Skip to main content
Log in

Ultrathin Zn-free anode based on Ti3C2Tx and nanocellulose enabling high-durability aqueous hybrid Zn-Na battery with Zn2+/Na+ co-intercalation mechanism

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

With low cost and high safety, aqueous zinc-based batteries have received considerable interest. Nevertheless, the excess utilization of zinc metal in the anodes of these batteries reduces energy density and increases costs. Herein, an ultrathin electrode of approximately 6.2 μm thick is constructed by coating Ti3C2Tx/nanocellulose hybrid onto a stainless steel foil. This electrode is used as the Zn-free anode for aqueous hybrid Zn-Na battery, in which, a concentrated electrolyte is used to improve electrochemical reversibility. The Ti3C2Tx/nanocellulose coating is found to improve the electrolyte wettability, facilitate desolvation process of hydrated Zn2+ ions, lower nucleation overpotential, improve zinc plating kinetics, guide horizontal zinc plating along the Zn(002) facet, and inhibit parasitic side reactions. It is also found that the Na3V2(PO4)3 cathode material adopts a highly reversible Zn2+/Na+ co-intercalation charge storage mechanism in this system. Thanks to these benefits, the assembled hybrid Zn-Na battery exhibits excellent rate capability, superior cyclability, and good anti-freezing ability. This work provides a new concept of electrode design for electrochemical energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blanc, L. E.; Kundu, D.; Nazar, L. F. Scientific challenges for the implementation of Zn-ion batteries. Joule 2020, 4, 771–799.

    Article  CAS  Google Scholar 

  2. Ma, L.; Schroeder, M. A.; Borodin, O.; Pollard, T. P.; Ding, M. S.; Wang, C. S.; Xu, K. Realizing high zinc reversibility in rechargeable batteries. Nat. Energy 2020, 5, 743–749.

    Article  CAS  Google Scholar 

  3. Zhou, M.; Guo, S.; Li, J. L.; Luo, X. B.; Liu, Z. X.; Zhang, T. S.; Cao, X. X.; Long, M. Q.; Lu, B. G.; Pan, A. Q. et al. Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater. 2021, 33, 2100187.

    Article  CAS  Google Scholar 

  4. Zeng, X. H.; Hao, J. N.; Wang, Z. J.; Mao, J. F.; Guo, Z. P. Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Storage Mater. 2019, 20, 410–437.

    Article  Google Scholar 

  5. Zhang, N.; Chen, X. Y.; Yu, M.; Niu, Z. Q.; Cheng, F. Y.; Chen, J. Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev. 2020, 49, 4203–4219.

    Article  CAS  Google Scholar 

  6. Liu, H. Y.; Wang, J. G.; You, Z. Y.; Wei, C. G.; Kang, F. Y.; Wei, B. Q. Rechargeable aqueous zinc-ion batteries: Mechanism, design strategies and future perspectives. Mater. Today 2021, 42, 73–98.

    Article  Google Scholar 

  7. Chao, D. L.; Zhou, W. H.; Xie, F. X.; Ye, C.; Li, H.; Jaroniec, M.; Qiao, S. Z. Roadmap for advanced aqueous batteries: From design of materials to applications. Sci. Adv. 2020, 6, eaba4098.

    Article  CAS  Google Scholar 

  8. Shi, Y. C.; Chen, Y.; Shi, L.; Wang, K.; Wang, B.; Li, L.; Ma, Y. M.; Li, Y. H.; Sun, Z. H.; Ali, W. et al. An overview and future perspectives of rechargeable zinc batteries. Small 2020, 16, 2000730.

    Article  CAS  Google Scholar 

  9. Wu, C.; Tan, H.; Huang, W.; Liu, C.; Wei, W.; Chen, L.; Yan, Q. The strategies to improve the layered-structure cathodes for aqueous multivalent metal-ion batteries. Mater. Today Energy 2021, 19, 100595.

    Article  CAS  Google Scholar 

  10. Liu, Z. X.; Yang, Q.; Wang, D. H.; Liang, G. J.; Zhu, Y. H.; Mo, F. N.; Huang, Z. D.; Li, X. L.; Ma, L. T.; Tang, T. C. et al. A flexible solid-state aqueous zinc hybrid battery with flat and high-voltage discharge plateau. Adv. Energy Mater. 2019, 9, 1902473.

    Article  CAS  Google Scholar 

  11. Huang, M.; Meng, J. S.; Huang, Z. J.; Wang, X. P.; Mai, L. Q. Ultrafast cation insertion-selected zinc hexacyanoferrate for 1.9 V K-Zn hybrid aqueous batteries. J. Mater. Chem. A 2020, 8, 6631–6637.

    Article  CAS  Google Scholar 

  12. Soundharrajan, V.; Sambandam, B.; Kim, S.; Mathew, V.; Jo, J.; Kim, S.; Lee, J.; Islam, S.; Kim, K.; Sun, Y. K. et al. Aqueous magnesium zinc hybrid battery: An advanced high-voltage and high-energy MgMn2O4 cathode. ACS Energy Lett. 2018, 3, 1998–2004.

    Article  CAS  Google Scholar 

  13. Liu, S.; Lei, T.; Song, Q. Q.; Zhu, J.; Zhu, C. B. High energy, long cycle, and superior low temperature performance aqueous Na-Zn hybrid batteries enabled by a low-cost and protective interphase film-forming electrolyte. ACS Appl. Mater. Interfaces 2022, 14, 11425–11434.

    Article  CAS  Google Scholar 

  14. Zheng, X. H.; Ahmad, T.; Chen, W. Challenges and strategies on Zn electrodeposition for stable Zn-ion batteries. Energy Storage Mater. 2021, 39, 365–394.

    Article  Google Scholar 

  15. Yang, Y.; Liu, C. Y.; Lv, Z. H.; Yang, H.; Zhang, Y. F.; Ye, M. H.; Chen, L. B.; Zhao, J. B.; Li, C. C. Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes. Adv. Mater. 2021, 33, 2007388.

    Article  CAS  Google Scholar 

  16. Pu, X. C.; Jiang, B. Z.; Wang, X. L.; Liu, W. B.; Dong, L. B.; Kang, F. Y.; Xu, C. J. High-performance aqueous zinc-ion batteries realized by MOF materials. Nano-Micro Lett. 2020, 12, 152.

    Article  CAS  Google Scholar 

  17. Zhang, Y. J.; Bi, S. S.; Niu, Z. Q.; Zhou, W. Y.; Xie, S. S. Design of Zn anode protection materials for mild aqueous Zn-ion batteries. Energy Mater. 2022, 2, 200012.

    Article  Google Scholar 

  18. Liu, N.; Li, B.; He, Z. X.; Dai, L.; Wang, H. Y.; Wang, L. Recent advances and perspectives on vanadium- and manganese-based cathode materials for aqueous zinc ion batteries. J. Energy Chem. 2021, 59, 134–159.

    Article  CAS  Google Scholar 

  19. Chen, M. F.; Chen, J. Z.; Zhou, W. J.; Han, X.; Yao, Y. G.; Wong, C. P. Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn-MnO2 batteries. Adv. Mater. 2021, 33, 2007559.

    Article  CAS  Google Scholar 

  20. Chen, M. F.; Zhou, W. J.; Wang, A. R.; Huang, A. X.; Chen, J. Z.; Xu, J. L.; Wong, C. P. Anti-freezing flexible aqueous Zn-MnO2 batteries working at −35 °C enabled by a borax-crosslinked polyvinyl alcohol/glycerol gel electrolyte. J. Mater. Chem. A 2020, 8, 6828–6841.

    Article  CAS  Google Scholar 

  21. Yu, Y. X.; Xu, W.; Liu, X. Q.; Lu, X. H. Challenges and strategies for constructing highly reversible zinc anodes in aqueous zinc-ion batteries: Recent progress and future perspectives. Adv. Sustainable Syst. 2020, 4, 2000082.

    Article  CAS  Google Scholar 

  22. Cao, Z. Y.; Zhuang, P. Y.; Zhang, X.; Ye, M. X.; Shen, J. F.; Ajayan, P. M. Strategies for dendrite-free anode in aqueous rechargeable zinc ion batteries. Adv. Energy Mater. 2020, 10, 2001599.

    Article  CAS  Google Scholar 

  23. Han, C.; Li, W. J.; Liu, H. K.; Dou, S. X.; Wang, J. Z. Principals and strategies for constructing a highly reversible zinc metal anode in aqueous batteries. Nano Energy 2020, 74, 104880.

    Article  CAS  Google Scholar 

  24. Dong, L. B.; Yang, W.; Yang, W.; Tian, H.; Huang, Y. F.; Wang, X. L.; Xu, C. J.; Wang, C. Y.; Kang, F. Y.; Wang, G. X. Flexible and conductive scaffold-stabilized zinc metal anodes for ultralong-life zinc-ion batteries and zinc-ion hybrid capacitors. Chem. Eng. J. 2020, 384, 123355.

    Article  CAS  Google Scholar 

  25. Xie, X. S.; Liang, S. Q.; Gao, J. W.; Guo, S.; Guo, J. B.; Wang, C.; Xu, G. Y.; Wu, X. W.; Chen, G.; Zhou, J. Manipulating the iontransfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 2020, 13, 503–510.

    Article  CAS  Google Scholar 

  26. Zhang, Q.; Luan, J. Y.; Tang, Y. G.; Ji, X. B.; Wang, H. Y. Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 13180–13191.

    Article  CAS  Google Scholar 

  27. Chen, P.; Yuan, X. H.; Xia, Y. B.; Zhang, Y.; Fu, L. J.; Liu, L. L.; Yu, N. F.; Huang, Q. H.; Wang, B.; Hu, X. W. et al. An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries. Adv. Sci. 2021, 8, 2100309.

    Article  CAS  Google Scholar 

  28. Han, D. L.; Cui, C. J.; Zhang, K. Y.; Wang, Z. X.; Gao, J. C.; Guo, Y.; Zhang, Z. C.; Wu, S. C.; Yin, L. C.; Weng, Z. et al. A nonflammable hydrous organic electrolyte for sustainable zinc batteries. Nat. Sustainability 2022, 5, 205–213.

    Article  Google Scholar 

  29. Du, H. H.; Wang, K.; Sun, T. J.; Shi, J. Q.; Zhou, X. Z.; Cai, W. S.; Tao, Z. L. Improving zinc anode reversibility by hydrogen bond in hybrid aqueous electrolyte. Chem. Eng. J. 2022, 427, 131705.

    Article  CAS  Google Scholar 

  30. Liu, C. X.; Xie, X. S.; Lu, B. G.; Zhou, J.; Liang, S. Q. Electrolyte strategies toward better zinc-ion batteries. ACS Energy Lett. 2021, 6, 1015–1033.

    Article  CAS  Google Scholar 

  31. Shang, Y.; Kumar, P.; Musso, T.; Mittal, U.; Du, Q. J.; Liang, X.; Kundu, D. Long-life Zn anode enabled by low volume concentration of a benign electrolyte additive. Adv. Funct. Mater. 2022, 32, 2200606.

    Article  CAS  Google Scholar 

  32. Zeng, X. H.; Mao, J. F.; Hao, J. N.; Liu, J. T.; Liu, S. L.; Wang, Z. J.; Wang, Y. Y.; Zhang, S. L.; Zheng, T.; Liu, J. W. et al. Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 2021, 33, 2007416.

    Article  CAS  Google Scholar 

  33. Guo, X. X.; Zhang, Z. Y.; Li, J. W.; Luo, N. J.; Chai, G. L.; Miller, T. S.; Lai, F. L.; Shearing, P.; Brett, D. J. L.; Han, D. L. et al. Alleviation of dendrite formation on zinc anodes via electrolyte additives. ACS Energy Lett. 2021, 6, 395–403.

    Article  CAS  Google Scholar 

  34. Sun, P.; Ma, L.; Zhou, W. H.; Qiu, M. J.; Wang, Z. L.; Chao, D. L.; Mai, W. Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem., Int. Ed. 2021, 60, 18247–18255.

    Article  CAS  Google Scholar 

  35. Ni, Q.; Jiang, H.; Sandstrom, S.; Bai, Y.; Ren, H. X.; Wu, X. Y.; Guo, Q. B.; Yu, D. X.; Wu, C.; Ji, X. L. A Na3V2(PO4)2O1.6F1.4 cathode of Zn-ion battery enabled by a water-in-bisalt electrolyte. Adv. Funct. Mater. 2020, 30, 2003511.

    Article  CAS  Google Scholar 

  36. Cai, S. Y.; Chu, X. Y.; Liu, C.; Lai, H. W.; Chen, H.; Jiang, Y. Q.; Guo, F.; Xu, Z. K.; Wang, C. S.; Gao, C. Water-salt oligomers enable supersoluble electrolytes for high-performance aqueous batteries. Adv. Mater. 2021, 33, 2007470.

    Article  CAS  Google Scholar 

  37. Zhou, W. J.; Chen, M. F.; Tian, Q. H.; Chen, J. Z.; Xu, X. W.; Wong, C. P. Cotton-derived cellulose film as a dendrite-inhibiting separator to stabilize the zinc metal anode of aqueous zinc ion batteries. Energy Storage Mater. 2022, 44, 57–65.

    Article  Google Scholar 

  38. Zhu, Y. P.; Yin, J.; Zheng, X. L.; Emwas, A. H.; Lei, Y. J.; Mohammed, O. F.; Cui, Y.; Alshareef, H. N. Concentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries. Energy Environ. Sci. 2021, 14, 4463–4473.

    Article  CAS  Google Scholar 

  39. An, Y. L.; Tian, Y.; Liu, C. K.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Rational design of sulfur-doped three-dimensional Ti3C2Tx MXene/ZnS heterostructure as multifunctional protective layer for dendrite-free zinc-ion batteries. ACS Nano 2021, 15, 15259–15273.

    Article  CAS  Google Scholar 

  40. Li, Q.; Wang, Y. B.; Mo, F. N.; Wang, D. H.; Liang, G. J.; Zhao, Y. W.; Yang, Q.; Huang, Z. D.; Zhi, C. Y. Calendar life of Zn batteries based on Zn anode with Zn powder/current collector structure. Adv. Energy Mater. 2021, 11, 2003931.

    Article  CAS  Google Scholar 

  41. Tian, Y.; An, Y. L.; Wei, C. L.; Xi, B. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Recent advances and perspectives of Zn-metal free “rocking-chair”-type zn-ion batteries. Adv. Energy Mater. 2021, 11, 2002529.

    Article  CAS  Google Scholar 

  42. Chen, J. Z.; Chen, H.; Chen, M. F.; Zhou, W. J.; Tian, Q. H.; Wong, C. P. Nacre-inspired surface-engineered MXene/nanocellulose composite film for high-performance supercapacitors and zinc-ion capacitors. Chem. Eng. J. 2022, 428, 131380.

    Article  CAS  Google Scholar 

  43. Chen, J. Z.; Fang, K. L.; Chen, Q. Y.; Xu, J. L.; Wong, C. P. Integrated paper electrodes derived from cotton stalks for highperformance flexible supercapacitors. Nano Energy 2018, 53, 337–344.

    Article  CAS  Google Scholar 

  44. Xie, L. H.; Tang, J. D.; Qin, R. N.; Liu, J. B.; Zhang, Q. Q.; Jin, Y. H.; Wang, H. Two-dimensional nanofluidics for blue energy harvesting. Energy Mater. 2022, 2, 200008.

    Google Scholar 

  45. Tardy, B. L.; Richardson, J. J.; Greca, L. G.; Guo, J. L.; Ejima, H.; Rojas, O. J. Exploiting supramolecular interactions from polymeric colloids for strong anisotropic adhesion between solid surfaces. Adv. Mater. 2020, 32, 1906886.

    Article  CAS  Google Scholar 

  46. Chen, H.; Chen, M. F.; Zhou, W. J.; Han, X.; Liu, B.; Zhang, W. Q.; Chen, J. Z. Flexible Ti3C2Tx/nanocellulose hybrid film as a stable Zn-free anode for aqueous hybrid Zn-Li batteries. ACS Appl. Mater. Interfaces 2022, 14, 6876–6884.

    Article  CAS  Google Scholar 

  47. Tian, Y.; An, Y. L.; Liu, C. K.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Reversible zinc-based anodes enabled by zincophilic antimony engineered MXene for stable and dendrite-free aqueous zinc batteries. Energy Storage Mater. 2021, 41, 343–353.

    Article  Google Scholar 

  48. Zhang, X. X.; Ma, J.; Hu, P.; Chen, B. B.; Lu, C. L.; Zhou, X. H.; Han, P. X.; Chen, L. H.; Cui, G. L. An insight into failure mechanism of NASICON-structured Na3V2(PO4)3 in hybrid aqueous rechargeable battery. J. Energy Chem. 2019, 32, 1–7.

    Article  CAS  Google Scholar 

  49. Hu, P.; Zou, Z. Y.; Sun, X. W.; Wang, D.; Ma, J.; Kong, Q. Y.; Xiao, D. D.; Gu, L.; Zhou, X. H.; Zhao, J. W. et al. Uncovering the potential of M1-site-activated NASICON cathodes for Zn-ion batteries. Adv. Mater. 2020, 32, 1907526.

    Article  CAS  Google Scholar 

  50. Ko, J. S.; Paul, P. P.; Wan, G.; Seitzman, N.; DeBlock, R. H.; Dunn, B. S.; Toney, M. F.; Nelson Weker, J. NASICON Na3V2(PO4)3 enables quasi-two-stage Na+ and Zn2+ intercalation for multivalent zinc batteries. Chem. Mater. 2020, 32, 3028–3035.

    Article  CAS  Google Scholar 

  51. Li, G. L.; Yang, Z.; Jiang, Y.; Zhang, W. X.; Huang, Y. H. Hybrid aqueous battery based on Na3V2(PO4)3/C cathode and zinc anode for potential large-scale energy storage. J. Power Sources 2016, 308, 52–57.

    Article  CAS  Google Scholar 

  52. Song, W. X.; Ji, X. B.; Zhu, Y. R.; Zhu, H. J.; Li, F. Q.; Chen, J.; Lu, F.; Yao, Y. P.; Banks, C. E. Aqueous sodium-ion battery using a Na3V2(PO4)3 electrode. ChemElectroChem 2014, 1, 871–876.

    Article  CAS  Google Scholar 

  53. Hu, P.; Zhu, T.; Wang, X. P.; Zhou, X. F.; Wei, X. J.; Yao, X. H.; Luo, W.; Shi, C. W.; Owusu, K. A.; Zhou, L. et al. Aqueous Zn//Zn(CF3SO3)2//Na3V2(PO4)3 batteries with simultaneous Zn2+/Na+ intercalation/de-intercalation. Nano Energy 2019, 58, 492–498.

    Article  CAS  Google Scholar 

  54. Islam, S.; Alfaruqi, M. H.; Putro, D. Y.; Mathew, V.; Kim, S.; Jo, J.; Kim, S.; Sun, Y. K.; Kim, K.; Kim, J. Pyrosynthesis of Na3V2(PO4)3@C cathodes for safe and low-cost aqueous hybrid batteries. ChemSusChem 2018, 11, 2239–2247.

    Article  CAS  Google Scholar 

  55. Li, Q.; Ma, K. X.; Hong, C.; Yang, G. Z.; Wang, C. X. Realizing excellent cycle stability of Zn/Na3V2(PO4)3 batteries by suppressing dissolution and structural degradation in non-aqueous Na/Zn dual-salt electrolytes. Sci. China Mater. 2021, 64, 1386–1395.

    Article  CAS  Google Scholar 

  56. Chen, Y. J.; Xu, Y. L.; Sun, X. F.; Zhang, B. F.; He, S. N.; Wang, C. F-doping and V-defect synergetic effects on Na3V2(PO4)3/C composite: A promising cathode with high ionic conductivity for sodium ion batteries. J. Power Sources 2018, 397, 307–317.

    Article  CAS  Google Scholar 

  57. Yuan, D.; Zhao, J.; Ren, H.; Chen, Y. Q.; Chua, R.; Jie, E. T. J.; Cai, Y.; Edison, E.; Manalastas, W. Jr.; Wong, M. W. et al. Anion texturing towards dendrite-free Zn anode for aqueous rechargeable batteries. Angew. Chem., Int. Ed. 2021, 60, 7213–7219.

    Article  CAS  Google Scholar 

  58. Zhou, J. H.; Xie, M.; Wu, F.; Mei, Y.; Hao, Y. T.; Huang, R. L.; Wei, G. L.; Liu, A. N.; Li, L.; Chen, R. J. Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv. Mater. 2021, 33, 2101649.

    Article  CAS  Google Scholar 

  59. Li, X. L.; Li, Q.; Hou, Y.; Yang, Q.; Chen, Z.; Huang, Z. D.; Liang, G. J.; Zhao, Y. W.; Ma, L. T.; Li, M. et al. Toward a practical Zn powder anode: Ti3C2Tx MXene as a lattice-match electrons/ions redistributor. ACS Nano 2021, 15, 14631–14642.

    Article  CAS  Google Scholar 

  60. Liu, H. Y.; Wang, J. G.; Hua, W.; Sun, H. H.; Huyan, Y.; Tian, S.; Hou, Z. D.; Yang, J. C.; Wei, C. G.; Kang, F. Y. Building ohmic contact interfaces toward ultrastable Zn metal anodes. Adv. Sci. 2021, 8, 2102612.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (No. 51902165), the Program of High-Level Talents in Six Industries of Jiangsu Province (No. XCL-040), and the Jiangsu Specially-Appointed Professor Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jizhang Chen.

Electronic Supplementary Material

12274_2022_4916_MOESM1_ESM.pdf

Ultrathin Zn-free anode based on Ti3C2Tx and nanocellulose enabling high-durability aqueous hybrid Zn-Na battery with Zn2+/Na+ co-intercalation mechanism

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Zhou, W., Chen, M. et al. Ultrathin Zn-free anode based on Ti3C2Tx and nanocellulose enabling high-durability aqueous hybrid Zn-Na battery with Zn2+/Na+ co-intercalation mechanism. Nano Res. 16, 536–544 (2023). https://doi.org/10.1007/s12274-022-4916-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4916-z

Keywords

Navigation