Skip to main content
Log in

An active bacterial anti-adhesion strategy based on directional transportation of bacterial droplets driven by triboelectric nanogenerators

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

An active bacterial anti-adhesion strategy based on directional transportation of bacterial droplets driven by a triboelectric nanogenerator (TENG) has not been reported to date, although passive defense approaches can prevent bacterial adhesion by regulating superwetting surfaces combined with incorporated antibacterial substances. Here a triboelectric nanogenerator driving droplet system (TNDDS) was built to drive directional transportation of bacterial droplets to be eliminated, which comprises TENG with periodical frictional Kapton film and aluminum foils and a superhydrophobic driving platform (SDP) with paralleled driving electrodes. The current generated by the TENG triboelectricity is transmitted to the paralleled driving electrodes to form an electric field driving the directional transportation of charged droplets. The critical value of the driven droplet volume on SDP is closely related to the distributed electrodes’ distance and width, and the driving distance of droplets is related to the number of electrodes. More crucially, TNDDS can actively drive the charged droplets of prepared triangular silver nanoprisms (Ag NPs) forward and back to mix with and remove a tiny bacterial droplet on an open SDP or in a tiny semi-enclosed channel. Bacteria could be killed by releasing Ag+ and effectively removed by TNDDS by regulating the motion direction. Generally, this approach offers a promising application for removing bacteria from material surfaces driven by TENG and opens a new avenue for bacterial anti-adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Costerton, J. W.; Stewart, P. S.; Greenberg, E. P. Bacterial biofilms: A common cause of persistent infections. Science 1999, 284, 1318–1322.

    Article  CAS  Google Scholar 

  2. Yang, X. M.; Hou, J. W.; Tian, Y.; Zhao, J. Y.; Sun, Q. Q.; Zhou, S. B. Antibacterial surfaces: Strategies and applications. Sci. China Technol. Sci. 2022, 65, 1000–1010.

    Article  Google Scholar 

  3. Rajasekar, A.; Anandkumar, B.; Maruthamuthu, S.; Ting, Y. P.; Rahman, P. K. S. M. Characterization of corrosive bacterial consortia isolated from petroleum-product-transporting pipelines. Appl. Microbiol. Biotechnol. 2010, 85, 1175–1188.

    Article  CAS  Google Scholar 

  4. Khan, M. M. T.; Ista, L. K.; Lopez, G. P.; Schuler, A. J. Experimental and theoretical examination of surface energy and adhesion of nitrifying and heterotrophic bacteria using self-assembled monolayers. Environ. Sci. Technol. 2011, 45, 1055–1060.

    Article  CAS  Google Scholar 

  5. Tyers, M.; Wright, G. D. Drug combinations: A strategy to extend the life of antibiotics in the 21st century. Nat. Rev. Microbiol. 2019, 17, 141–155.

    Article  CAS  Google Scholar 

  6. Lin, J.; Chen, X. Y.; Chen, C. Y.; Hu, J. T.; Zhou, C. L.; Cai, X. F.; Wang, W.; Zheng, C.; Zhang, P. P.; Cheng, J. et al. Durably antibacterial and bacterially antiadhesive cotton fabrics coated by cationic fluorinated polymers. ACS Appl. Mater. Interfaces 2018, 10, 6124–6136.

    Article  CAS  Google Scholar 

  7. Wang, Y. F.; Liu, Z. L.; Wei, X. C.; Liu, K. L.; Wang, J. H.; Hu, J. T.; Lin, J. An integrated strategy for achieving oil-in-water separation, removal, and anti-oil/dye/bacteria-fouling. Chem. Eng. J. 2021, 413, 127493.

    Article  CAS  Google Scholar 

  8. Fatima, A.; Yasir, S.; Ul-Islam, M.; Kamal, T.; Ahmad, W.; Abbas, Y.; Manan, S.; Ullah, M. W.; Yang, G. Ex situ development and characterization of green antibacterial bacterial cellulose-based composites for potential biomedical applications. Adv. Compos. Hybrid Mater. 2021, 5, 307–321.

    Article  Google Scholar 

  9. Zhou, K. C.; Wang, M. L.; Zhou, Y. Q.; Sun, M. J.; Xie, Y. F.; Yu, D. G. Comparisons of antibacterial performances between electrospun polymer@drug nanohybrids with drug-polymer nanocomposites. Adv. Compos. Hybrid Mater. 2022, 5, 907–919.

    Article  CAS  Google Scholar 

  10. Feng, L.; Li, S.; Li, Y.; Li, H.; Zhang, L.; Zhai, J.; Song, Y.; Liu, B.; Jiang, L.; Zhu, D. Super-hydrophobic surfaces: From natural to artificial. Adv. Mater. 2002, 14, 1857–1860.

    Article  CAS  Google Scholar 

  11. Barthlott, W.; Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202, 1–8.

    Article  CAS  Google Scholar 

  12. Geyer, F.; D’Acunzi, M.; Yang, C. Y.; Müller, M.; Baumli, P.; Kaltbeitzel, A.; Mailänder, V.; Encinas, N.; Vollmer, D.; Butt, H. J. How to coat the inside of narrow and long tubes with a super-liquid-repellent layer—A promising candidate for antibacterial catheters. Adv. Mater. 2019, 31, 1801324.

    Article  Google Scholar 

  13. Jiang, R. J.; Hao, L. W.; Song, L. J.; Tian, L. M.; Fan, Y.; Zhao, J.; Liu, C. Z.; Ming, W. H.; Ren, L. Q. Lotus-leaf-inspired hierarchical structured surface with non-fouling and mechanical bactericidal performances. Chem. Eng. J. 2020, 398, 125609.

    Article  CAS  Google Scholar 

  14. Lin, J.; Cai, X. F.; Liu, Z. L.; Liu, N.; Xie, M.; Zhou, B. P.; Wang, H. Q.; Guo, Z. H. Anti-liquid-interfering and bacterially antiadhesive strategy for highly stretchable and ultrasensitive strain sensors based on Cassie—Baxter wetting state. Adv. Funct. Mater. 2020, 30, 2000398.

    Article  CAS  Google Scholar 

  15. Lin, J.; Hu, J. T.; Wang, W.; Liu, K. L.; Zhou, C. L.; Liu, Z. L.; Kong, S. F.; Lin, S. D.; Deng, Y. C.; Guo, Z. H. Thermo and light-responsive strategies of smart titanium-containing composite material surface for enhancing bacterially anti-adhesive property. Chem. Eng. J. 2021, 407, 125783.

    Article  CAS  Google Scholar 

  16. Lin, J.; Wang, Y. F.; Wei, X. C.; Kong, S. F.; Liu, Z. L.; Liu, J. J.; Zhang, F. M.; Lin, S. D.; Ji, B.; Zhou, Z. Z. et al. Controllable antibacterial and bacterially anti-adhesive surface fabricated by a bio-inspired beetle-like macromolecule. Int. J. Biol. Macromol. 2020, 157, 553–560.

    Article  CAS  Google Scholar 

  17. Gui, L. S.; Lin, J.; Liu, J. J.; Zuo, J. L.; Wang, Q. Y.; Jiang, W. F.; Feng, T. Y.; Li, S. L.; Wang, S. T.; Liu, Z. L. Difference and association of antibacterial and bacterial anti-adhesive performances between smart Ag/AgCl/TiO2 composite surfaces with switchable wettability. Chem. Eng. J. 2022, 431, 134103.

    Article  CAS  Google Scholar 

  18. Hu, J. T.; Lin, J.; Zhang, Y. Y.; Lin, Z. K.; Qiao, Z. W.; Liu, Z. L.; Yang, W.; Liu, X. G.; Dong, M. Y.; Guo, Z. H. A new anti-biofilm strategy of enabling arbitrary surfaces of materials and devices with robust bacterial anti-adhesion via a spraying modified microsphere method. J. Mater. Chem. A 2019, 7, 26039–26052.

    Article  CAS  Google Scholar 

  19. Wang, J. H.; Wu, H.; Yang, Y. M.; Yan, R.; Zhao, Y.; Wang, Y. H.; Chen, A. H.; Shao, S. L.; Jiang, P. J.; Li, Y. Q. Bacterial species-identifiable magnetic nanosystems for early sepsis diagnosis and extracorporeal photodynamic blood disinfection. Nanoscale 2018, 10, 132–141.

    Article  CAS  Google Scholar 

  20. Jiang, S. Y.; Cao, Z. Q. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv. Mater. 2010, 22, 920–932.

    Article  CAS  Google Scholar 

  21. Zhao, W. Q.; Yang, J.; Guo, H. S.; Xu, T.; Li, Q. S.; Wen, C. Y.; Sui, X. J.; Lin, C. G.; Zhang, J. W.; Zhang, L. Slime-resistant marine anti-biofouling coating with PVP-based copolymer in PDMS matrix. Chem. Eng. Sci. 2019, 207, 790–798.

    Article  CAS  Google Scholar 

  22. Mei, Y.; Yu, K.; Lo, J. C. Y.; Takeuchi, L. E.; Hadjesfandiari, N.; Yazdani-Ahmadabadi, H.; Brooks, D. E.; Lange, D.; Kizhakkedathu, J. N. Polymer—nanoparticle interaction as a design principle in the development of a durable ultrathin universal binary antibiofilm coating with long-term activity. ACS Nano 2018, 12, 11881–11891.

    Article  CAS  Google Scholar 

  23. Zhang, D. W.; Wang, L. T.; Qian, H. C.; Li, X. G. Superhydrophobic surfaces for corrosion protection: A review of recent progresses and future directions. J. Coat. Technol. Res. 2016, 13, 11–29.

    Article  Google Scholar 

  24. Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

    Article  CAS  Google Scholar 

  25. Wang, S. H.; Mu, X. J.; Wang, X.; Gu, A. Y.; Wang, Z. L.; Yang, Y. Elasto-aerodynamics-driven triboelectric nanogenerator for scavenging air-flow energy. ACS Nano 2015, 9, 9554–9563.

    Article  CAS  Google Scholar 

  26. Zhang, Y.; Zeng, Q. X.; Wu, Y.; Wu, J.; Yuan, S. L.; Tan, D. J.; Hu, C. G.; Wang, X. An ultra-durable windmill-like hybrid nanogenerator for steady and efficient harvesting of low-speed wind energy. Nano-Micro Lett. 2020, 12, 175.

    Article  CAS  Google Scholar 

  27. Chen, J.; Zhu, G.; Yang, W. Q.; Jing, Q. S.; Bai, P.; Yang, Y.; Hou, T. C.; Wang, Z. L. Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv. Mater. 2013, 25, 6094–6099.

    Article  CAS  Google Scholar 

  28. Yang, W. Q.; Chen, J.; Zhu, G.; Wen, X. N.; Bai, P.; Su, Y. J.; Lin, Y.; Wang, Z. L. Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator. Nano Res. 2013, 6, 880–886.

    Article  CAS  Google Scholar 

  29. Xu, M. Y.; Zhao, T. C.; Wang, C.; Zhang, S. L.; Li, Z.; Pan, X. X.; Wang, Z. L. High power density tower-like triboelectric nanogenerator for harvesting arbitrary directional water wave energy. ACS Nano 2019, 13, 1932–1939.

    CAS  Google Scholar 

  30. Wang, Y. Q.; Huang, T.; Gao, Q.; Li, J. P.; Wen, J. M.; Wang, Z. L.; Cheng, T. H. High-voltage output triboelectric nanogenerator with DC/AC optimal combination method. Nano Res. 2022, 15, 3239–3245.

    Article  CAS  Google Scholar 

  31. Yang, W. Q.; Chen, J.; Jing, Q. S.; Yang, J.; Wen, X. N.; Su, Y. J.; Zhu, G.; Bai, P.; Wang, Z. L. 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Adv. Funct. Mater. 2014, 24, 4090–4096.

    Article  CAS  Google Scholar 

  32. Wang, S. H.; Lin, L.; Wang, Z. L. Triboelectric nanogenerators as self-powered active sensors. Nano Energy 2015, 11, 436–462.

    Article  CAS  Google Scholar 

  33. Tan, D. J.; Zeng, Q. X.; Wang, X.; Yuan, S. L.; Luo, Y. L.; Zhang, X. F.; Tan, L. M.; Hu, C. G.; Liu, G. L. Anti-overturning fully symmetrical triboelectric nanogenerator based on an elliptic cylindrical structure for all-weather blue energy harvesting. Nano-Micro Lett. 2022, 14, 124.

    Article  CAS  Google Scholar 

  34. Wang, D. Y.; Zhang, D. Z.; Li, P.; Yang, Z. M.; Mi, Q.; Yu, L. D. Electrospinning of flexible poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro Lett. 2021, 13, 57.

    Article  Google Scholar 

  35. Yang, X. D.; Xu, L.; Lin, P.; Zhong, W.; Bai, Y.; Luo, J. J.; Chen, J.; Wang, Z. L. Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting. Nano Energy 2019, 60, 404–412.

    Article  CAS  Google Scholar 

  36. Chen, X. Y.; Wu, Y. L.; Yu, A. F.; Xu, L.; Zheng, L.; Liu, Y. S.; Li, H. X.; Wang, Z. L. Self-powered modulation of elastomeric optical grating by using triboelectric nanogenerator. Nano Energy 2017, 38, 91–100.

    Article  CAS  Google Scholar 

  37. Chen, X. Y.; Pu, X.; Jiang, T.; Yu, A. F.; Xu, L.; Wang, Z. L. Tunable optical modulator by coupling a triboelectric nanogenerator and a dielectric elastomer. Adv. Funct. Mater. 2017, 27, 1603788.

    Article  Google Scholar 

  38. Wen, Z.; Shen, Q. Q.; Sun, X. H. Nanogenerators for self-powered gas sensing. Nano-Micro Lett. 2017, 9, 45.

    Article  Google Scholar 

  39. Zhang, K. W.; Yang, Y. Linear-grating hybridized electromagnetic-triboelectric nanogenerator for sustainably powering portable electronics. Nano Res. 2016, 9, 974–984.

    Article  Google Scholar 

  40. Gao, Y. Y.; Liu, G. X.; Bu, T. Z.; Liu, Y. Y.; Qi, Y. C.; Xie, Y. T.; Xu, S. H.; Deng, W. L.; Yang, W. Q.; Zhang, C. MXene based mechanically and electrically enhanced film for triboelectric nanogenerator. Nano Res. 2021, 14, 4833–4840.

    Article  CAS  Google Scholar 

  41. Ma, M. Y.; Kang, Z.; Liao, Q. L.; Zhang, Q.; Gao, F. F.; Zhao, X.; Zhang, Z.; Zhang, Y. Development, applications, and future directions of triboelectric nanogenerators. Nano Res. 2018, 11, 2951–2969.

    Article  CAS  Google Scholar 

  42. Chen, X. Y.; Jiang, T.; Yao, Y. Y.; Xu, L.; Zhao, Z. F.; Wang, Z. L. Stimulating acrylic elastomers by a triboelectric nanogenerator—Toward self-powered electronic skin and artificial muscle. Adv. Funct. Mater. 2016, 26, 4906–4913.

    Article  CAS  Google Scholar 

  43. Zhang, Q.; Li, N.; Goebl, J.; Lu, Z. D.; Yin, Y. D. A systematic study of the synthesis of silver nanoplates: Is citrate a “magic” reagent? J. Am. Chem. Soc. 2011, 133, 18931–18939.

    Article  CAS  Google Scholar 

  44. Nie, J. H.; Ren, Z. W.; Shao, J. J.; Deng, C. R.; Xu, L.; Chen, X. Y.; Li, M. C.; Wang, Z. L. Self-powered microfluidic transport system based on triboelectric nanogenerator and electrowetting technique. ACS Nano 2018, 12, 1491–1499.

    Article  CAS  Google Scholar 

  45. Li, X.; Zhao, L. L.; Yu, J. Y.; Liu, X. Y.; Zhang, X. L.; Liu, H.; Zhou, W. J. Water splitting: From electrode to green energy system. Nano-Micro Lett. 2020, 12, 131.

    Article  Google Scholar 

  46. Chen, Y.; Lin, J.; Mersal, G. A. M.; Zuo, J. L.; Li, J. L.; Wang, Q. Y.; Feng, Y. H.; Liu, J. W.; Liu, Z. L.; Wang, B. et al. “Several birds with one stone” strategy of pH/thermoresponsive flame-retardant/photothermal bactericidal oil-absorbing material for recovering complex spilled oil. J. Mater. Sci. Technol. 2022, 128, 82–97.

    Article  Google Scholar 

  47. Hu, J. T.; Gui, L. S.; Zhu, M. N.; Liu, K. L.; Chen, Y.; Wang, X. P.; Lin, J. Smart Janus membrane for on-demand separation of oil, bacteria, dye, and metal ions from complex wastewater. Chem. Eng. Sci. 2022, 253, 117586.

    Article  CAS  Google Scholar 

  48. Liu, J.; Zheng, N.; Li, Z. L.; Liu, Z.; Wang, G. Q.; Gui, L. S.; Lin, J. Fast self-healing and antifouling polyurethane/fluorinated polysiloxane-microcapsules-silica composite material. Adv. Compos. Hybrid Mater. 2022, 5, 1899–1909.

    Article  CAS  Google Scholar 

  49. Yu, J. J.; Wei, X. X.; Guo, Y. C.; Zhang, Z. W.; Rui, P. S.; Zhao, Y.; Zhang, W.; Shi, S. W.; Wang, P. H. Self-powered droplet manipulation system for microfluidics based on triboelectric nanogenerator harvesting rotary energy. Lab Chip 2021, 21, 284–295.

    Article  CAS  Google Scholar 

  50. Nauruzbayeva, J.; Sun, Z. H.; Gallo, A. Jr.; Ibrahim, M.; Santamarina, J. C.; Mishra, H. Electrification at water-hydrophobe interfaces. Nat. Commun. 2020, 11, 5285.

    Article  CAS  Google Scholar 

  51. Nie, J. H.; Ren, Z. W.; Xu, L.; Lin, S. Q.; Zhan, F.; Chen, X. Y.; Wang, Z. L. Probing contact-electrification-induced electron and ion transfers at a liquid—solid interface. Adv. Mater. 2020, 32, 1905696.

    Article  CAS  Google Scholar 

  52. Choi, D.; Lee, H.; Im, D. J.; Kang, I. S.; Lim, G.; Kim, D. S.; Kang, K. H. Spontaneous electrical charging of droplets by conventional pipetting. Sci. Rep. 2013, 3, 2037.

    Article  Google Scholar 

  53. Zheng, L.; Wu, Y. L.; Chen, X. Y.; Yu, A. F.; Xu, L.; Liu, Y. S.; Li, H. X.; Wang, Z. L. Self-powered electrostatic actuation systems for manipulating the movement of both microfluid and solid objects by using triboelectric nanogenerator. Adv. Funct. Mater. 2017, 27, 1606408.

    Article  Google Scholar 

  54. Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458.

    Article  CAS  Google Scholar 

  55. Njagi, J.; Chernov, M. M.; Leiter, J. C.; Andreescu, S. Amperometric detection of dopamine in vivo with an enzyme based carbon fiber microbiosensor. Anal. Chem. 2010, 82, 989–996.

    Article  CAS  Google Scholar 

  56. Fortunati, E.; Mattioli, S.; Visai, L.; Imbriani, M.; Fierro, J. L. G.; Kenny, J. M.; Armentano, I. Combined effects of Ag nanoparticles and oxygen plasma treatment on PLGA morphological, chemical, and antibacterial properties. Biomacromolecules 2013, 14, 626–636.

    Article  CAS  Google Scholar 

  57. Panthi, G.; Ranjit, R.; Khadka, S.; Gyawali, K. R.; Kim, H. Y.; Park, M. Characterization and antibacterial activity of rice grain-shaped ZnS nanoparticles immobilized inside the polymer electrospun nanofibers. Adv. Compos. Hybrid Mater. 2020, 3, 8–15.

    Article  CAS  Google Scholar 

  58. Singh, M.; Bajaj, N. K.; Bhardwaj, A.; Singh, P.; Kumar, P.; Sharma, J. Study of photocatalytic and antibacterial activities of graphene oxide nanosheets. Adv. Compos. Hybrid Mater. 2018, 1, 759–765.

    Article  CAS  Google Scholar 

  59. Li, W. R.; Xie, X. B.; Shi, Q. S.; Zeng, H. Y.; Ou-Yang, Y. S.; Chen, Y. B. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol. 2010, 85, 1115–1122.

    Article  CAS  Google Scholar 

  60. Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004, 275, 177–182.

    Article  CAS  Google Scholar 

  61. Marmur, A. Super-hydrophobicity fundamentals: Implications to biofouling prevention. Biofouling 2006, 22, 107–115.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22078077).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Lin, Caiqin Gu or Zhanhu Guo.

Electronic supplementary material

12274_2022_5177_MOESM1_ESM.pdf

An active bacterial anti-adhesion strategy based on directional transportation of bacterial droplets driven by triboelectric nanogenerators

Supplementary material, approximately 308 KB.

Supplementary material, approximately 240 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Li, J., Feng, S. et al. An active bacterial anti-adhesion strategy based on directional transportation of bacterial droplets driven by triboelectric nanogenerators. Nano Res. 16, 1052–1063 (2023). https://doi.org/10.1007/s12274-022-5177-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5177-6

Keywords

Navigation