Skip to main content
Log in

Few-layered MoS2 anchored on 2D porous C3N4 nanosheets for Pt-free photocatalytic hydrogen evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The Pt-free photocatalytic hydrogen evolution (PHE) has been the focus in the photocatalytic field. The catalytic system with the large accessible surface and good mass-transfer ability, as well as the intimate combination of co-catalyst with semiconductor is promising for the promotion of the application. Here, we have reported the design of the two-dimensional (2D) porous C3N4 nanosheets (PCN NS) intimately combined with few-layered MoS2 for the high-effective Pt-free PHE. The PCN NS were synthesized based on peeling the melamine—cyanuric acid precursor (MC precursor) by the triphenylphosphine (TP) molecular followed by the calcination, mainly due to the matched size of the (100) plane distance of the precursor (0.8 nm) and the height of TP molecular. The porous structure is favorable for the mass-transfer and the 2D structure having large accessible surface, both of which are positive to promote the photocatalytic ability. The few-layered MoS2 are grown on PCN to give 2D MoS2/PCN composites based on anchoring phosphomolybdic acid (PMo12) cluster on polyetherimide (PEI)-modified PCN followed by the vulcanization. The few-layered MoS2 have abundant edge active sites, and its intimate combination with porous PCN NS is favorable for the faster transfer and separation of the electrons. The characterization together with the advantage of 2D porous structure can largely promote the photocatalytic ability. The MoS2/PCN showed good PHE activity with the high hydrogen production activity of 4,270.8 μmol·h−1·g−1 under the simulated sunlight condition (AM1.5), which was 7.9 times of the corresponding MoS2/bulk C3N4 and 12.7 times of the 1 wt.% Pt/bulk C3N4. The study is potentially meaningful for the synthesis of PCN-based catalytic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.

    Article  CAS  Google Scholar 

  2. Zhou, Z. X.; Zhang, Y. Y.; Shen, Y. F.; Liu, S. Q.; Zhang, Y. J. Molecular engineering of polymeric carbon nitride: Advancing applications from photocatalysis to biosensing and more. Chem. Soc. Rev. 2018, 47, 2298–2321.

    Article  CAS  Google Scholar 

  3. Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

    Article  CAS  Google Scholar 

  4. Zheng, Y.; Lin, L. H.; Wang, B.; Wang, X. C. Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew. Chem., Int. Ed. 2015, 54, 12868–12884.

    Article  CAS  Google Scholar 

  5. Hao, Q.; Jia, G. H.; Wei, W.; Vinu, A.; Wang, Y.; Arandiyan, H.; Ni, B. J. Graphitic carbon nitride with different dimensionalities for energy and environmental applications. Nano Res. 2020, 13, 18–37.

    Article  CAS  Google Scholar 

  6. Nasir, M. S.; Yang, G. R.; Ayub, I.; Wang, S. L.; Wang, L.; Wang, X. J.; Yan, W.; Peng, S. J.; Ramakarishna, S. Recent development in graphitic carbon nitride based photocatalysis for hydrogen generation. Appl. Catal. B Environ. 2019, 257, 117855.

    Article  CAS  Google Scholar 

  7. Wang, Y.; Phua, S. Z. F.; Dong, G.; Liu, X. Q.; He, B.; Zhai, Q. L.; Li, Y. C.; Zheng, C. C.; Quan, H. P.; Li, Z. et al. Structure tuning of polymeric carbon nitride for solar energy conversion: From nano to molecular scale. Chem 2019, 5, 2775–2813.

    Article  CAS  Google Scholar 

  8. Liu, J.; Wang, H. Q.; Antonietti, M. Graphitic carbon nitride “reloaded”: Emerging applications beyond (photo)catalysis. Chem. Soc. Rev. 2016, 45, 2308–2326.

    Article  CAS  Google Scholar 

  9. Chen, F.; Ma, Z. Y.; Ye, L. Q.; Ma, T. Y.; Zhang, T. R.; Zhang, Y. H.; Huang, H. W. Macroscopic spontaneous polarization and surface oxygen vacancies collaboratively boosting CO2 photoreduction on BiOIO3 single crystals. Adv. Mater. 2020, 32, 1908350.

    Article  CAS  Google Scholar 

  10. Liu, L. Z.; Huang, H. W.; Chen, Z. S.; Yu, H. J.; Wang, K. Y.; Huang, J. D.; Yu, H.; Zhang, Y. H. Synergistic polarization engineering on bulk and surface for boosting CO2 photoreduction. Angew. Chem., Int. Ed. 2021, 60, 18303–18308.

    Article  CAS  Google Scholar 

  11. Wang, S. B.; Han, X.; Zhang, Y. H.; Tian, N.; Ma, T. Y.; Huang, H. W. Inside-and-out semiconductor engineering for CO2 photoreduction: From recent advances to new trends. Small Struct. 2021, 2, 2000061.

    Article  CAS  Google Scholar 

  12. Zhou, L.; Zhuang, Z. C.; Zhao, H. H.; Lin, M. T.; Zhao, D. Y.; Mai, L. Q. Intricate hollow structures: Controlled synthesis and applications in energy storage and conversion. Adv. Mater. 2017, 29, 1602914.

    Article  Google Scholar 

  13. Xiao, M.; Wang, Z. L.; Lyu, M.; Luo, B.; Wang, S. C.; Liu, G.; Cheng, H. M.; Wang, L. Z. Hollow nanostructures for photocatalysis: Advantages and challenges. Adv. Mater. 2019, 31, 1801369.

    Article  Google Scholar 

  14. Zhang, X. D.; Wang, H. X.; Wang, H.; Zhang, Q.; Xie, J. F.; Tian, Y. P.; Wang, J.; Xie, Y. Single-layered graphitic-C3N4 quantum dots for two-photon fluorescence imaging of cellular nucleus. Adv. Mater. 2014, 26, 4438–4443.

    Article  CAS  Google Scholar 

  15. Zhao, D. M.; Wang, Y. Q.; Dong, C. L.; Huang, Y. C.; Chen, J.; Xue, F.; Shen, S. H.; Guo, L. J. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat. Energy 2021, 6, 388–397.

    Article  CAS  Google Scholar 

  16. Zhang, J. S.; Chen, Y.; Wang, X. C. Two-dimensional covalent carbon nitride nanosheets: Synthesis, functionalization, and applications. Energy Environ. Sci. 2015, 8, 3092–3108.

    Article  CAS  Google Scholar 

  17. Hou, Y.; Wen, Z. H.; Cui, S. M.; Guo, X. R.; Chen, J. H. Constructing 2D porous graphitic C3N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv. Mater. 2013, 25, 6291–6297.

    Article  CAS  Google Scholar 

  18. Wang, Y. H.; Liu, L. Z.; Ma, T. Y.; Zhang, Y. H.; Huang, H. W. 2D graphitic carbon nitride for energy conversion and storage. Adv. Funct. Mater. 2021, 31, 2102540.

    Article  CAS  Google Scholar 

  19. Gupta, U.; Rao, C. N. R. Hydrogen generation by water splitting using MoS2 and other transition metal dichalcogenides. Nano Energy 2017, 41, 49–65.

    Article  CAS  Google Scholar 

  20. Gong, S. Q.; Jiang, Z. J.; Shi, P. H.; Fan, J. C.; Xu, Q. J.; Min, Y. L. Noble-metal-free heterostructure for efficient hydrogen evolution in visible region: Molybdenum nitride/ultrathin graphitic carbon nitride. Appl. Catal. B Environ. 2018, 238, 318–327.

    Article  CAS  Google Scholar 

  21. Liu, Y. Z.; Zhang, H. Y.; Ke, J.; Zhang, J. Q.; Tian, W. J.; Xu, X. Y.; Duan, X. G.; Sun, H. Q.; Tade, M. O.; Wang, S. B. 0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution. Appl. Catal. B Environ. 2018, 228, 64–74.

    Article  CAS  Google Scholar 

  22. Yuan, Y. J.; Shen, Z. K.; Wu, S. T.; Su, Y. B.; Pei, L.; Ji, Z. G.; Ding, M. Y.; Bai, W. F.; Chen, Y. F.; Yu, Z. T. et al. Liquid exfoliation of g-C3N4 nanosheets to construct 2D—2D MoS2/g-C3N4 photocatalyst for enhanced photocatalytic H2 production activity. Appl. Catal. B Environ. 2019, 246, 120–128.

    Article  CAS  Google Scholar 

  23. Bian, H.; Ji, Y. J.; Yan, J. Q.; Li, P.; Li, L.; Li, Y. Y.; Liu, S. Z. In situ synthesis of few-layered g-C3N4 with vertically aligned MoS2 loading for boosting solar-to-hydrogen generation. Small 2018, 14, 1703003.

    Article  Google Scholar 

  24. Sun, Y. Y.; Chen, Z. Z.; Gong, H. P.; Li, X. Q.; Gao, Z. F.; Xu, S. C.; Han, X. D.; Han, B.; Meng, X. W.; Zhang, J. Continuous “snowing” thermotherapeutic graphene. Adv. Mater. 2020, 32, 2002024.

    Article  CAS  Google Scholar 

  25. Shi, L.; Chang, K.; Zhang, H. B.; Hai, X.; Yang, L. Q.; Wang, T.; Ye, J. H. Drastic enhancement of photocatalytic activities over phosphoric acid protonated porous g-C3N4 nanosheets under visible light. Small 2016, 12, 4431–4439.

    Article  CAS  Google Scholar 

  26. Ou, H. H.; Lin, L. H.; Zheng, Y.; Yang, P. J.; Fang, Y. X.; Wang, X. C. Tri-s-triazine-based crystalline carbon nitride nanosheets for an improved hydrogen evolution. Adv. Mater. 2017, 29, 1700008.

    Article  Google Scholar 

  27. Zhang, G.; Ji, Q. H.; Wu, Z.; Wang, G. C.; Liu, H. J.; Qu, J. H.; Li, J. H. Facile “spot-heating” synthesis of carbon dots/carbon nitride for solar hydrogen evolution synchronously with contaminant decomposition. Adv. Funct. Mater. 2018, 28, 1706462.

    Article  Google Scholar 

  28. Tian, S. F.; Chen, S. D.; Ren, X. T.; Cao, R. H.; Hu, H. Y.; Bai, F. Bottom—up fabrication of graphitic carbon nitride nanosheets modified with porphyrin via covalent bonding for photocatalytic H2 evolution. Nano Res. 2019, 12, 3109–3115.

    Article  CAS  Google Scholar 

  29. Xiao, Y. T.; Tian, G. H.; Li, W.; Xie, Y.; Jiang, B. J.; Tian, C. G.; Zhao, D. Y.; Fu, H. G. Molecule self-assembly synthesis of porous few-layer carbon nitride for highly efficient photoredox catalysis. J. Am. Chem. Soc. 2019, 141, 2508–2515.

    Article  CAS  Google Scholar 

  30. Guo, S. E.; Deng, Z. P.; Li, M. X.; Jiang, B. J.; Tian, C. G.; Pan, Q. J.; Fu, H. G. Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 1830–1834.

    Article  CAS  Google Scholar 

  31. Schwinghammer, K.; Tuffy, B.; Mesch, M. B.; Wirnhier, E.; Martineau, C.; Taulelle, F.; Schnick, W.; Senker, J.; Lotsch, B. V. Triazine-based carbon nitrides for visible-light-driven hydrogen evolution. Angew. Chem., Int. Ed. 2013, 52, 2435–2439.

    Article  CAS  Google Scholar 

  32. Ando, N.; Yamada, T.; Narita, H.; Oehlmann, N. N.; Wagner, M.; Yamaguchi, S. Boron-doped polycyclic π-electron systems with an antiaromatic borole substructure that forms photoresponsive B—P lewis adducts. J. Am. Chem. Soc. 2021, 143, 9944–9951.

    Article  CAS  Google Scholar 

  33. Yan, H. J.; Tian, C. G.; Wang, L.; Wu, A. P.; Meng, M. C.; Zhao, L.; Fu, H. G. Phosphorus-modified tungsten nitride/reduced graphene oxide as a high-performance, non-noble-metal electrocatalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 6325–6329.

    Article  CAS  Google Scholar 

  34. Wang, Y. Y.; Zhang, Y. Q.; Liu, Z. J.; Xie, C.; Feng, S.; Liu, D. D.; Shao, M. F.; Wang, S. Y. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 5867–5871.

    Article  CAS  Google Scholar 

  35. Peng, J.; Liu, Y. H.; Luo, X.; Wu, J. J.; Lin, Y.; Guo, Y. Q.; Zhao, J. Y.; Wu, X. J.; Wu, C. Z.; Xie, Y. High phase purity of large-sized 1T’-MoS2 monolayers with 2D superconductivity. Adv. Mater. 2019, 31, 1900568.

    Article  Google Scholar 

  36. Liu, Z. Y.; Wu, A. P.; Yan, H. J.; Su, D. N.; Jin, C. X.; Guo, H.; Wang, L.; Tian, C. G. An effective “precursor-transformation” route toward the high-yield synthesis of ZIF-8 tubes. Chem. Commun. 2020, 56, 2913–2916.

    Article  CAS  Google Scholar 

  37. Guo, H.; Wu, A. P.; Xie, Y.; Yan, H. J.; Wang, D. X.; Wang, L.; Tian, C. G. 2D porous molybdenum nitride/cobalt nitride heterojunction nanosheets with interfacial electron redistribution for effective electrocatalytic overall water splitting. J. Mater. Chem. A 2021, 9, 8620–8629.

    Article  CAS  Google Scholar 

  38. Lu, X. L.; Xu, K.; Chen, P. Z.; Jia, K. C.; Liu, S.; Wu, C. Z. Facile one step method realizing scalable production of g-C3N4 nanosheets and study of their photocatalytic H2 evolution activity. J. Mater. Chem. A 2014, 2, 18924–18928.

    Article  CAS  Google Scholar 

  39. Xia, P. F.; Zhu, B. C.; Yu, J. G.; Cao, S. W.; Jaroniec, M. Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction. J. Mater. Chem. A 2017, 5, 3230–3238.

    Article  CAS  Google Scholar 

  40. Yu, Y.; Yan, W.; Wang, X. F.; Li, P.; Gao, W. Y.; Zou, H. H.; Wu, S. M.; Ding, K. J. Surface engineering for extremely enhanced charge separation and photocatalytic hydrogen evolution on g-C3N4. Adv. Mater. 2018, 30, 1705060.

    Article  Google Scholar 

  41. Gao, S. Y.; Wang, X. Y.; Song, C. J.; Zhou, S. J.; Yang, F.; Kong, Y. Engineering carbon-defects on ultrathin g-C3N4 allows one-pot output and dramatically boosts photoredox catalytic activity. Appl. Catal. B Environ. 2021, 295, 120272.

    Article  CAS  Google Scholar 

  42. Yu, X. N.; Ng, S. F.; Putri, L. K.; Tan, L. L.; Mohamed, A. R.; Ong, W. J. Point-defect engineering: Leveraging imperfections in graphitic carbon nitride (g-C3N4) photocatalysts toward artificial photosynthesis. Small 2021, 17, 2006851.

    Article  CAS  Google Scholar 

  43. Chen, J. J.; Mao, Z. Y.; Zhang, L. X.; Wang, D. J.; Xu, R.; Bie, L. J.; Fahlman, B. D. Nitrogen-deficient graphitic carbon nitride with enhanced performance for lithium ion battery anodes. ACS Nano 2017, 11, 12650–12657.

    Article  CAS  Google Scholar 

  44. Huang, T.; Pan, S. G.; Shi, L. L.; Yu, A. P.; Wang, X.; Fu, Y. S. Hollow porous prismatic graphitic carbon nitride with nitrogen vacancies and oxygen doping: A high-performance visible light-driven catalyst for nitrogen fixation. Nanoscale 2020, 12, 1833–1841.

    Article  CAS  Google Scholar 

  45. Yang, P. J.; Shang, L.; Zhao, J. H.; Zhang, M.; Shi, H.; Zhang, H. X.; Yang, H. Q. Selectively constructing nitrogen vacancy in carbon nitrides for efficient syngas production with visible light. Appl. Catal. B Environ. 2021, 297, 120496.

    Article  CAS  Google Scholar 

  46. Chen, H.; Wang, W. Y.; Yang, Z. Z.; Suo, X.; Lu, Z. Y.; Xiao, W. M.; Dai, S. Alkaline salt-promoted construction of hydrophilic and nitrogen deficient graphitic carbon nitride with highly improved photocatalytic efficiency. J. Mater. Chem. A 2021, 9, 4700–4706.

    Article  CAS  Google Scholar 

  47. Yu, H. J.; Shi, R.; Zhao, Y. X.; Bian, T.; Zhao, Y. F.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Alkaliassisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 2017, 29, 1605148.

    Article  Google Scholar 

  48. Tian, J. J.; Zhang, L. X.; Fan, X. Q.; Zhou, Y. J.; Wang, M.; Cheng, R. L.; Li, M. L.; Kan, X. T.; Jin, X. X.; Liu, Z. H. et al. A post-grafting strategy to modify g-C3N4 with aromatic heterocycles for enhanced photocatalytic activity. J. Mater. Chem. A 2016, 4, 13814–13821.

    Article  CAS  Google Scholar 

  49. Hai, X.; Chang, K.; Pang, H.; Li, M.; Li, P.; Liu, H. M.; Shi, L.; Ye, J. H. Engineering the edges of MoS2 (WS2) crystals for direct exfoliation into monolayers in polar micromolecular solvents. J. Am. Chem. Soc. 2016, 138, 14962–14969.

    Article  CAS  Google Scholar 

  50. Li, M. L.; Zhang, L. X.; Fan, X. Q.; Wu, M. Y.; Du, Y. Y.; Wang, M.; Kong, Q. L.; Zhang, L. L.; Shi, J. L. Dual synergetic effects in MoS2/pyridine-modified g-C3N4 composite for highly active and stable photocatalytic hydrogen evolution under visible light. Appl. Catal. B Environ. 2016, 190, 36–43.

    Article  CAS  Google Scholar 

  51. Yan, H. J.; Jiao, Y. Q.; Wu, A. P.; Tian, C. G.; Wang, L.; Zhang, X. M.; Fu, H. G. Synergism of molybdenum nitride and palladium for high-efficiency formic acid electrooxidation. J. Mater. Chem. A 2018, 6, 7623–7630.

    Article  CAS  Google Scholar 

  52. Zhou, W. J.; Yin, Z. Y.; Du, Y. P.; Huang, X.; Zeng, Z. Y.; Fan, Z. X.; Liu, H.; Wang, J. Y.; Zhang, H. Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 2013, 9, 140–147.

    Article  CAS  Google Scholar 

  53. Hou, Y. D.; Laursen, A. B.; Zhang, J. S.; Zhang, G. G.; Zhu, Y. S.; Wang, X. C.; Dahl, S.; Chorkendorff, I. Layered nanojunctions for hydrogen-evolution catalysis. Angew. Chem., Int. Ed. 2013, 52, 3621–3625.

    Article  CAS  Google Scholar 

  54. Zhou, W. W.; Liu, M. F.; Zhang, Q.; Wei, Q.; Ding, S. J.; Zhou, Y. S. Synthesis of NiMo catalysts supported on gallium-containing mesoporous Y zeolites with different gallium contents and their high activities in the hydrodesulfurization of 4, 6-dimethyldibenzothiophene. ACS Catal. 2017, 7, 7665–7679.

    Article  CAS  Google Scholar 

  55. Wu, A. P.; Tian, C. G.; Jiao, Y. Q.; Yan, Q.; Yang, G. Y.; Fu, H. G. Sequential two-step hydrothermal growth of MoS2/CdS core—shell heterojunctions for efficient visible light-driven photocatalytic H2 evolution. Appl. Catal. B Environ. 2017, 203, 955–963.

    Article  CAS  Google Scholar 

  56. Zhu, J. T.; Xu, H.; Zou, G. F.; Zhang, W.; Chai, R. Q.; Choi, J.; Wu, J.; Liu, H. Y.; Shen, G. Z.; Fan, H. Y. MoS2—OH bilayer-mediated growth of inch-sized monolayer MoS2 on arbitrary substrates. J. Am. Chem. Soc. 2019, 141, 5392–5401.

    Article  CAS  Google Scholar 

  57. Midya, A.; Ghorai, A.; Mukherjee, S.; Maiti, R.; Ray, S. K. Hydrothermal growth of few layer 2H-MoS2 for heterojunction photodetector and visible light induced photocatalytic applications. J. Mater. Chem. A 2016, 4, 4534–4543.

    Article  CAS  Google Scholar 

  58. Sun, B. J.; Zhou, W.; Li, H. Z.; Ren, L. P.; Qiao, P. Z.; Li, W.; Fu, H. G. Synthesis of particulate hierarchical tandem heterojunctions toward optimized photocatalytic hydrogen production. Adv. Mater. 2018, 30, 1804282.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2018YFB1502401), the National Natural Science Foundation of China (Nos. 91961111, U20A20250, and21901064), the Natural Science Foundation of Heilongjiang Province (No. ZD2021B003), the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (No.UNPYSCT-2020004), the Basic Research Fund of Heilongjiang University in Heilongjiang Province (No. 2021-KYYWF-0039), and Open Project of Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chungui Tian or Honggang Fu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Wang, D., Wu, A. et al. Few-layered MoS2 anchored on 2D porous C3N4 nanosheets for Pt-free photocatalytic hydrogen evolution. Nano Res. 16, 3524–3535 (2023). https://doi.org/10.1007/s12274-022-4900-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4900-7

Keywords

Navigation