Skip to main content
Log in

N, O-doped carbon foam as metal-free electrocatalyst for efficient hydrogen production from seawater

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Seawater electrolysis is the most promising technology for large scale hydrogen production due to the abundance and low cost of seawater in nature. However, compared with the traditional freshwater electrolysis, the issues of electrode poisoning and corrosion will occur during the seawater electrolysis process, and active and stable electrocatalysts for the hydrogen evolution reaction (HER) are thus highly desired. In this work, N, O-doped carbon foam in-situ derived from commercial melamine foam is proposed as a high-active metal-free HER electrocatalyst for seawater splitting. In acidic seawater, our catalyst shows high hydrogen generation performance with small overpotential of 161 mV at 10 mA·cm−2, a low Tafel slop of 97.5 mV·dec−1, and outstanding stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu, S. R.; Zhao, H. T.; Li, T. S.; Liang, J.; Lu, S. Y.; Chen, G.; Gao, S. Y.; Asiri, A. M.; Wu, Q.; Sun, X. P. Iron-based phosphides as electrocatalysts for the hydrogen evolution reaction: Recent advances and future prospects. J. Mater. Chem. A 2020, 8, 19729–19745.

    Article  CAS  Google Scholar 

  2. Sun, F.; Qin, J. S.; Wang, Z. Y.; Yu, M. Z.; Wu, X. H.; Sun, X. M.; Qiu, J. S. Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation. Nat. Commun. 2021, 12, 4182.

    Article  CAS  Google Scholar 

  3. Wang, J. H.; Cui, W.; Liu, Q.; Xing, Z. C.; Asiri, A. M.; Sun, X. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215–230.

    Article  CAS  Google Scholar 

  4. Chen, S.; Duan, J. J.; Jaroniec, M.; Qiao, S. Z. Three-dimensional N-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution. Angew. Chem., Int. Ed. 2013, 52, 13567–13570.

    Article  CAS  Google Scholar 

  5. Ye, C.; Zhang, L. C.; Yue, L. C.; Deng, B.; Cao, Y.; Liu, Q.; Luo, Y. L.; Lu, S. Y.; Zheng, B. Z.; Sun, X. P. A NiCo LDH nanosheet array on graphite felt: An efficient 3D electrocatalyst for the oxygen evolution reaction in alkaline media. Inorg. Chem. Front. 2021, 8, 3162–3166.

    Article  CAS  Google Scholar 

  6. Shan, J. Q.; Zheng, Y.; Shi, B. Y.; Davey, K.; Qiao, S. Z. Regulating electrocatalysts via surface and interface engineering for acidic water electrooxidation. ACS Energy Lett. 2019, 4, 2719–2730.

    Article  CAS  Google Scholar 

  7. Meng, C. Q.; Cao, Y.; Luo, Y. L.; Zhang, F.; Kong, Q. Q.; Alshehri, A. A.; Alzahrani, K. A.; Li, T. S.; Liu, Q.; Sun, X. P. A Ni-MOF nanosheet array for efficient oxygen evolution electrocatalysis in alkaline media. Inorg. Chem. Front. 2021, 8, 3007–3011.

    Article  CAS  Google Scholar 

  8. Xiu, L.; Pei, W.; Zhou, S.; Wang, Z. Y.; Yang, P. J.; Zhao, J. J.; Qiu, J. S. Multilevel hollow MXene tailored low-Pt catalyst for efficient hydrogen evolution in full-pH range and seawater. Adv. Funct. Mater. 2020, 30, 1910028.

    Article  CAS  Google Scholar 

  9. Schmidt, O.; Gambhir, A.; Staffell, I.; Hawkes, A.; Nelson, J.; Few, S. Future cost and performance of water electrolysis: An expert elicitation study. Int. J. Hydrogen Energy 2017, 42, 30470–30492.

    Article  CAS  Google Scholar 

  10. Platzer, M. F.; Sarigul-Klijn, N. Hydrogen production methods. In The Green Energy Ship Concept: Renewable Energy from Wind Over Water. Platzer, M. F.; Sarigul-Klijn, N., Eds.; Springer: Cham, 2021; pp 59–62.

    Chapter  Google Scholar 

  11. Zhang, L.; Liang, J.; Yue, L.; Dong, K.; Li, J.; Zhao, D.; Li, Z.; Sun, S.; Luo, Y.; Liu, Q. et al. Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation. Nano Res. Energy 2022, DOI: https://doi.org/10.26599/NRE.2022.9120028.

  12. Zhang, L. C.; Wang, J. Q.; Liu, P. Y.; Liang, J.; Luo, Y. S.; Cui, G. W.; Tang, B.; Liu, Q.; Yan, X. D.; Hao, H. G. et al. Ni(OH)2 nanoparticles encapsulated in conductive nanowire array for high-performance alkaline seawater oxidation. Nano Res. 2022, 15, 6084–6090.

    Article  CAS  Google Scholar 

  13. Wu, X. H.; Zhou, S.; Wang, Z. Y.; Liu, J. S.; Pei, W.; Yang, P. J.; Zhao, J. J.; Qiu, J. S. Engineering multifunctional collaborative catalytic interface enabling efficient hydrogen evolution in all pH range and seawater. Adv. Energy Mater. 2019, 9, 1901333.

    Article  Google Scholar 

  14. Ding, P.; Song, H. Q.; Chang, J. W.; Lu, S. Y. N-doped carbon dots coupled NiFe-LDH hybrids for robust electrocatalytic alkaline water and seawater oxidation. Nano Res 2022, 15, 7063–7070.

    Article  CAS  Google Scholar 

  15. Khan, M. A.; Al-Attas, T.; Roy, S.; Rahman, M. M.; Ghaffour, N.; Thangadurai, V.; Larter, S.; Hu, J. G.; Ajayan, P. M.; Kibria, M. G. Seawater electrolysis for hydrogen production: A solution looking for a problem? Energy Environ. Sci. 2021, 14, 4831–4839.

    Article  CAS  Google Scholar 

  16. Zhang, L. Y.; Wang, Z. Y.; Qiu, J. S. Energy-saving hydrogen production by seawater electrolysis coupling sulfion degradation. Adv. Mater. 2022, 34, 2109321.

    Article  CAS  Google Scholar 

  17. Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.

    Article  CAS  Google Scholar 

  18. Zhai, Q. F.; Pan, Y.; Dai, L. M. Carbon-based metal-free electrocatalysts: Past, present, and future. Acc. Mater. Res. 2021, 2, 1239–1250.

    Article  CAS  Google Scholar 

  19. Ouyang, L.; Zhou, Q.; Liang, J.; Zhang, L. C.; Yue, L. C.; Li, Z. R.; Li, J.; Luo, Y. S.; Liu, Q.; Li, N. et al. High-efficiency NO electroreduction to NH3 over honeycomb carbon nanofiber at ambient conditions. J. Colloid Interf. Sci. 2022, 616, 261–267.

    Article  CAS  Google Scholar 

  20. Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Du, A. J.; Jaroniec, M.; Qiao, S. Z. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 2014, 5, 3783.

    Article  Google Scholar 

  21. Cui, W.; Liu, Q.; Cheng, N. Y.; Asiri, A. M.; Sun, X. P. A. Activated carbon nanotubes: A highly-active metal-free electrocatalyst for hydrogen evolution reaction. Chem. Commun. 2014, 50, 9340–9342.

    Article  CAS  Google Scholar 

  22. Cheng, N. Y.; Liu, Q.; Tian, J. Q.; Xue, Y. R.; Asiri, A. M.; Jiang, H. F.; He, Y. Q.; Sun, X. P. Acidically oxidized carbon cloth: A novel metal-free oxygen evolution electrode with high catalytic activity. Chem. Commun. 2015, 51, 1616–1619.

    Article  CAS  Google Scholar 

  23. Jia, N.; Weng, Q.; Shi, Y. R.; Shi, X. Y.; Chen, X. B.; Chen, P.; An, Z. W.; Chen, Y. N-doped carbon nanocages: Bifunctional electrocatalysts for the oxygen reduction and evolution reactions. Nano Res 2018, 11, 1905–1916.

    Article  CAS  Google Scholar 

  24. Dong, K.; Liang, J.; Wang, Y. Y.; Xu, Z. Q.; Liu, Q.; Luo, Y. L.; Li, T. S.; Li, L.; Shi, X. F.; Asiri, A. M. et al. Honeycomb carbon nanofibers: A superhydrophilic O2-entrapping electrocatalyst enables ultrahigh mass activity for the two-electron oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 10583–10587.

    Article  CAS  Google Scholar 

  25. Ren, J. T.; Wan, C. Y.; Pei, T. Y.; Lv, X. W.; Yuan, Z. Y. Promotion of electrocatalytic nitrogen reduction reaction on N-doped porous carbon with secondary heteroatoms. Appl. Catal. B:Environ. 2020, 266, 118633.

    Article  CAS  Google Scholar 

  26. Xia, L.; Wu, X. F.; Wang, Y.; Niu, Z. G.; Liu, Q.; Li, T. S.; Shi, X. F.; Asiri, A. M.; Sun, X. P. S-doped carbon nanosphere: An efficient electrocatalyst toward artificial N2 fixation to NH3. Small Methods 2019, 3, 1800251.

    Article  Google Scholar 

  27. Chen, M. J.; Wang, S.; Zhang, H. Y.; Zhang, P.; Tian, Z. Q.; Lu, M.; Xie, X. J.; Huang, L.; Huang, W. Intrinsic defects in biomass-derived carbons facilitate electroreduction of CO2. Nano Res. 2020, 13, 729–735.

    Article  CAS  Google Scholar 

  28. Chang, K.; Zhang, H. C.; Chen, J. G.; Lu, Q.; Cheng, M. J. Constant electrode potential quantum mechanical study of CO2 electrochemical reduction catalyzed by N-doped graphene. ACS Catal. 2019, 9, 8197–8207.

    Article  CAS  Google Scholar 

  29. Huang, S. C.; Meng, Y. Y.; Cao, Y. F.; He, S. M.; Li, X. H.; Tong, S. F.; Wu, M. M. N-, O- and P-doped hollow carbons: Metal-free bifunctional electrocatalysts for hydrogen evolution and oxygen reduction reactions. Appl. Catal. B: Environ. 2019, 248, 239–248.

    Article  CAS  Google Scholar 

  30. Stolz, A.; Le Floch, S.; Reinert, L.; Ramos, S. M. M.; Tuaillon-Combes, J.; Soneda, Y.; Chaudet, P.; Baillis, D.; Blanchard, N.; Duclaux, L. et al. Melamine-derived carbon sponges for oil-water separation. Carbon 2016, 107, 198–208.

    Article  CAS  Google Scholar 

  31. Wang, Y.; Kong, D. Z.; Huang, S. Z.; Shi, Y. M.; Ding, M.; Von Lim, Y.; Xu, T. T.; Chen, F. M.; Li, X. J.; Yang, H. Y. 3D carbon foam-supported WS2 nanosheets for cable-shaped flexible sodium ion batteries. J. Mater. Chem. A 2018, 6, 10813–10824.

    Article  CAS  Google Scholar 

  32. Shi, Y. Y.; Liu, G. J.; Jin, R. C.; Xu, H.; Wang, Q. Y.; Gao, S. M. Carbon materials from melamine sponges for supercapacitors and lithium battery electrode materials: A review. Carbon Energy 2019, 1, 253–275.

    Article  CAS  Google Scholar 

  33. Zhang, P.; Wang, R. T.; He, M.; Lang, J. W.; Xu, S.; Yan, X. B. 3D hierarchical Co/CoO-graphene-carbonized melamine foam as a superior cathode toward long-life lithium oxygen batteries. Adv. Funct. Mater. 2016, 26, 1354–1364.

    Article  CAS  Google Scholar 

  34. An, Y. B.; Zhu, Q. Z.; Hu, L. F.; Yu, S. K.; Zhao, Q.; Xu, B. A hollow carbon foam with ultra-high sulfur loading for an integrated cathode of lithium-sulfur batteries. J. Mater. Chem. A 2016, 4, 15605–15611.

    Article  CAS  Google Scholar 

  35. Zhang, R.; Jing, X. X.; Chu, Y. T.; Wang, L.; Kang, W. J.; Wei, D. H.; Li, H. B.; Xiong, S. L. Nitrogen/oxygen co-doped monolithic carbon electrodes derived from melamine foam for high-performance supercapacitors. J. Mater. Chem. A 2018, 6, 17730–17739.

    Article  CAS  Google Scholar 

  36. Schindler, M.; Hawthorne, F. C.; Freund, M. S.; Burns, P. C. XPS spectra of uranyl minerals and synthetic uranyl compounds II: The O 1s spectrum. Geochim. Cosmochim. Acta 2009, 73, 2488–2509.

    Article  CAS  Google Scholar 

  37. Gangadharan, P. K.; Unni, S. M.; Kumar, N.; Ghosh, P.; Kurungot, S. Nitrogen-doped graphene with a three-dimensional architecture assisted by carbon nitride tetrapods as an efficient metal-free electrocatalyst for hydrogen evolution. ChemElectroChem 2017, 4, 2643–2652.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22072015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuping Sun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Sun, S., Zhang, L. et al. N, O-doped carbon foam as metal-free electrocatalyst for efficient hydrogen production from seawater. Nano Res. 15, 8922–8927 (2022). https://doi.org/10.1007/s12274-022-4869-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4869-2

Keywords

Navigation