Skip to main content
Log in

Bottom-up fabrication of graphitic carbon nitride nanosheets modified with porphyrin via covalent bonding for photocatalytic H2 evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In order to broaden the absorption range of graphitic carbon nitride, one of the common methods is to couple the well-known photosensitizer porphyrin with graphitic carbon nitride through van der Waals weak interactions. To date, to combine porphyrin with graphitic carbon nitride through covalent interactions has not been settled. In this work, through rational molecular design, we successfully incorporated porphyrin into the matrixes of graphitic carbon nitride by covalent bonding via one-pot thermal copolymerization. The resultant material not only can widen the absorption range but also possess the enlarged specific surface area and construction intramolecular heterojunctions which can contribute to improve electron-holes separation efficiency. The resultant photocatalyst exhibited enhanced H2 production rate (7.6 mmol·g−1·h−1) and with the apparent quantum efficiency (AQE) of 13.3% at 450 nm. At the same time, this method opens a way to fabricate graphitic carbon nitride nanosheets via bottom-up strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev.2009, 38, 253–278.

    CAS  Google Scholar 

  2. Yang, J. H.; Wang, D. G.; Han, H. X.; Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res.2013, 46, 1900–1909.

    CAS  Google Scholar 

  3. Zong, X.; Yan, H. J.; Wu, G. P.; Ma, G. J.; Wen, F. Y.; Wang, L.; Li, C. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc.2008, 130, 7176–7177.

    CAS  Google Scholar 

  4. Xiang, Q. J.; Yu, J. G.; Jaroniec, M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc.2012, 134, 6575–6578.

    CAS  Google Scholar 

  5. Li, Q.; Guo, B. D.; Yu, J. G.; Ran, J. R.; Zhang, B. H.; Yan, H. J.; Gong, J. R. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc.2011, 133, 10878–10884.

    CAS  Google Scholar 

  6. Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev.2014, 43, 7787–7812.

    CAS  Google Scholar 

  7. Tong, X. J.; Cao, X.; Han, T.; Cheong, W. C.; Lin, R.; Chen, Z.; Wang, D. S.; Chen, C.; Peng, Q.; Li, Y. D. Convenient fabrication of BiOBr ultrathin nanosheets with rich oxygen vacancies for photocatalytic selective oxidation of secondary amines. Nano Res.2019, 12, 1625–1630.

    CAS  Google Scholar 

  8. Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater.2009, 8, 76–80.

    CAS  Google Scholar 

  9. Wang, Y.; Wang, X. C.; Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem., Int. Ed.2012, 51, 68–89.

    CAS  Google Scholar 

  10. Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev.2016, 116, 7159–7329.

    CAS  Google Scholar 

  11. Volokh, M.; Peng, G. M.; Barrio, J.; Shalom, M. Carbon nitride materials for water splitting photoelectrochemical cells. Angew. Chem., Int. Ed.2019, 58, 6138–6151.

    CAS  Google Scholar 

  12. Zhou, C.; Shi, R.; Shang, L.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Templatefree large-scale synthesis of g-C3N4 microtubes for enhanced visible light-driven photocatalytic H2 production. Nano Res.2018, 11, 3462–3468.

    CAS  Google Scholar 

  13. Tang, S. F.; Yin, X. P.; Wang, G. Y.; Lu, X. L.; Lu, T. B. Single titanium-oxide species implanted in 2D g-C3N4 matrix as a highly efficient visible-light CO2 reduction photocatalyst. Nano Res.2019, 12, 457–462.

    CAS  Google Scholar 

  14. Ma, T. Y.; Ran, J. R.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: Flexible and reversible oxygen electrodes. Angew. Chem., Int. Ed.2015, 54, 4646–4650.

    CAS  Google Scholar 

  15. Zhang, P.; Li, X. H.; Shao, C. L.; Liu, Y. C. Hydrothermal synthesis of carbon-rich graphitic carbon nitride nanosheets for photoredox catalysis. J. Mater. Chem. A2015, 3, 3281–3284.

    CAS  Google Scholar 

  16. Zhang, J. S.; Chen, X. F.; Takanabe, K.; Maeda, K.; Domen, K.; Epping, J. D.; Fu, X. Z.; Antonietti, M.; Wang, X. C. Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew. Chem., Int. Ed.2010, 49, 441–444.

    CAS  Google Scholar 

  17. Zhang, J. S.; Zhang, G. G.; Chen, X. F.; Lin, S.; Möhlmann, L.; Dołęga, G.; Lipner, G.; Antonietti, M.; Blechert, S.; Wang, X. C. Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light. Angew. Chem., Int. Ed.2012, 51, 3183–3187.

    CAS  Google Scholar 

  18. Liu, J.; Wang, H. Q.; Chen, Z. P.; Moehwald, H.; Fiechter, S.; Van De Krol, R.; Wen, L. P.; Jiang, L.; Antonietti, M. Microcontact-printing-assisted access of graphitic carbon nitride films with favorable textures toward photoelectrochemical application. Adv. Mater.2015, 27, 712–718.

    CAS  Google Scholar 

  19. Mane, G. P.; Talapaneni, S. N.; Anand, C.; Varghese, S.; Iwai, H.; Ji, Q. M.; Ariga, K.; Mori, T.; Vinu, A. Preparation of highly ordered nitrogen-containing mesoporous carbon from a gelatin biomolecule and its excellent sensing of acetic acid. Adv. Funct. Mater.2012, 22, 3596–3604.

    CAS  Google Scholar 

  20. Chen, X. F.; Jun, Y. S.; Takanabe, K.; Maeda, K.; Domen, K.; Fu, X. Z.; Antonietti, M.; Wang, X. C. Ordered mesoporous SBA-15 type graphitic carbon nitride: A semiconductor host structure for photocatalytic hydrogen evolution with visible light. Chem. Mater.2009, 21, 4093–4095.

    CAS  Google Scholar 

  21. Wang, J. H.; Zhang, C.; Shen, Y. F.; Zhou, Z. X.; Yu, J. C.; Li, Y.; Wei, W.; Liu, S. Q.; Zhang, Y. J. Environment-friendly preparation of porous graphitephase polymeric carbon nitride using calcium carbonate as templates, and enhanced photoelectrochemical activity. J. Mater. Chem. A2015, 3, 5126–5131.

    CAS  Google Scholar 

  22. Yan, H. J. Soft-templating synthesis of mesoporous graphitic carbon nitride with enhanced photocatalytic H2 evolution under visible light. Chem. Commun.2012, 48, 3430–3432.

    CAS  Google Scholar 

  23. Liang, Q. H.; Li, Z.; Yu, X. L.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H. Macroscopic 3D porous graphitic carbon nitride monolith for enhanced photocatalytic hydrogen evolution. Adv. Mater.2015, 27, 4634–4639.

    CAS  Google Scholar 

  24. Jun, Y. S.; Lee, E. Z.; Wang, X. C.; Hong, W. H.; Stucky, G. D.; Thomas, A. From melamine-cyanuric acid supramolecular aggregates to carbon nitride hollow spheres. Adv. Funct. Mater.2013, 23, 3661–3667.

    CAS  Google Scholar 

  25. Shalom, M.; Inal, S.; Fettkenhauer, C.; Neher, D.; Antonietti, M. Improving carbon nitride photocatalysis by supramolecular preorganization of monomers. J. Am. Chem. Soc.2013, 135, 7118–7121.

    CAS  Google Scholar 

  26. Jordan, T.; Fechler, N.; Xu, J. S.; Brenner, T. J. K.; Antonietti, M.; Shalom, M. “Caffeine doping” of carbon/nitrogen-based organic catalysts: Caffeine as a supramolecular edge modifier for the synthesis of photoactive carbon nitride tubes. ChemCatChem2015, 7, 2826–2830.

    CAS  Google Scholar 

  27. Zhang, J. S.; Chen, Y.; Wang, X. C. Two-dimensional covalent carbon nitride nanosheets: Synthesis, functionalization, and applications. Energy Environ. Sci.2015, 8, 3092–3108.

    CAS  Google Scholar 

  28. Liu, Q.; Chen, T. X.; Guo, Y. R.; Zhang, Z. G.; Fang, X. M. Ultrathin g-C3N4 nanosheets coupled with carbon nanodots as 2D/0D composites for efficient photocatalytic H2 evolution. Appl. Catal. B: Environ.2016, 193, 248–258.

    CAS  Google Scholar 

  29. Yang, S. S.; Gong, Y. J.; Zhang, J. S.; Zhan, L.; Ma, L. L.; Fang, Z. Y.; Vajtai, R.; Wang, X. C.; Ajayan, P. M. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater.2013, 25, 2452–2456.

    CAS  Google Scholar 

  30. Han, C.; Wang, Y. D.; Lei, Y. P.; Wang, B.; Wu, N.; Shi, Q.; Li, Q. In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res.2015, 8, 1199–1209.

    CAS  Google Scholar 

  31. Ding, J.; Liu, Q. Q.; Zhang, Z. Y.; Liu, X.; Zhao, J. Q.; Cheng, S. B.; Zong, B. N.; Dai, W. L. Carbon nitride nanosheets decorated with WO3 nanorods: Ultrasonic-assisted facile synthesis and catalytic application in the green manufacture of dialdehydes. Appl. Catal. B: Environ.2015, 165, 511–518.

    CAS  Google Scholar 

  32. Shan, W. J.; Hu, Y.; Bai, Z. G.; Zheng, M. M.; Wei, C. H. In situ preparation of g-C3N4/bismuth-based oxide nanocomposites with enhanced photocatalytic activity. Appl. Catal. B: Environ.2016, 188, 1–12.

    CAS  Google Scholar 

  33. Wang, Y. Y.; Jiang, W. J.; Luo, W. J.; Chen, X. J.; Zhu, Y. F. Ultrathin nanosheets g-C3N4@Bi2WO6 core-shell structure via low temperature reassembled strategy to promote photocatalytic activity. Appl. Catal. B: Environ.2018, 237, 633–640.

    CAS  Google Scholar 

  34. Shiraishi, Y.; Kofuji, Y.; Kanazawa, S.; Sakamoto, H.; Ichikawa, S.; Tanaka, S.; Hirai, T. Platinum nanoparticles strongly associated with graphitic carbon nitride as efficient co-catalysts for photocatalytic hydrogen evolution under visible light. Chem. Commun.2014, 50, 15255–15258.

    CAS  Google Scholar 

  35. Cheng, N. Y.; Tian, J. Q.; Liu, Q.; Ge, C. J.; Qusti, A. H.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. Au-nanoparticle-loaded graphitic carbon nitride nanosheets: Green photocatalytic synthesis and application toward the degradation of organic pollutants. ACS Appl. Mater. Interfaces2013, 5, 6815–6819.

    CAS  Google Scholar 

  36. Zhang, X. B.; Lian, C.; Chen, Z.; Chen, C.; Li, Y. D. Preparation of freestanding palladium nanosheets modified with gold nanoparticles at edges. Nano Res.2018, 11, 4142–4148.

    CAS  Google Scholar 

  37. Hu, M. Z.; Zhang, J.; Zhu, W.; Chen, Z.; Gao, X.; Du, X. J.; Wan, J. W.; Zhou, K. B.; Chen, C.; Li, Y. D. 50 ppm of Pd dispersed on Ni(OH)2 nanosheets catalyzing semi-hydrogenation of acetylene with high activity and selectivity. Nano Res.2018, 11, 905–912.

    CAS  Google Scholar 

  38. Lu, X. L.; Xu, K.; Chen, P. Z.; Jia, K. C.; Liu, S.; Wu, C. Z. Facile one step method realizing scalable production of g-C3N4 nanosheets and study of their photocatalytic H2 evolution activity. J. Mater. Chem. A2014, 2, 18924–18928.

    CAS  Google Scholar 

  39. Xu, J.; Zhang, L. W.; Shi, R.; Zhu, Y. F. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J. Mater. Chem. A2013, 1, 14766–14772.

    CAS  Google Scholar 

  40. Zhang, X. D.; Xie, X.; Wang, H.; Zhang, J. J.; Pan, B. C.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc.2013, 135, 18–21.

    CAS  Google Scholar 

  41. Dong, F.; Wu, L. W.; Sun, Y. J.; Fu, M.; Wu, Z. B.; Lee, S. C. Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts. J. Mater. Chem.2011, 21, 15171–15174.

    CAS  Google Scholar 

  42. Liu, J. H.; Zhang, T. K.; Wang, Z. C.; Dawson, G.; Chen, W. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J. Mater. Chem.2011, 21, 14398–14401.

    CAS  Google Scholar 

  43. Zhang, G. G.; Zhang, J. S.; Zhang, M. W.; Wang, X. C. Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J. Mater. Chem.2012, 22, 8083–8091.

    CAS  Google Scholar 

  44. Wu, M.; Yan, J. M.; Tang, X. N.; Zhao, M.; Jiang, Q. Synthesis of potassium-modified graphitic carbon nitride with high photocatalytic activity for hydrogen evolution. ChemSusChem2014, 7, 2654–2658.

    CAS  Google Scholar 

  45. Zhang, N.; Wang, L.; Wang, H. M.; Cao, R. H.; Wang, J. F.; Bai, F.; Fan, H. Y. Self-assembled one-dimensional porphyrin nanostructures with enhanced photocatalytic hydrogen generation. Nano Lett.2018, 18, 560–566.

    CAS  Google Scholar 

  46. Wu, K. L.; Chen, X.; Liu, S. J.; Pan, Y.; Cheong, W. C.; Zhu, W.; Cao, X.; Shen, R. A.; Chen, W. X.; Luo, J. et al. Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. Nano Res.2018, 11, 6260–6269.

    CAS  Google Scholar 

  47. Bonin, J.; Robert, M.; Routier, M. Selective and efficient photocatalytic CO2 reduction to CO using visible light and an iron-based homogeneous catalyst. J. Am. Chem. Soc.2014, 136, 16768–16771.

    CAS  Google Scholar 

  48. Knör, G. Photocatalytic reactions of porphyrin-based multielectron transfer sensitizers. Coord. Chem. Rev.1998, 171, 61–70.

    Google Scholar 

  49. Rao, H.; Lim, C. H.; Bonin, J.; Miyake, G. M.; Robert, M. Visible-light-driven conversion of CO2 to CH4 with an organic sensitizer and an iron porphyrin catalyst. J. Am. Chem. Soc.2018, 140, 17830–17834.

    CAS  Google Scholar 

  50. Chen, D. M.; Wang, K. W.; Hong, W. Z.; Zong, R. L.; Yao, W. Q.; Zhu, Y. F. Visible light photoactivity enhancement via CuTCPP hybridized g-C3N4 nanocomposite. Appl. Catal. B: Environ.2015, 166–167, 366–373.

    Google Scholar 

  51. Zhao, G. X.; Pang, H.; Liu, G. G.; Li, P.; Liu, H. M.; Zhang, H. B.; Shi, L.; Ye, J. H. Co-porphyrin/carbon nitride hybrids for improved photocatalytic CO2 reduction under visible light. Appl. Catal. B: Environ.2017, 200, 141–149.

    CAS  Google Scholar 

  52. Liu, J. B.; Shi, H. J.; Shen, Q.; Guo, C. Y.; Zhao, G. H. A biomimetic photoelectrocatalyst of Co-porphyrin combined with a g-C3N4 nanosheet based on π-π supramolecular interaction for high-efficiency CO2 reduction in water medium. Green Chem.2017, 19, 5900–5910.

    CAS  Google Scholar 

  53. Lin, L.; Hou, C. C.; Zhang, X. H.; Wang, Y. J.; Chen, Y.; He, T. Highly efficient visible-light driven photocatalytic reduction of CO2 over g-C3N4 nanosheets/tetra(4-carboxyphenyl)porphyrin iron(III) chloride heterogeneous catalysts. Appl. Catal. B: Environ.2018, 221, 312–319.

    CAS  Google Scholar 

  54. Da Silva, E. S.; Moura, N. M. M.; Neves, M. G. P. M. S.; Coutinho, A.; Prieto, M.; Silva, C. G.; Faria, J. L. Novel hybrids of graphitic carbon nitride sensitized with free-base meso-tetrakis(carboxyphenyl) porphyrins for efficient visible light photocatalytic hydrogen production. Appl. Catal. B: Environ.2018, 221, 56–69.

    CAS  Google Scholar 

  55. Wang, D. H.; Pan, J. N.; Li, H. H.; Liu, J. J.; Wang, Y. B.; Kang, L. T.; Yao, J. N. A pure organic heterostructure of µ-oxo dimeric iron(III) porphyrin and graphitic-C3N4 for solar H2 roduction from water. J. Mater. Chem. A2016, 4, 290–296.

    CAS  Google Scholar 

  56. Qu, D.; Liu, J.; Miao, X.; Han, M. M.; Zhang, H. C.; Cui, Z.; Sun, S. R.; Kang, Z. H.; Fan, H. Y.; Sun, Z. C. Peering into water splitting mechanism of g-C3N4-carbon dots metal-free photocatalyst. Appl. Catal. B: Environ.2018, 227, 418–424.

    CAS  Google Scholar 

  57. Zhang, Y. W.; Liu, J. H.; Wu, G.; Chen, W. Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production. Nanoscale2012, 4, 5300–5303.

    CAS  Google Scholar 

  58. Yang, W.; Yang, F.; Hu, T. L.; King, S. C.; Wang, H. L.; Wu, H.; Zhou, W.; Li, J. R.; Arman, H. D.; Chen, B. Microporous diaminotriazine-decorated porphyrin-based hydrogen-bonded organic framework: Permanent porosity and proton conduction. Cryst. Growth Des.2016, 16, 5831–5835.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Bai.

Electronic Supplementary Material

12274_2019_2562_MOESM1_ESM.pdf

Bottom-up fabrication of graphitic carbon nitride nanosheets modified with porphyrin via covalent bonding for photocatalytic H2 evolution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, S., Chen, S., Ren, X. et al. Bottom-up fabrication of graphitic carbon nitride nanosheets modified with porphyrin via covalent bonding for photocatalytic H2 evolution. Nano Res. 12, 3109–3115 (2019). https://doi.org/10.1007/s12274-019-2562-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2562-x

Keywords

Navigation