. Wang, F.-Y. Wu, D. Dastan, D. Wang, H. Garmestani, X.-M. Wang, Ş. Ţălu, A highly sensitivity and selectivity Pt-SnO2 nanoparticles for sensing applications at extremely low level hydrogen gas detection. J. Alloys Compd. 805, 229–236 (2019)

    Google Scholar 

  31. S.M. Patil, S.A. Vanalakar, A.G. Dhodamani, S.P. Deshmukh, V.L. Patil, P.S. Patil, S.D. Delekar, NH3 gas sensing performance of ternary TiO2/SnO2/WO3 hybrid nanostructures prepared by ultrasonic-assisted sol–gel method. J. Mater. Sci. Mater. Electron. 29, 11830–11839 (2018)

    Google Scholar 

  32. R.K. Sonker, B.C. Yadav, Development of Fe2O3–PANI nanocomposite thin film based sensor for NO2 detection. J. Taiwan Inst. Chem. Eng. 77, 276–281 (2017)

    Google Scholar 

  33. S. He,Thin coating technologies and applications in high-temperature solid oxide fuel cells, in Functional Thin Films Technology (CRC Press, 2021), pp. 83–126

    Google Scholar 

  34. R.K. Sonker, B.C. Yadav, Chemical route deposited SnO2, SnO2-Pt and SnO2-Pd thin films for LPG detection. Adv. Sci. Lett. 20(5–6), 1023–1027 (2014)

    Google Scholar 

  35. D. Feng, D. Lingling, X. Xing, C. Wang, J. Chen, Z. Zhu, Y. Tian, D. Yang, Highly sensitive and selective NiO/WO3 composite nanoparticles in detecting H2S biomarker of halitosis. ACS Sens. 6(3), 733–741 (2021)

    Article  Google Scholar 

  36. M. Chen, Y. Zhang, J. Zhang, K. Li, T. Lv, K. Shen, Z. Zhu, Q. Liu, Facile lotus-leaf-templated synthesis and enhanced xylene gas sensing properties of Ag-LaFeO3 nanoparticles. J. Mater. Chem. C. 6, 6138–6145 (2018)

    Google Scholar 

  37. W. Zhang, Y. Shen, J. Zhang, H. Bi, S. Zhao, P. Zhou, C. Han, D. Wei, N. Cheng, Low-temperature H2S sensing performance of Cu-doped ZnFe2O4 nanoparticles with spinel structure. Appl. Surf. Sci. 470, 581–590 (2019)

    Article  ADS  Google Scholar 

  38. M. Karmaoui, S.G. Leonardi, M. Latino, D.M. Tobaldi, N. Donato, R.C. Pullar, M.P. Seabra, J.A. Labrincha, G. Neri, “t-decorated In2O3 nanoparticles and their ability as a highly sensitive (<10 ppb) acetone sensor for biomedical applications. Sens. Actuators B Chem. 230, 697–705 (2016)

    Google Scholar 

  39. X.-T. Yin, L. Tao, Fabrication and gas sensing properties of Au-loaded SnO2 composite nanoparticles for low concentration hydrogen. J. Alloy. Compd. 727, 254–259 (2017)

    Article  Google Scholar 

  40. H. Zhang, H. Qin, P. Zhang, Y. Chen, J. Hu, Low concentration acetone gas sensing properties of 3 wt% Pd-doped SmCoxFe1-xO3 nanocrystalline powders under UV light illumination. Sens. Actuators B Chem. 260, 33–41 (2018)

    Google Scholar 

  41. Z. Wang, L. Zhu, S. Sun, J. Wang, W. Yan, One-dimensional nanomaterials in resistive gas sensor: from material design to application. Chemosensors 9(8), 198 (2021)

    Article  Google Scholar 

  42. L. Kong, X. Li, P. Song, F. Ma, Porous graphitic carbon nitride nanosheets for photocatalytic degradation of formaldehyde gas. Chem. Phys. Lett. 762, 138132 (2021)

    Article  Google Scholar 

  43. X. Liang, Z. Chen, H. Wu, L. Guo, C. He, B. Wang, Y. Wu, Enhanced NH3-sensing behavior of 2,9,16,23-tetrakis(2,2,3,3-tetrafluoropropoxy) metal(II) phthalocyanine/multi-walled carbon nanotube hybrids: An investigation of the effects of central metals. Carbon N. Y. 80, 268–278 (2014)

    Google Scholar 

  44. R.C. Haddon, L.F. Schneemeyer, J.V. Waszczak, S.H. Glarum, R. Tycko, G. Dabbagh, A.R. Kortan, A.J. Muller, A.M. Mujsce, M.J. Rosseinsky, S.M. Zahurak, A.V. Makhija, F.A. Thiel, K. Raghavachari, E. Cockayne, V. Elser, Experimental and theoretical determination of the magnetic susceptibility of C60 and C70. Nature 350, 46–47 (1991)

    Article  ADS  Google Scholar 

  45. S.-J. Young, Y.-H. Liu, Z.-D. Lin, K. Ahmed, M.D. Nahin Islam Shiblee, S. Romanuik, P.K. Sekhar et al., Multi-walled carbon nanotubes decorated with silver nanoparticles for acetone gas sensing at room temperature. J. Electrochem. Soc. 167(16), 167519 (2020)

    Google Scholar 

  46. R.K. Sonker, A. Sharma, M. Tomar, B.C. Yadav, V. Gupta, Nanocatalyst (Pt, Ag and CuO) doped SnO2 thin film based sensors for low temperature detection of NO2 gas. Adv. Sci. Lett. 20(7–8), 1374–1377 (2014)

    Google Scholar 

  47. F. Qu, X. Zhou, B. Zhang, S. Zhang, C. Jiang, S. Ruan, M. Yang, Fe2O3 nanoparticles-decorated MoO3 nanobelts for enhanced chemiresistive gas sensing. J. Alloy. Compd. 782, 672–678 (2019)

    Article  Google Scholar 

  48. S. Moon, N.M. Vuong, D. Lee, D. Kim, H. Lee, D. Kim, S.-K. Hong, S.-G. Yoon, CO3O4–SWCNT composites for H2S gas sensor application. Sens. Actuators B: Chem. 222, 166–172 (2016)

    Google Scholar 

  49. R. Zhang, M. Zhang, T. Zhou, T. Zhang, Robust cobalt perforated with multi-walled carbon nanotubes as an effective sensing material for acetone detection. Inorg. Chem. Front. 5, 2563–2570 (2018)

    Google Scholar 

  50. L.R. Shobin, S. Manivannan, Silver nanowires-single walled carbon nanotubes heterostructure chemiresistors. Sens. Actuators B: Chem. 256, 7–17 (2018)

    Google Scholar 

  51. M.R. Waikar, P.M. Raste, R.K. Sonker, V. Gupta, M. Tomar, M.D. Shirsat, R.G. Sonkawade, Enhancement in NH3 sensing performance of ZnO thin-film via gamma-irradiation. J. Alloy. Compd. 830, 154641 (2020)

    Article  Google Scholar 

  52. H. Du, J. Wang, S. Meiying, P. Yao, Y. Zheng, Y. Naisen, Formaldehyde gas sensor based on SnO2/In2O3 hetero-nanofibers by a modified double jets electrospinning process. Sens. Actuators, B Chem. 166, 746–752 (2012)

    Article  Google Scholar 

  53. R. Sonker, S. Sabhajeet, B. Yadav, R. Johari, Liquefied petroleum gas detection using SnO2, PANI-SnO2 and Ag-SnO2 composite film fabricated by chemical route. Int. J. Electroact. Mater 5, 6–12 (2017)

    Google Scholar 

  54. S. Gupta, R. Meek, Metal nanoparticles-grafted functionalized graphene coated with nanostructured polyaniline ‘hybrid’nanocomposites as high-performance biosensors. Sens. Actuators, B Chem. 274, 85–101 (2018)

    Article  Google Scholar 

  55. C. Feng, Z. Jiang, J. Wu, B. Chen, G. Lu, C. Huang, Pt-Cr2O3-WO3 composite nanofibers as gas sensors for ultra-high sensitive and selective xylene detection. Sens. Actuators B Chem. 300, 127008 (2019)

    Google Scholar 

  56. L. Vatandoust, A. Habibi, H. Naghshara, S. M. Aref,Fabrication of ZnO-MWCNT nanocomposite sensor and investigation of its ammonia gas sensing properties at room temperature. Synth. Metals 273, 116710 (2021)

    Google Scholar 

  57. R.K. Sonker, B.C. Yadav, A. Sharma, M. Tomar, V. Gupta, Experimental investigations on NO2 sensing of pure ZnO and PANI–ZnO composite thin films. RSC Adv. 6(61), 56149–56158 (2016)

    Google Scholar 

  58. R.K. Sonker, A. Sharma, M. Tomar, V. Gupta, B.C. Yadav, Low temperature operated NO2 gas sensor based on SnO2–ZnO nanocomposite thin film. Adv. Sci. Lett. 20(5–6), 911–916 (2014)

    Google Scholar 

  59. S. Park, Y. Byoun, H. Kang, Y.-J. Song, S.-W. Choi, ZnO nanocluster-functionalized single-walled carbon nanotubes synthesized by microwave irradiation for highly sensitive NO2 detection at room temperature. ACS Omega. 4, 10677–10686 (2019)

    Google Scholar 

  60. Y. Xu, T. Ma, Y. Zhao, L. Zheng, X. Liu, J. Zhang, Multi-metal functionalized tungsten oxide nanowires enabling ultra-sensitive detection of triethylamine. Sens. Actuators, B Chem. 300, 127042 (2019)

    Article  Google Scholar 

  61. T. Wang, L. Cheng, Hollow hierarchical TiO2-SnO2-TiO2 composite nanofibers with increased active-sites and charge transfer for enhanced acetone sensing performance. Sens. Actuators B Chem. 334, 129644 (2021)

    Google Scholar 

  62. Zhou, S. Yi, G.-H. Gweon, A.V. Fedorov, P.N. de First, W.A. De Heer, D.-H. Lee, F. Guinea, A.H. Castro Neto, A. Lanzara, Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 6(10), 770–775

    Google Scholar 

  63. K.Y. Ko, K. Park, S. Lee, Y. Kim, W.J. Woo, D. Kim, J.-G. Song, J. Park, H. Kim, Recovery improvement for large-area tungsten diselenide gas sensors. ACS Appl. Mater. Interfaces 10(28), 23910–23917 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utkarsh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, U., Wu, CH., Singh, K., Yadav, B.C., Huang, WM. (2023). Low-Dimensional Advanced Functional Materials as Hazardous Gas Sensing. In: Sonker, R.K., Singh, K., Sonkawade, R. (eds) Advanced Functional Materials for Optical and Hazardous Sensing. Progress in Optical Science and Photonics, vol 27. Springer, Singapore. https://doi.org/10.1007/978-981-99-6014-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6014-9_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6013-2

  • Online ISBN: 978-981-99-6014-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics