Skip to main content
Log in

Gold-nanoparticle-based multiplex immuno-strip biosensor for simultaneous determination of 83 antibiotics

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Antibiotic residues, generated by the irrational use of drugs and environmental pollution, have always been a great challenge to aquaculture safety. Therefore, a quick, convenient, and performance-excellent way to detect antibiotic residues in aquaculture fish is urgently required. In this study, a multiplex immunochromatographic strip biosensor based on gold nanoparticles was developed for the simultaneous detection of five classes of antibiotic residues (24 β-lactam antibiotics, 26 sulfonamides, five tetracyclines, 24 quinolones, and four amphenicols) in aquaculture fish within 10 min. The detection ranges of five representative antibiotics, penicillin G, sulfamethazine, tetracycline, enrofloxacin, and chloramphenicol, were 2.33–38.4, 0.688–17.1, 1.4–48.1, 1.45–32.9, and 0.537–9.06 µg/kg, respectively. The accuracy and stability of these measurements were demonstrated by analyzing spiked fish samples, with recovery rates of 87.5%–115.2% and a coefficient of variation < 9.5%. The cross-reaction rates, based on the five representative antibiotics, were 3.77%–202% for β-lactams, 3.95%–137% for sulfonamides, 9.19%–100% for tetracyclines, 4.9%–145% for quinolones, and 3.2%–100% for amphenicols. The excellent testing performance of the biosensor strip to most of antibiotic residues in aquaculture fish ensures they meet the maximum residue limits required by countries or organizations. Therefore, this multiplex immunochromatographic strip biosensor is potentially applicable to the rapidly on-site determination of antibiotic residues in aquaculture fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FAO. The State of World Fisheries and Aquaculture 2016 [Online]. 2016; pp 204. http://www.fao.Org/3/a-i5555e.pdf (accessed May 30, 2022).

  2. Guidi, L. R.; Santos, F. A.; Ribeiro, A. C. S. R.; Fernandes, C.; Silva, L. H. M.; Gloria, M. B. A. A simple, fast and sensitive screening LC-ESI-MS/MS method for antibiotics in fish. Talanta 2017, 163, 85–93.

    Article  CAS  Google Scholar 

  3. Guidi, L. R.; da Silva, L. H. M.; Fernandes, C.; Engeseth, N. J.; Gloria, M. B. A. LC-MS/MS determination of chloramphenicol in food of animal origin in Brazil. Sci. Chromatogr. 2015, 7, 287–295.

    Article  Google Scholar 

  4. Blasco, C.; Picó, Y.; Torres, C. M. Progress in analysis of residual antibacterials in food. TrAC Trends Analyt. Chem. 2007, 26, 895–913.

    Article  CAS  Google Scholar 

  5. Zhao, Y. L.; Chen, Q.; Lv, J.; Xu, M. M.; Zhang, X.; Li, J. R. Specific sensing of antibiotics with metal-organic frameworks based dual sensor system. Nano Res. 2022, 15, 6430–6437.

    Article  CAS  Google Scholar 

  6. Jakšić, S. M.; Ratajac, R. D.; Prica, N. B.; Apić, J. B.; Ljubojević, D. B.; Žekić Stošić, M. Z.; Živkov Baloš, M. M. Methods of determination of antibiotic residues in honey. J. Anal. Chem. 2018, 73, 317–324.

    Article  Google Scholar 

  7. Wang, Q.; Zhao, W. M. Optical methods of antibiotic residues detections: A comprehensive review. Sens. Actuators B Chem. 2018, 269, 238–256.

    Article  CAS  Google Scholar 

  8. Joshi, A.; Kim, K. H. Recent advances in nanomaterial-based electrochemical detection of antibiotics: Challenges and future perspectives. Biosens. Bioelectron. 2020, 153, 112046.

    Article  CAS  Google Scholar 

  9. Zhao, Y.; Chen, L.; Wang, Y. N.; Song, X. Y.; Li, K. Y.; Yan, X. F.; Yu, L. M.; He, Z. Y. Nanomaterial-based strategies in antimicrobial applications: Progress and perspectives. Nano Res. 2021, 14, 4417–4441.

    Article  CAS  Google Scholar 

  10. Wang, C.; Li, X. M.; Peng, T.; Wang, Z. H.; Wen, K.; Jiang, H. Y. Latex bead and colloidal gold applied in a multiplex immunochromatographic assay for high-throughput detection of three classes of antibiotic residues in milk. Food Control 2017, 77, 1–7.

    Article  Google Scholar 

  11. Majdinasab, M.; Mishra, R. K.; Tang, X. Q.; Marty, J. L. Detection of antibiotics in food: New achievements in the development of biosensors. Trends Analyt. Chem. 2020, 127, 115883.

    Article  CAS  Google Scholar 

  12. Bacanlı, M.; Başaran, N. Importance of antibiotic residues in animal food. Food Chem. Toxicol. 2019, 125, 462–466.

    Article  Google Scholar 

  13. Santos, L.; Ramos, F. Analytical strategies for the detection and quantification of antibiotic residues in aquaculture fishes: A review. Trends Food Sci. Technol. 2016, 52, 16–30.

    Article  CAS  Google Scholar 

  14. Ministry of Agriculture and Rural Affairs of the People’s Republic of China, National Health Commission, State Administration for Market Regulation. GB31650-2019 National food safety standardmaximum residue limits for veterinary drugs in foods.

  15. The European Commission. On Pharmacologically Active Substances and Their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin [Online]. https://ec.europa.eu/health/sites/health/files/files/eudralex/vol-5/reg_2010_37/reg_2010_37_en.pdf (accessed May 30, 2022).

  16. Conzuelo, F.; Campuzano, S.; Gamella, M.; Pinacho, D. G.; Reviejo, A. J.; Marco, M. P.; Pingarrón, J. M. Integrated disposable electrochemical immunosensors for the simultaneous determination of sulfonamide and tetracycline antibiotics residues in milk. Biosens. Bioelectron. 2013, 50, 100–105.

    Article  CAS  Google Scholar 

  17. Liu, Y. N.; Xiao, Y. Q.; Yu, M.; Cao, Y. Y.; Zhang, Y. L.; Zhe, T. T.; Zhang, H.; Wang, L. Antimonene quantum dots as an emerging fluorescent nanoprobe for the pH-mediated dual-channel detection of tetracyclines. Small 2020, 16, 2003429.

    Article  CAS  Google Scholar 

  18. Zhou, J. L.; Zhao, R. X.; Liu, S. K.; Feng, L. L.; Li, W. T.; He, F.; Gai, S. L.; Yang, P. P. Europium doped silicon quantum dot As a novel FRET based dual detection probe: Sensitive detection of tetracycline, zinc, and cadmium. Small Methods 2021, 5, 2100812.

    Article  CAS  Google Scholar 

  19. Chen, T.; Cheng, G. Y.; Ahmed, S.; Wang, Y. L.; Wang, X.; Hao, H. H.; Yuan, Z. H. New methodologies in screening of antibiotic residues in animal-derived foods: Biosensors. Talanta 2017, 175, 435–442.

    Article  CAS  Google Scholar 

  20. Guo, E. H.; Zhao, L. C.; Wu, K.; Huang, W.; Zhao, K.; Li, J. G.; Deng, A. P. Simultaneous detection of three amphenicol antibiotics in shrimp and surface water samples by LC-MS/MS using two-antibodies-immobilized immunoaffinity clean-up technique. Food Agric. Immunol. 2021, 32, 283–297.

    Article  CAS  Google Scholar 

  21. Cháfer-Pericás, C.; Maquieira, Á.; Puchades, R. Fast screening methods to detect antibiotic residues in food samples. Trends Analyt. Chem. 2010, 29, 1038–1049.

    Article  Google Scholar 

  22. Chen, Y. Q.; Chen, Q.; Han, M. M.; Liu, J. Y.; Zhao, P.; He, L. D.; Zhang, Y.; Niu, Y. M.; Yang, W. J.; Zhang, L. Y. Near-infrared fluorescence-based multiplex lateral flow immunoassay for the simultaneous detection of four antibiotic residue families in milk. Biosens. Bioelectron. 2016, 79, 430–434.

    Article  CAS  Google Scholar 

  23. Pollap, A.; Kochana, J. Electrochemical immunosensors for antibiotic detection. Biosensors 2019, 9, 61.

    Article  CAS  Google Scholar 

  24. Bumbudsanpharoke, N.; Ko, S. Nanomaterial-based optical indicators: Promise, opportunities, and challenges in the development of colorimetric systems for intelligent packaging. Nano Res. 2019, 12, 489–500.

    Article  Google Scholar 

  25. Gaudin, V. Advances in biosensor development for the screening of antibiotic residues in food products of animal origin—A comprehensive review. Biosens. Bioelectron. 2017, 90, 363–377.

    Article  CAS  Google Scholar 

  26. Ahmed, S.; Ning, J. N.; Peng, D. P.; Chen, T.; Ahmad, I.; Ali, A.; Lei, Z. X.; Abu bakr Shabbir, M.; Cheng, G. Y.; Yuan, Z. H. Current advances in immunoassays for the detection of antibiotics residues: A review. Food Agric. Immunol. 2020, 31, 268–290.

    Article  CAS  Google Scholar 

  27. Wang, Z. F.; Luo, J. Q.; Zhao, Y. F.; Luo, P. J. Development of an enzyme-linked immunosorbent assay for the determination of florfenicol and florfenicol amine in eggs. Food Agric. Immunol. 2020, 31, 881–892.

    Article  CAS  Google Scholar 

  28. Li, H. P.; Wu, J. Y.; Meng, F. P.; Li, A. F. Immunochromatographic assay for the detection of antibiotics in animal-derived foods: A review. Food Control 2021, 130, 108356.

    Article  CAS  Google Scholar 

  29. Taranova, N. A.; Berlina, A. N.; Zherdev, A. V.; Dzantiev, B. B. “Traffic light” immunochromatographic test based on multicolor quantum dots for the simultaneous detection of several antibiotics in milk. Biosens. Bioelectron. 2015, 63, 255–261.

    Article  CAS  Google Scholar 

  30. Wang, Z. X.; Zhao, J.; Xu, X. X.; Guo, L. L.; Xu, L. G.; Sun, M. Z.; Hu, S. D.; Kuang, H.; Xu, C. L.; Li, A. K. An overview for the nanoparticles-based quantitative lateral flow assay. Small Methods 2022, 6, 2101143.

    Article  CAS  Google Scholar 

  31. Zeng, L.; Xu, X. X.; Song, S. S.; Xu, L. G.; Liu, L. Q.; Xiao, J.; Xu, C. L.; Kuang, H. Synthesis of haptens and gold-based immunochromatographic paper sensor for vitamin B6 in energy drinks and dietary supplements. Nano Res. 2022, 15, 2479–2488.

    Article  CAS  Google Scholar 

  32. Guo, L. L.; Xu, X. X.; Zhao, J.; Hu, S. D.; Xu, L. G.; Kuang, H.; Xu, C. L. Multiple detection of 15 triazine herbicides by gold nanoparticle based-paper sensor. Nano Res. 2022, 15, 5483–5491.

    Article  CAS  Google Scholar 

  33. Zhou, J. Y.; Nie, W.; Chen, Y. Q.; Yang, C. J.; Gong, L.; Zhang, C.; Chen, Q.; He, L. D.; Feng, X. Y. Quadruplex gold immunochromatogaraphic assay for four families of antibiotic residues in milk. Food Chem. 2018, 256, 304–310.

    Article  CAS  Google Scholar 

  34. Jo, M. R.; Son, K. T.; Kwon, J. Y.; Mok, J. S.; Park, H. J.; Kim, H. Y.; Kim, G. D.; Kim, J. H.; Lee, T. S. A lateral flow immunoassay kit for detecting residues of four groups of antibiotics in farmed fish. Korean J. Fish. Aquat. Sci. 2015, 48, 158–167.

    CAS  Google Scholar 

  35. Li, Y.; Liu, L. Q.; Song, S. S.; Kuang, H.; Xu, C. L. A rapid and semi-quantitative gold nanoparticles based strip sensor for polymyxin B sulfate residues. Nanomaterials 2018, 8, 144.

    Article  Google Scholar 

  36. Chen, Y. N.; Kong, D. Z.; Liu, L. Q.; Song, S. S.; Kuang, H.; Xu, C. L. Development of an ELISA and immunochromatographic assay for tetracycline, oxytetracycline, and chlortetracycline residues in milk and honey based on the class-specific monoclonal antibody. Food Anal. Methods 2015, 9, 905–914.

    Article  Google Scholar 

  37. Chen, Y. N.; Guo, L. L.; Liu, L. Q.; Song, S. S.; Kuang, H.; Xu, C. L. Ultrasensitive immunochromatographic strip for fast screening of 27 sulfonamides in honey and pork liver samples based on a monoclonal antibody. J. Agric. Food Chem. 2017, 65, 8248–8255.

    Article  CAS  Google Scholar 

  38. Peng, J.; Liu, L. Q.; Xu, L. G.; Song, S. S.; Kuang, H.; Cui, G.; Xu, C. L. Gold nanoparticle-based paper sensor for ultrasensitive and multiple detection of 32 (fluoro) quinolones by one monoclonal antibody. Nano Res. 2017, 10, 108–120.

    Article  CAS  Google Scholar 

  39. Song, S. S.; Suryoprabowo, S.; Liu, L. Q.; Zheng, Q. K.; Wu, X. L.; Kuang, H. Development of an immunochromatographic strip test for rapid detection of sodium nifurstyrenate in fish. Food Agric. Immunol. 2019, 30, 236–247.

    Article  Google Scholar 

  40. Guo, L. L.; Wu, X. L.; Liu, L. Q.; Kuang, H.; Xu, C. L. Gold nanoparticle-based paper sensor for simultaneous detection of 11 benzimidazoles by one monoclonal antibody. Small 2018, 14, 1701782.

    Article  Google Scholar 

  41. Dubreil, E.; Gautier, S.; Fourmond, M. P.; Bessiral, M.; Gaugain, M.; Verdon, E.; Pessel, D. Validation approach for a fast and simple targeted screening method for 75 antibiotics in meat and aquaculture products using LC-MS/MS. Food Addit. Contam. 2017, 34, 453–468.

    Article  CAS  Google Scholar 

  42. Cui, X.; Huang, Y. J.; Wang, J. Y.; Zhang, L.; Rong, Y.; Lai, W. H.; Chen, T. A remarkable sensitivity enhancement in a gold nanoparticle-based lateral flow immunoassay for the detection of Escherichia coli O157: H7. RSC Adv. 2015, 5, 45092–45097.

    Article  CAS  Google Scholar 

  43. Kong, D. Z.; Liu, L. Q.; Song, S. S.; Suryoprabowo, S.; Li, A. K.; Kuang, H.; Wang, L. B.; Xu, C. L. A gold nanoparticle-based semiquantitative and quantitative ultrasensitive paper sensor for the detection of twenty mycotoxins. Nanoscale 2016, 8, 5245–5253.

    Article  CAS  Google Scholar 

  44. Pan, Y.; Fei, D. W.; Liu, P. H.; Guo, X. D.; Peng, L. L.; Wang, Y. F.; Xu, N. F.; Wei, X. L. Surface-enhanced Raman scattering-based lateral flow immunoassay for the detection of chloramphenicol antibiotics using Au@ Ag nanoparticles. Food Anal. Methods 2021, 14, 2642–2650.

    Article  Google Scholar 

  45. Cháfer-Pericás, C.; Maquieira, Á.; Puchades, R.; Miralles, J.; Moreno, A. Fast screening immunoassay of sulfonamides in commercial fish samples. Anal. Bioanal. Chem. 2010, 396, 911–921.

    Article  Google Scholar 

  46. Sheng, W.; Chang, Q.; Shi, Y. J.; Duan, W. X.; Zhang, Y.; Wang, S. Visual and fluorometric lateral flow immunoassay combined with a dual-functional test mode for rapid determination of tetracycline antibiotics. Microchim. Acta 2018, 185, 404.

    Article  Google Scholar 

  47. Liu, M. X.; Sang, Y. X.; Zhang, J.; Li, J.; Yu, W. L.; Zhang, F. Y.; Wang, X. H. Development of a broad-specific competitive ELISA for first-generation cephalosporin antibiotics in animal-derived foods samples. Bull. Environ. Contam. Toxicol. 2021, 107, 215–220.

    Article  CAS  Google Scholar 

  48. Pan, M. F.; Wang, X. J.; Wang, J. P.; Lu, Y.; Qian, K.; Wang, S. Stable and sensitive detection of sulfonamide residues in animal-derived foods using a reproducible surface plasmon resonance immunosensor. Food Anal. Methods 2017, 10, 2027–2035.

    Article  Google Scholar 

  49. Lin, B. X.; Zhang, T. Y.; Xin, X. L.; Wu, D.; Huang, Y.; Liu, Y. W.; Cao, Y. J.; Guo, M. L.; Yu, Y. Europium (III) modified silicone nanoparticles for ultrasensitive visual determination of tetracyclines by employing a fluorescence color switch. Microchim. Acta 2019, 186, 442.

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Key Research and Development Program (No. 2020YFC1606804) and the Natural Science Foundation of Jiangsu Province (No. BK20200598).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Kuang or Chuanlai Xu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, X., Xu, X., Liu, L. et al. Gold-nanoparticle-based multiplex immuno-strip biosensor for simultaneous determination of 83 antibiotics. Nano Res. 16, 1259–1268 (2023). https://doi.org/10.1007/s12274-022-4762-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4762-z

Keywords

Navigation