Skip to main content
Log in

Nanomaterial-based strategies in antimicrobial applications: Progress and perspectives

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The dramatic increase of microbial resistances against conventional available antibiotics is a huge challenge to the effective treatment of infectious disease and thus becoming a daunting global threat of major concern, which necessitates the development of innovative therapeutics. Nanomaterial-based antimicrobial strategies have emerged as novel and promising tools to combat lethal bacteria and recalcitrant biofilm, featuring the abilities to evade existing drug resistance-related mechanisms. In this review, recent advances in “state-of-the-art” nanosystems which acting either as inherent therapeutics or nanocarriers for the precise delivery of antibiotics, are comprehensively summarized. Those nanosystems can effectively accumulate at the infectious sites, achieve multifunctional synergistic antibacterial efficacy, and provide controlled release of antibiotics in response to endogenous or exogenous stimulus (e.g., low pH, enzymes, or illumination). Especially, the nanoplatform that integrated with photothermal/photodynamic therapy (PTT/PDT) can enhance the bacterial destruction and biofilm penetration or ablation. In addition, nanoparticle-based approaches with enzymatically promoting bacterial killing, anti-virulence, and other mechanisms were also involved. Overall, this review provides crucial insights into the recent progress and remaining limitations of various antimicrobial nanotherapeutic strategies, and enlightens the further developments in this field simultaneously, which eventually benefiting public health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Health of Organization. The Top 10 Causes of Death [Online]. WHO. http://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed Dec 9, 2020).

  2. Rello, J.; Campogiani, L.; Eshwara, V. K. Understanding resistance in enterococcal infections. Intensive Care Med. 2020, 46, 353–356.

    Article  Google Scholar 

  3. Linder, K. A.; Malani, P. N. Meningococcal meningitis. JAMA 2019, 321, 1014.

    Article  Google Scholar 

  4. Dong, Y. H.; Wang, L. P.; Burgner, D. P.; Miller, J. E.; Song, Y.; Ren, X.; Li, Z. J.; Xing, Y.; Ma, J.; Sawyer, S. M. et al. Infectious diseases in children and adolescents in China: Analysis of national surveillance data from 2008 to 2017. BMJ 2020, 369, m1043.

    Article  Google Scholar 

  5. Wunderink, R. G; Waterer, G Advances in the causes and management of community acquired pneumonia in adults. BMJ 2017, 358, j2471.

    Article  Google Scholar 

  6. O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; Government of the United Kingdom: Lodon, UK, 2016.

    Google Scholar 

  7. Willyard, C. The drug-resistant bacteria that pose the greatest health threats. Nature 2017, 543, 15.

    Article  CAS  Google Scholar 

  8. Garland, M.; Loscher, S.; Bogyo, M. Chemical strategies to target bacterial virulence. Chem. Rev. 2017, 117, 4422–4461.

    Article  CAS  Google Scholar 

  9. Hutchings, M. I.; Truman, A. W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80.

    Article  CAS  Google Scholar 

  10. Blair, J. M. A.; Webber, M. A.; Baylay, A. J.; Ogbolu, D. O.; Piddock, L. J. V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015, 13, 42–51.

    Article  CAS  Google Scholar 

  11. Levy, S. B.; Marshall, B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med. 2004, 10, S122–S129.

    Article  CAS  Google Scholar 

  12. Munita, J. M.; Arias, C. A. Mechanisms of antibiotic resistance. In Virulence Mechanisms of Bacterial Pathogens. Kudva, I. T.; Cornick, N. A.; Plummer, P. J.; Zhang, Q. J.; Nicholson, T. L.; Bannantine, J. P.; Bellaire, B. H., Eds.; American Society for Microbiology, 2016; pp 481–511.

  13. Santajit, S.; Indrawattana, N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Res. Int. 2016, 2016, 2475067.

    Article  Google Scholar 

  14. Harms, A.; Maisonneuve, E.; Gerdes, K. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science 2016, 354, 6318.

    Article  Google Scholar 

  15. Zhao, S. B.; Adamiak, J. W.; Bonifay, V.; Mehla, J.; Zgurskaya, H. I.; Tan, D. S. Defining new chemical space for drug penetration into Gram-negative bacteria. Nat. Chem. Biol. 2020, 16, 1293–1302.

    Article  CAS  Google Scholar 

  16. Piddock, L. J. V. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin. Microbiol. Rev. 2006, 19, 382–402.

    Article  CAS  Google Scholar 

  17. Abee, T.; Kovács, Á. T.; Kuipers, O. P.; van der Veen, S. Biofilm formation and dispersal in Gram-positive bacteria. Curr. Opin. Biotechnol. 2011, 22, 172–179.

    Article  CAS  Google Scholar 

  18. Dieltjens, L.; Appermans, K.; Lissens, M.; Lories, B.; Kim, W.; Van der Eycken, E. V.; Foster, K. R.; Steenackers, H. P. Inhibiting bacterial cooperation is an evolutionarily robust anti-biofilm strategy. Nat. Commun. 2020, 11, 107.

    Article  CAS  Google Scholar 

  19. He, L.; Le, K. Y.; Khan, B. A.; Nguyen, T. H.; Hunt, R. L.; Bae, J. S.; Kabat, J.; Zheng, Y.; Cheung, G. Y. C.; Li, M. et al. Resistance to leukocytes ties benefits of quorum sensing dysfunctionality to biofilm infection. Nat. Microbiol. 2019, 4, 1114–1119.

    Article  CAS  Google Scholar 

  20. Mukherjee, S.; Bassler, B. L. Bacterial quorum sensing in complex and dynamically changing environments. Nat. Rev. Microbiol. 2019, 17, 371–382.

    Article  CAS  Google Scholar 

  21. Rumbaugh, K. P.; Sauer, K. Biofilm dispersion. Nat. Rev. Microbiol. 2020, 18, 571–586.

    Article  CAS  Google Scholar 

  22. Mah, T. F. C.; O’Toole, G. A. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001, 9, 34–39.

    Article  CAS  Google Scholar 

  23. Hall, C. W.; Mah, T. F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol. Rev. 2017, 41, 276–301.

    Article  CAS  Google Scholar 

  24. Mah, T. F.; Pitts, B.; Pellock, B.; Walker, G. C.; Stewart, P. S.; O’Toole, G. A. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 2003, 426, 306–310.

    Article  CAS  Google Scholar 

  25. Makabenta, J. M. V.; Nabawy, A.; Li, C. H.; Schmidt-Malan, S.; Patel, R.; Rotello, V. M. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat. Rev. Microbiol. 2021, 19, 23–36.

    Article  CAS  Google Scholar 

  26. Li, D. K.; Fang, Y. S.; Zhang, X. M. Bacterial detection and elimination using a dual-functional porphyrin-based porous organic polymer with peroxidase-like and high near-infrared-light-enhanced antibacterial activity. ACS Appl. Mater. Interfaces 2020, 12, 8989–8999.

    Article  CAS  Google Scholar 

  27. Ding, X. K.; Wang, A. Z.; Tong, W.; Xu, F. J. Biodegradable antibacterial polymeric nanosystems: A new hope to cope with multidrug- resistant bacteria. Small 2019, 15, 1900999.

    Article  Google Scholar 

  28. Ding, X. K.; Duan, S.; Ding, X. J.; Liu, R. H.; Xu, F. J. Versatile antibacterial materials: An emerging arsenal for combatting bacterial pathogens. Adv. Funct. Mater. 2018, 28, 1802140.

    Article  Google Scholar 

  29. Zhao, S. Y.; Huang, W. J.; Wang, C. R.; Wang, Y. P.; Zhang, Y. F.; Ye, Z. P.; Zhang, J. H.; Deng, L. D.; Dong, A. J. Screening and matching amphiphilic cationic polymers for efficient antibiosis. Biomacromolecules 2020, 21, 5269–5281.

    Article  CAS  Google Scholar 

  30. Palermo, E. F.; Lienkamp, K.; Gillies, E. R.; Ragogna, P. J. Antibacterial activity of polymers: Discussions on the nature of amphiphilic balance. Angew. Chem., Int. Ed. 2019, 58, 3690–3693.

    Article  CAS  Google Scholar 

  31. Rahman, M. A.; Jui, M. S.; Bam, M.; Cha, Y. J.; Luat, E.; Alabresm, A.; Nagarkatti, M.; Decho, A. W.; Tang, C. B. Facial amphiphilicity-induced polymer nanostructures for antimicrobial applications. ACS Appl. Mater. Interfaces 2020, 12, 21221–21230.

    Article  CAS  Google Scholar 

  32. Ganewatta, M. S.; Rahman, M. A.; Mercado, L.; Shokfai, T.; Decho, A. W.; Reineke, T. M.; Tang, C. B. Facially amphiphilic polyionene biocidal polymers derived from lithocholic acid. Bioact. Mater. 2018, 3, 186–193.

    Article  Google Scholar 

  33. Chakraborty, S.; Liu, R. H.; Hayouka, Z.; Chen, X. Y.; Ehrhardt, J.; Lu, Q.; Burke, E.; Yang, Y. Q.; Weisblum, B.; Wong, G. C. L. et al. Ternary nylon-3 copolymers as host-defense peptide mimics: Beyond hydrophobic and cationic subunits. J. Am. Chem. Soc. 2014, 136, 14530–14535.

    Article  CAS  Google Scholar 

  34. Zhong, W. B.; Shi, Z. Y.; Mahadevegowda, S. H.; Liu, B.; Zhang, K. X.; Koh, C. H.; Ruan, L.; Chen, Y. H.; Zeden, M. S.; Pee, C. J. E. et al. Designer broad-spectrum polyimidazolium antibiotics. Proc. Natl. Acad. Sci. USA 2020, 117, 31376–31385.

    Article  CAS  Google Scholar 

  35. Li, X. S.; Bai, H. T.; Yang, Y. C.; Yoon, J.; Wang, S.; Zhang, X. Supramolecular antibacterial materials for combatting antibiotic resistance. Adv. Mater. 2019, 31, 1805092.

    Google Scholar 

  36. Zheng, Z. Q.; Xu, Q. M.; Guo, J. N.; Qin, J.; Mao, H. L.; Wang, B.; Yan, F. Structure-antibacterial activity relationships of imidazolium-type ionic liquid monomers, poly(ionic liquids) and poly(ionic liquid) membranes: Effect of alkyl chain length and cations. ACS Appl. Mater. Interfaces 2016, 8, 12684–12692.

    Article  CAS  Google Scholar 

  37. Gupta, A.; Landis, R. F.; Li, C. H.; Schnurr, M.; Das, R.; Lee, Y. W.; Yazdani, M.; Liu, Y. C.; Kozlova, A.; Rotello, V. M. Engineered polymer nanoparticles with unprecedented antimicrobial efficacy and therapeutic indices against multidrug-resistant bacteria and biofilms. J. Am. Chem. Soc. 2018, 140, 12137–12143.

    Article  CAS  Google Scholar 

  38. Mortazavian, H.; Foster, L. L.; Bhat, R.; Patel, S.; Kuroda, K. Decoupling the functional roles of cationic and hydrophobic groups in the antimicrobial and hemolytic activities of methacrylate random copolymers. Biomacromolecules 2018, 19, 4370–4378.

    Article  CAS  Google Scholar 

  39. Xu, H.; Fang, Z. H.; Tian, W. Q.; Wang, Y. F.; Ye, Q. F.; Zhang, L. N.; Cai, J. Green fabrication of amphiphilic quaternized ß-Chitin derivatives with excellent biocompatibility and antibacterial activities for wound healing. Adv. Mater. 2018, 30, 1801100.

    Article  Google Scholar 

  40. Kurowska, M.; Eickenscheidt, A.; Guevara-Solarte, D. L.; Widyaya, V. T.; Marx, F.; Al-Ahmad, A.; Lienkamp, K. A simultaneously antimicrobial, protein-repellent, and cell-compatible polyzwitterion network. Biomacromolecules 2017, 18, 1373–1386.

    Article  CAS  Google Scholar 

  41. Lou, W. Y.; Venkataraman, S.; Zhong, G. S.; Ding, B. S.; Tan, J. P. K.; Xu, L.; Fan, W. M.; Yang, Y. Y. Antimicrobial polymers as therapeutics for treatment of multidrug-resistant Klebsiella pneumoniae lung infection. Acta Biomater. 2018, 78, 78–88.

    Article  CAS  Google Scholar 

  42. Barman, S.; Konai, M. M.; Samaddar, S.; Haldar, J. Amino acid conjugated polymers: Antibacterial agents effective against drug-resistant Acinetobacter baumannii with no detectable resistance. ACS Appl. Mater. Interfaces 2019, 11, 33559–33572.

    Article  CAS  Google Scholar 

  43. Cuthbert, T. J.; Hisey, B.; Harrison, T. D.; Trant, J. F.; Gillies, E. R.; Ragogna, P. J. Surprising antibacterial activity and selectivity of hydrophilic polyphosphoniums featuring sugar and hydroxy sub-stituents. Angew. Chem., Int. Ed. 2018, 57, 12707–12710.

    Article  CAS  Google Scholar 

  44. Rahman, M. A.; Bam, M.; Luat, E.; Jui, M. S.; Ganewatta, M. S.; Shokfai, T.; Nagarkatti, M.; Decho, A. W.; Tang, C. B. Macromolecular-clustered facial amphiphilic antimicrobials. Nat. Commun. 2018, 9, 5231.

    Article  CAS  Google Scholar 

  45. Uppu, D. S. S. M.; Samaddar, S.; Ghosh, C.; Paramanandham, K.; Shome, B. R.; Haldar, J. Amide side chain amphiphilic polymers disrupt surface established bacterial bio-films and protect mice from chronic Acinetobacter baumannii infection. Biomaterials 2016, 74, 131–143.

    Article  CAS  Google Scholar 

  46. Dundas, A. A.; Sanni, O.; Dubern, J. F.; Dimitrakis, G.; Hook, A. L.; Irvine, D. J.; Williams, P.; Alexander, M. R. Validating a predictive structure-property relationship by discovery of novel polymers which reduce bacterial biofilm formation. Adv. Mater. 2019, 31, 1903513.

    Article  CAS  Google Scholar 

  47. Xu, J. W.; Yao, K.; Xu, Z. K. Nanomaterials with a photothermal effect for antibacterial activities: An overview. Nanoscale 2019, 11, 8680–8691.

    Article  CAS  Google Scholar 

  48. Chen, J. Q.; Ning, C. Y.; Zhou, Z. N.; Yu, P.; Zhu, Y.; Tan, G. X.; Mao, C. B. Nanomaterials as photothermal therapeutic agents. Prog. Mater Sci. 2019, 99, 1–26.

    Article  Google Scholar 

  49. Li, X. S.; Lovell, J. F.; Yoon, J.; Chen, X. Y. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 2020, 17, 657–674.

    Article  Google Scholar 

  50. Lee, H. P.; Gaharwar, A. K. Light-responsive inorganic biomaterials for biomedical applications. Adv. Sci. 2020, 7, 2000863.

    Article  CAS  Google Scholar 

  51. Sun, J.; Song, L. J.; Fan, Y.; Tian, L. M.; Luan, S. F.; Niu, S. C.; Ren, L. Q.; Ming, W. H.; Zhao, J. Synergistic photodynamic and photothermal antibacterial nanocomposite membrane triggered by single NIR light source. ACSAppl. Mater. Interfaces 2019, 11, 26581–26589.

    Article  CAS  Google Scholar 

  52. Hao, Z.; Lin, X. D.; Li, J. J.; Yin, Y. L.; Gao, X.; Wang, S.; Liu, Y. Q. Multifunctional nanoplatform for dual-mode sensitive detection of pathogenic bacteria and the real-time bacteria inactivation. Biosens. Bioelectron. 2021, 173, 112789.

    Article  CAS  Google Scholar 

  53. Zhao, Z. W.; Yan, R.; Yi, X.; Li, J. J.; Rao, J. M.; Guo, Z. Q.; Yang, Y. M.; Li, W. F.; Li, Y. Q.; Chen, C. Y. Bacteria-activated theranostic nanoprobes against methicillin-resistant Staphylococcus aureus infection. ACS Nano 2017, 11, 4428–4438.

    Article  CAS  Google Scholar 

  54. Zhang, L. L.; Wang, Y. Q.; Wang, J.; Wang, Y. L.; Chen, A. Y.; Wang, C.; Mo, W. T.; Li, Y. X.; Yuan, Q.; Zhang, Y. F. Photon-responsive antibacterial nanoplatform for synergistic photothermal-/pharmacotherapy of skin infection. ACS Appl. Mater. Interfaces 2019, 11, 300–310.

    Article  CAS  Google Scholar 

  55. Lu, B. Y.; Zhu, G. Y.; Yu, C. H.; Chen, G. Y.; Zhang, C. L.; Zeng, X.; Chen, Q. M.; Peng, Q. Functionalized graphene oxide nanosheets with unique three-in-one properties for efficient and tunable antibacterial applications. Nano Res. 2021, 14, 185–190.

    Article  CAS  Google Scholar 

  56. Yu, Z. H.; Li, X. S.; Xu, F. G.; Hu, X. L.; Yan, J. T.; Kwon, N.; Chen, G. R.; Tang, T. T.; Dong, X. J.; Mai, Y. Y. et al. A Supramolecular-based dual-wavelength phototherapeutic agent with broad-spectrum antimicrobial activity against drug-resistant bacteria. Angew. Chem., Int. Ed. 2020, 59, 3658–3664.

    Article  CAS  Google Scholar 

  57. Liu, Y. N.; Guo, Z. R.; Li, F.; Xiao, Y. Q.; Zhang, Y. L.; Bu, T.; Jia, P.; Zhe, T. T.; Wang, L. Multifunctional magnetic copper ferrite nanoparticles as Fenton-like reaction and near-infrared photothermal agents for synergetic antibacterial therapy. ACS Appl. Mater. Interfaces 2019, 11, 31649–31660.

    Article  CAS  Google Scholar 

  58. Zhou, J.; Li, M. H.; Hou, Y. H.; Luo, Z.; Chen, Q. F.; Cao, H. X.; Huo, R. L.; Xue, C. C.; Sutrisno, L.; Hao, L. et al. Engineering of a nanosized biocatalyst for combined tumor starvation and low-temperature photothermal therapy. ACS Nano 2018, 12, 2858–2872.

    Article  CAS  Google Scholar 

  59. Zhang, K.; Meng, X. D.; Cao, Y.; Yang, Z.; Dong, H. F.; Zhang, Y. D.; Lu, H. T.; Shi, Z. J.; Zhang, X. J. Metal-organic framework nanoshuttle for synergistic photodynamic and low-temperature photothermal therapy. Adv. Funct. Mater. 2018, 28, 1804634.

    Article  Google Scholar 

  60. Ha, M. J.; Nam, S. H.; Sim, K.; Chong, S. E.; Kim, J.; Kim, Y.; Lee, Y.; Nam, J. M. Highly efficient photothermal therapy with cell-penetrating peptide-modified bumpy Au triangular nanoprisms using low laser power and low probe dose. Nano Lett. 2021, 21, 731–739.

    Article  CAS  Google Scholar 

  61. Zhang, H. J.; Liang, Y. C.; Zhao, H.; Qi, R. L.; Chen, Z.; Yuan, H. X.; Liang, H. Y.; Wang, L. Dual-mode antibacterial conjugated polymer nanoparticles for photothermal and photodynamic therapy. Macromol. Biosci. 2020, 20, 1900301.

    Article  CAS  Google Scholar 

  62. Tan, L.; Zhou, Z. A.; Liu, X. M.; Li, J.; Zheng, Y. F.; Cui, Z. D.; Yang, X. J.; Liang, Y. Q.; Li, Z. Y.; Feng, X. B. et al. Overcoming multidrug-resistant MRSA using conventional aminoglycoside antibiotics. Adv. Sci. 2020, 7, 1902070.

    Article  CAS  Google Scholar 

  63. Xie, Y. Z. Y.; Zheng, W. F.; Jiang, X. Y. Near-infrared light-activated phototherapy by gold nanoclusters for dispersing biofilms. ACS Appl. Mater. Interfaces 2020, 12, 9041–9049.

    Article  CAS  Google Scholar 

  64. Yan, L. X.; Chen, L. J.; Zhao, X.; Yan, X. P. pH Switchable nano-platform for in vivo persistent luminescence imaging and precise photothermal therapy of bacterial infection. Adv. Funct. Mater. 2020, 30, 1909042.

    Article  CAS  Google Scholar 

  65. Ju, E. G.; Dong, K.; Liu, Z.; Pu, F.; Ren, J. S.; Qu, X. G. Tumor microenvironment activated photothermal strategy for precisely controlled ablation of solid tumors upon NIR irradiation. Adv. Funct. Mater. 2015, 25, 1574–1580.

    Article  CAS  Google Scholar 

  66. Zhou, J.; Lu, Z. G.; Zhu, X. J.; Wang, X. J.; Liao, Y.; Ma, Z. F.; Li, F. Y. NIR photothermal therapy using polyaniline nanoparticles. Biomaterials 2013, 34, 9584–9592.

    Article  CAS  Google Scholar 

  67. Korupalli, C.; Huang, C. C.; Lin, W. C.; Pan, W. Y.; Lin, P. Y.; Wan, W. L.; Li, M. J.; Chang, Y.; Sung, H. W. Acidity-triggered charge-convertible nanoparticles that can cause bacterium-specific aggregation in situ to enhance photothermal ablation of focal infection. Biomaterials 2017, 116, 1–9.

    Article  CAS  Google Scholar 

  68. Yang, Y.; Ma, L.; Cheng, C.; Deng, Y. Y.; Huang, J. B.; Fan, X.; Nie, C. X.; Zhao, W. F.; Zhao, C. S. Nonchemotherapic and robust dual-responsive nanoagents with on-demand bacterial trapping, ablation, and release for efficient wound disinfection. Adv. Funct. Mater. 2018, 28, 1705708.

    Article  Google Scholar 

  69. Hu, D. F.; Li, H.; Wang, B. L.; Ye, Z.; Lei, W. X.; Jia, F.; Jin, Q.; Ren, K. F.; Ji, J. Surface-adaptive gold nanoparticles with effective adherence and enhanced photothermal ablation of methicillin-resistant Staphylococcus aureus biofilm. ACS Nano 2017, 11, 9330–9339.

    Article  CAS  Google Scholar 

  70. Sommer, R.; Wagner, S.; Rox, K.; Varrot, A.; Hauck, D.; Wamhoff, E. C.; Schreiber, J.; Ryckmans, T.; Brunner, T.; Rademacher, C. et al. Glycomimetic, orally bioavailable LecB inhibitors block biofilm formation of Pseudomonas aeruginosa. J. Am. Chem. Soc. 2018, 140, 2537–2545.

    Article  CAS  Google Scholar 

  71. Kadam, R. U.; Bergmann, M.; Hurley, M.; Garg, D.; Cacciarini, M.; Swiderska, M. A.; Nativi, C.; Sattler, M.; Smyth, A. R.; Williams, P. et al. A glycopeptide dendrimer inhibitor of the galactose-specific lectin LecA and of Pseudomonas aeruginosa biofilms. Angew. Chem. Int., Ed. 2011, 50, 10631–10635.

    Article  CAS  Google Scholar 

  72. Boukerb, A. M.; Rousset, A.; Galanos, N.; Méar, J. B.; Thépaut, M.; Grandjean, T.; Gillon, E.; Cecioni, S.; Abderrahmen, C.; Faure, K. et al. Antiadhesive properties of glycoclusters against pseudomonas aeruginosa lung infection. J. Med. Chem. 2014, 57, 10275–10289.

    Article  CAS  Google Scholar 

  73. Imberty, A.; Mitchell, E. P.; Wimmerová, M. Structural basis of high-affinity glycan recognition by bacterial and fungal lectins. Curr. Opin. Struct. Biol. 2005, 15, 525–534.

    Article  CAS  Google Scholar 

  74. Zhao, Y.; Guo, Q. Q.; Dai, X. M.; Wei, X. S.; Yu, Y. J.; Chen, X. L.; Li, C. X.; Cao, Z. Q.; Zhang, X. G. A biomimetic non-antibiotic approach to eradicate drug-resistant infections. Adv. Mater. 2019, 31, 1806024.

    Article  Google Scholar 

  75. Wainwright, M.; Maisch, T.; Nonell, S.; Plaetzer, K.; Almeida, A.; Tegos, G. P.; Hamblin, M. R. Photoantimicrobials—are we afraid of the light. Lancet. Infect. Dis. 2017, 17, e49–e55.

    Article  Google Scholar 

  76. Courtney, C. M.; Goodman, S. M.; McDaniel, J. A.; Madinger, N. E.; Chatterjee, A.; Nagpal, P. Photoexcited quantum dots for killing multidrug-resistant bacteria. Nat. Mater. 2016, 15, 529–534.

    Article  CAS  Google Scholar 

  77. Celli, J. P.; Spring, B. Q.; Rizvi, I.; Evans, C. L.; Samkoe, K. S.; Verma, S.; Pogue, B. W.; Hasan, T. Imaging and photodynamic therapy: Mechanisms, monitoring, and optimization. Chem. Rev. 2010, 110, 2795–2838.

    Article  CAS  Google Scholar 

  78. Li, X. S.; Lee, S.; Yoon, J. Supramolecular photosensitizers rejuvenate photodynamic therapy. Chem. Soc. Rev. 2018, 47, 1174–1188.

    Article  CAS  Google Scholar 

  79. Bhaumik, J.; Mittal, A. K.; Banerjee, A.; Chisti, Y.; Banerjee, U. C. Applications of phototheranostic nanoagents in photodynamic therapy. Nano Res. 2015, 8, 1373–1394.

    Article  CAS  Google Scholar 

  80. Almeida, A.; Faustino, M. A. F.; Tomé, J. P. C. Photodynamic inactivation of bacteria: Finding the effective targets. Future Med. Chem. 2015, 7, 1221–1224.

    Article  CAS  Google Scholar 

  81. Moan, J.; Berg, K. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem. Photobiol. 1991, 53, 549–553.

    Article  CAS  Google Scholar 

  82. Rai, P.; Mallidi, S.; Zheng, X.; Rahmanzadeh, R.; Mir, Y.; Elrington, S.; Khurshid, A.; Hasan, T. Development and applications of photo-triggered theranostic agents. Adv. Drug Deliv. Rev. 2010, 62, 1094–1124.

    Article  CAS  Google Scholar 

  83. Ren, B. B.; Li, K. J.; Liu, Z.; Liu, G. Y.; Wang, H. B. White light-triggered zwitterionic polymer nanoparticles based on an AIE-active photosensitizer for photodynamic antimicrobial therapy. J. Mater. Chem. B 2020, 8, 10754–10763.

    Article  CAS  Google Scholar 

  84. Wu, X. Q.; Jiang, X. F.; Fan, T. J.; Zheng, Z. W.; Liu, Z. Y.; Chen, Y. B.; Cao, L. Q.; Xie, Z. J.; Zhang, D. W.; Zhao, J. Q. et al. Recent advances in photodynamic therapy based on emerging two-dimensional layered nanomaterials. Nano Res. 2020, 13, 1485–1508.

    Article  CAS  Google Scholar 

  85. Jia, Q. Y.; Song, Q.; Li, P.; Huang, W. Rejuvenated photodynamic therapy for bacterial infections. Adv. Healthc. Mater. 2019, 8, 1900608.

    Article  Google Scholar 

  86. Zhang, C.; Chen, W. H.; Liu, L. H.; Qiu, W. X.; Yu, W. Y.; Zhang, X. Z. An O2 Self-supplementing and reactive-oxygen-species-circulating amplified nanoplatform via H2O/H2O2 splitting for tumor imaging and photodynamic therapy. Adv. Funct. Mater. 2017, 27, 1700626.

    Article  Google Scholar 

  87. Fan, W. P.; Bu, W. B.; Shen, B.; He, Q. J.; Cui, Z. W.; Liu, Y. Y.; Zheng, X. P.; Zhao, K. L.; Shi, J. L. Intelligent MnO2 nanosheets anchored with upconversion nanoprobes for concurrent pH-/H2O2-responsive UCL imaging and oxygen-elevated synergetic therapy. Adv. Mater. 2015, 27, 4155–4161.

    Article  CAS  Google Scholar 

  88. Kim, S.; Ohulchanskyy, T. Y.; Pudavar, H. E.; Pandey, R. K.; Prasad, P. N. Organically modified silica nanoparticles Co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy. J. Am. Chem. Soc. 2007, 129, 2669–2675.

    Article  CAS  Google Scholar 

  89. Li, X. S.; Lee, D.; Huang, J. D.; Yoon, J. Phthalocyanine-assembled nanodots as photosensitizers for highly efficient type I photoreactions in photodynamic therapy. Angew. Chem., Int. Ed. 2018, 57, 9885–9890.

    Article  CAS  Google Scholar 

  90. Chen, M.; Long, Z.; Dong, R. H.; Wang, L.; Zhang, J. J.; Li, S. X.; Zhao, X. H.; Hou, X. D.; Shao, H. W.; Jiang, X. Y. Titanium incorporation into Zr-porphyrinic metal-organic frameworks with enhanced antibacterial activity against multidrug-resistant pathogens. Small 2020, 16, 1906240.

    Article  CAS  Google Scholar 

  91. Deng, Q. Q.; Sun, P. P.; Zhang, L.; Liu, Z. W.; Wang, H.; Ren, J. S.; Qu, X. G. Porphyrin MOF dots-based, function-adaptive nanoplatform for enhanced penetration and photodynamic eradication of bacterial biofilms. Adv. Funct. Mater. 2019, 29, 1903018.

    Article  Google Scholar 

  92. Bennett, L. E.; Ghiggino, K. P.; Henderson, R. W. Singlet oxygen formation in monomeric and aggregated porphyrin c. J. Photochem. Photobiol. B. 1989, 3, 81–89.

    Article  CAS  Google Scholar 

  93. Sun, X. H.; Zebibula, A.; Dong, X. B.; Li, G. H.; Zhang, G. X.; Zhang, D. Q.; Qian, J.; He, S. L. Targeted and imaging-guided in vivo photodynamic therapy for tumors using dual-function, aggregation-induced emission nanoparticles. Nano Res. 2018, 11, 2756–2770.

    Article  CAS  Google Scholar 

  94. Lee, M. M. S.; Yan, D. Y.; Chau, J. H. C.; Park, H.; Ma, C. C. H.; Kwok, R. T. K.; Lam, J. W. Y.; Wang, D.; Tang, B. Z. Highly efficient phototheranostics of macrophage-engulfed Gram-positive bacteria using a NIR luminogen with aggregation-induced emission characteristics. Biomaterials 2020, 261, 120340.

    Article  CAS  Google Scholar 

  95. Bao, P. P.; Li, C.; Ou, H. L.; Ji, S. L.; Chen, Y.; Gao, J.; Yue, X.; Shen, J.; Ding, D. A peptide-based aggregation-induced emission bioprobe for selective detection and photodynamic killing of Gramnegative bacteria. Biomater. Sci. 2021, 9, 437–442.

    Article  CAS  Google Scholar 

  96. Prasad, P.; Gupta, A.; Sasmal, P. K. Aggregation-induced emission active metal complexes: A promising strategy to tackle bacterial infections. Chem. Commun. 2021, 57, 174–186.

    Article  CAS  Google Scholar 

  97. Wang, D.; Lee, M. M. S.; Xu, W. H.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Theranostics based on AIEgens. Theranostics 2018, 8, 4925–4956.

    Article  CAS  Google Scholar 

  98. Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: Together we shine, united we soar. Chem. Rev. 2015, 115, 11718–11940.

    Article  CAS  Google Scholar 

  99. Bai, H. T.; He, W.; Chau, J. H. C.; Zheng, Z.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. AIEgens for microbial detection and antimicrobial therapy. Biomaterials 2021, 268, 120598.

    Article  CAS  Google Scholar 

  100. Yang, C. H.; Hu, F.; Zhang, X.; Ren, C. H.; Huang, F.; Liu, J. J.; Zhang, Y. M.; Yang, L. J.; Gao, Y.; Liu, B. et al. Combating bacterial infection by in situ self-assembly of AIEgen-peptide conjugate. Biomaterials 2020, 244, 119972.

    Article  CAS  Google Scholar 

  101. Liao, Y. H.; Li, B.; Zhao, Z.; Fu, Y.; Tan, Q. Q.; Li, X. Y.; Wang, W.; Yin, J. L.; Shan, H.; Tang, B. Z. et al. Targeted theranostics for tuberculosis: A rifampicin-loaded aggregation-induced emission carrier for granulomas tracking and anti-infection. ACS Nano 2020, 14, 8046–8058.

    Article  CAS  Google Scholar 

  102. Dong, Z. Z.; Wang, Y. D.; Wang, C. L.; Meng, H.; Li, Y.; Wang, C. Q. Cationic peptidopolysaccharide with an intrinsic AIE effect for combating bacteria and multicolor imaging. Adv. Healthc. Mater. 2020, 9, 2000419.

    Article  CAS  Google Scholar 

  103. Li, Y.; Zhao, Z.; Zhang, J. J.; Kwok, R. T. K.; Xie, S.; Tang, R. B.; Jia, Y. X.; Yang, J. C.; Wang, L.; Lam, J. W. Y. et al. A bifunctional aggregation-induced emission luminogen for monitoring and killing of multidrug-resistant bacteria. Adv. Funct. Mater. 2018, 28, 1804632.

    Article  Google Scholar 

  104. Kang, M. M.; Zhou, C. C.; Wu, S. M.; Yu, B. R.; Zhang, Z. J.; Song, N.; Lee, M. M. S.; Xu, W. H.; Xu, F. J.; Wang, D. et al. Evaluation of structure-function relationships of aggregation-induced emission luminogens for simultaneous dual applications of specific discrimination and efficient photodynamic killing of Gram-positive bacteria. J. Am. Chem. Soc. 2019, 141, 16781–16789.

    Article  CAS  Google Scholar 

  105. Lee, M. M. S.; Xu, W. H.; Zheng, L.; Yu, B. R.; Leung, A. C. S.; Kwok, R. T. K.; Lam, J. W. Y.; Xu, F. J.; Wang, D.; Tang, B. Z. Ultrafast discrimination of Gram-positive bacteria and highly efficient photodynamic antibacterial therapy using near-infrared photosensitizer with aggregation-induced emission characteristics. Biomaterials 2020, 230, 119582.

    Article  CAS  Google Scholar 

  106. Mao, D.; Hu, F.; Kenry; Ji, S. L.; Wu, W. B.; Ding, D.; Kong, D. L.; Liu, B. Metal—organic-framework-assisted in vivo bacterial metabolic labeling and precise antibacterial therapy. Adv. Mater. 2018, 30, 1706831.

    Article  Google Scholar 

  107. Xiao, Y.; Xu, M. R.; Lv, N.; Cheng, C.; Huang, P.; Li, J. B.; Hu, Y.; Sun, M. Dual stimuli-responsive metal-organic framework-based nanosystem for synergistic photothermal/pharmacological antibacterial therapy. Acta Biomater. 2021, 122, 291–305.

    Article  CAS  Google Scholar 

  108. Zhang, Y.; Li, D. X.; Tan, J. S.; Chang, Z. S.; Liu, X. Y.; Ma, W. S.; Xu, Y. H. Near-infrared regulated nanozymatic/photothermal/photodynamic triple-therapy for combating multidrug-resistant bacterial infections via oxygen-vacancy molybdenum trioxide nanodots. Small 2021, 17, 2005739.

    Article  CAS  Google Scholar 

  109. Mao, C. Y.; Xiang, Y. M.; Liu, X. M.; Zheng, Y. F.; Yeung, K. W. K.; Cui, Z. D.; Yang, X. J.; Li, Z. Y.; Liang, Y. Q.; Zhu, S. L. et al. Local photothermal/photodynamic synergistic therapy by disrupting bacterial membrane to accelerate reactive oxygen species permeation and protein leakage. ACS Appl. Mater. Interfaces 2019, 11, 17902–17914.

    Article  CAS  Google Scholar 

  110. Denkova, A. G.; de Kruijff, R. M.; Serra-Crespo, P. Nanocarrier-mediated photochemotherapy and photoradiotherapy. Adv. Healthc. Mater. 2018, 7, 1701211.

    Article  Google Scholar 

  111. Yuan, Z.; Tao, B. L.; He, Y.; Mu, C. Y.; Liu, G. H.; Zhang, J. X.; Liao, Q.; Liu, P.; Cai, K. Y. Remote eradication of biofilm on titanium implant via near-infrared light triggered photothermal/photodynamic therapy strategy. Biomaterials 2019, 223, 119479.

    Article  CAS  Google Scholar 

  112. Deng, T.; Zhao, H.; Shi, M. S.; Qiu, Y.; Jiang, S. T.; Yang, X. L.; Zhao, Y. B.; Zhang, Y. F. Photoactivated trifunctional platinum nanobiotics for precise synergism of multiple antibacterial modes. Small 2019, 15, 1902647.

    Article  CAS  Google Scholar 

  113. Deng, Y. Y.; Jia, F.; Chen, S. Y.; Shen, Z. D.; Jin, Q.; Fu, G. S.; Ji, J. Nitric oxide as an all-rounder for enhanced photodynamic therapy: Hypoxia relief, glutathione depletion and reactive nitrogen species generation. Biomaterials 2018, 187, 55–65.

    Article  CAS  Google Scholar 

  114. Xu, M. R.; Hu, Y.; Xiao, Y.; Zhang, Y. Y.; Sun, K. L.; Wu, T.; Lv, N.; Wang, W. S.; Ding, W. P.; Li, F. F. et al. Near-infrared-controlled nanoplatform exploiting photothermal promotion of peroxidase-like and OXD-like activities for potent antibacterial and anti-biofilm therapies. ACS Appl. Mater. Interfaces 2020, 12, 50260–50274.

    Article  CAS  Google Scholar 

  115. Laport, M. S.; da Silva, M. R.; Silva, C. C.; do Carmo de Freire Bastos, M.; Giambiagi-deMarval, M. Heat-resistance and heat-shock response in the nosocomial pathogen Enterococcus faecium. Curr. Microbiol. 2003, 46, 313–317.

    Article  CAS  Google Scholar 

  116. Craven, M.; Kasper, S. H.; Canfield, M. J.; Diaz-Morales, R. R.; Hrabie, J. A.; Cady, N. C.; Strickland, A. D. Nitric oxide-releasing polyacrylonitrile disperses biofilms formed by wound-relevant pathogenic bacteria. J. Appl. Microbiol. 2016, 120, 1085–1099.

    Article  CAS  Google Scholar 

  117. Fasiku, V.; Omolo, C. A.; Govender, T. Free radical-releasing systems for targeting biofilms. J. Control. Release 2020, 322, 248–273.

    Article  CAS  Google Scholar 

  118. Privett, B. J.; Broadnax, A. D.; Bauman, S. J.; Riccio, D. A.; Schoenfisch, M. H. Examination of bacterial resistance to exogenous nitric oxide. Nitric Oxide 2012, 26, 169–173.

    Article  CAS  Google Scholar 

  119. Hu, D. F.; Deng, Y. Y.; Jia, F.; Jin, Q.; Ji, J. Surface charge switchable supramolecular nanocarriers for nitric oxide synergistic photodynamic eradication of biofilms. ACS Nano 2020, 14, 347–359.

    Article  CAS  Google Scholar 

  120. Yu, S. M.; Li, G. W.; Liu, R.; Ma, D.; Xue, W. Dendritic Fe3O4@Poly(dopamine)@PAMAM nanocomposite as controllable NO-releasing material: A synergistic photothermal and NO antibacterial study. Adv. Funct. Mater. 2018, 28, 1707440.

    Article  Google Scholar 

  121. Gao, Q.; Zhang, X.; Yin, W. Y.; Ma, D. Q.; Xie, C. J.; Zheng, L. R.; Dong, X. H.; Mei, L. Q.; Yu, J.; Wang, C. Z. et al. Functionalized MoS2 nanovehicle with near-infrared laser-mediated nitric oxide release and photothermal activities for advanced bacteria-infected wound therapy. Small 2018, 14, 1802290.

    Article  Google Scholar 

  122. Wu, Y.; Song, Z. Y.; Wang, H. J.; Han, H. Y. Endogenous stimulus-powered antibiotic release from nanoreactors for a combination therapy of bacterial infections. Nat. Commun. 2019, 10, 4464.

    Article  Google Scholar 

  123. Kariminia, S.; Shamsipur, A.; Shamsipur, M. Analytical characteristics and application of novel chitosan coated magnetic nanoparticles as an efficient drug delivery system for ciprofloxacin. Enhanced drug release kinetics by low-frequency ultrasounds. J. Pharmaceut. Biomed. 2016, 129, 450–457.

    Article  CAS  Google Scholar 

  124. Zhuk, I.; Jariwala, F.; Attygalle, A. B.; Wu, Y.; Libera, M. R.; Sukhishvili, S. A. Self-defensive layer-by-layer films with bacteria-triggered antibiotic release. ACS Nano 2014, 8, 7733–7745.

    Article  CAS  Google Scholar 

  125. ter Boo, G. J. A.; Grijpma, D. W.; Moriarty, T. F.; Richards, R. G.; Eglin, D. Antimicrobial delivery systems for local infection prophylaxis in orthopedic- and trauma surgery. Biomaterials 2015, 52, 113–125.

    Article  CAS  Google Scholar 

  126. Fu, Q. R.; Li, Z.; Fu, F. F.; Chen, X. Y.; Song, J. B.; Yang, H. H. Stimuli-responsive plasmonic assemblies and their biomedical applications. Nano Today 2021, 36, 101014.

    Article  CAS  Google Scholar 

  127. Li, Y.; Li, G.; Sha, X. L.; Li, L. T.; Zhang, K.; Liu, D. H.; Hao, Y. F.; Cui, X.; Wang, L.; Wang, H. An intelligent vancomycin release system for preventing surgical site infections of bone tissues. Biomater. Sci. 2020, 8, 3202–3211.

    Article  CAS  Google Scholar 

  128. Stanton, M. M.; Park, B. W.; Vilela, D.; Bente, K.; Faivre, D.; Sitti, M.; Sánchez, S. Magnetotactic bacteria powered biohybrids target E. coli biofilms. ACS Nano 2017, 11, 9968–9978.

    Article  CAS  Google Scholar 

  129. Omolo, C. A.; Kalhapure, R. S.; Jadhav, M.; Rambharose, S.; Mocktar, C.; Ndesendo, V. M. K.; Govender, T. Pegylated oleic acid: A promising amphiphilic polymer for nano-antibiotic delivery. Eur. J. Pharm. Biopharm. 2017, 112, 96–108.

    Article  CAS  Google Scholar 

  130. Forier, K.; Raemdonck, K.; De Smedt, S. C.; Demeester, J.; Coenye, T.; Braeckmans, K. Lipid and polymer nanoparticles for drug delivery to bacterial biofilms. J. Control. Release 2014, 190, 607–623.

    Article  CAS  Google Scholar 

  131. Xiong, M. H.; Bao, Y.; Yang, X. Z.; Zhu, Y. H.; Wang, J. Delivery of antibiotics with polymeric particles. Adv. Drug Deliv. Rev. 2014, 78, 63–76.

    Article  CAS  Google Scholar 

  132. Xiong, M. H.; Li, Y. J.; Bao, Y.; Yang, X. Z.; Hu, B.; Wang, J. Bacteria-responsive multifunctional nanogel for targeted antibiotic delivery. Adv. Mater. 2012, 24, 6175–6180.

    Article  CAS  Google Scholar 

  133. Gupta, A.; Mumtaz, S.; Li, C. H.; Hussain, I.; Rotello, V. M. Combatting antibiotic-resistant bacteria using nanomaterials. Chem. Soc. Rev. 2019, 48, 415–427.

    Article  Google Scholar 

  134. Liu, Y.; Shi, L. Q.; Su, L. Z.; van der Mei, H. C.; Jutte, P. C.; Ren, Y. J.; Busscher, H. J. Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chem. Soc. Rev. 2019, 48, 428–446.

    Article  CAS  Google Scholar 

  135. Elsabahy, M.; Wooley, K. L. Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 2012, 41, 2545–2561.

    Article  CAS  Google Scholar 

  136. Karimi, M.; Ghasemi, A.; Sahandi Zangabad, P.; Rahighi, R.; Moosavi Basri, S. M.; Mirshekari, H.; Amiri, M.; Shafaei Pishabad, Z.; Aslani, A.; Bozorgomid, M. et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem. Soc. Rev. 2016, 45, 1457–1501.

    Article  CAS  Google Scholar 

  137. Alfhili, M. A.; Lee, M. H. Triclosan: An update on biochemical and molecular mechanisms. Oxid. Med. Cell. Longev. 2019, 2019, 1607304.

    Article  Google Scholar 

  138. Maiden, M. M.; Hunt, A. M. A.; Zachos, M. P.; Gibson, J. A.; Hurwitz, M. E.; Mulks, M. H.; Waters, C. M. Triclosan is an aminoglycoside adjuvant for eradication of Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 2018, 62, e00146–18.

    Article  CAS  Google Scholar 

  139. Yueh, M. F.; Tukey, R. H. Triclosan: A widespread environmental toxicant with many biological effects. Annu. Rev. Pharmacol. Toxicol. 2016, 56, 251–272.

    Article  CAS  Google Scholar 

  140. Li, S. J.; Chen, P.; Peres, T. V.; Villahoz, B. F.; Zhang, Z. Y.; Miah, M. R.; Aschner, M. Triclosan induces PC12 cells injury is accompanied by inhibition of AKT/mTOR and activation of p38 pathway. Neurotoxicology 2019, 74, 221–229.

    Article  CAS  Google Scholar 

  141. Tamura, I.; Kanbara, Y.; Saito, M.; Horimoto, K.; Satoh, M.; Yamamoto, H.; Oyama, Y. Triclosan, an antibacterial agent, increases intracellular Zn2+ concentration in rat thymocytes: Its relation to oxidative stress. Chemosphere 2012, 86, 70–75.

    Article  CAS  Google Scholar 

  142. Cao, B.; Xiao, F. F.; Xing, D.; Hu, X. L. Polyprodrug antimicrobials: Remarkable membrane damage and concurrent drug release to combat antibiotic resistance of methicillin-resistant Staphylococcus aureus. Small 2018, 14, 1802008.

    Article  Google Scholar 

  143. Zhou, C. C.; Wang, M. Z.; Zou, K. D.; Chen, J.; Zhu, Y. Q.; Du, J. Z. Antibacterial polypeptide-grafted chitosan-based nanocapsules as an “armed” carrier of anticancer and antiepileptic drugs. ACS Macro Lett. 2013, 2, 1021–1025.

    Article  CAS  Google Scholar 

  144. Wang, M. Z.; Zhou, C. C.; Chen, J.; Xiao, Y. F.; Du, J. Z. Multifunctional biocompatible and biodegradable folic acid conjugated poly(ε-caprolactone)—polypeptide copolymer vesicles with excellent antibacterial activities. Bioconjugate Chem. 2015, 26, 725–734.

    Article  CAS  Google Scholar 

  145. Radovic-Moreno, A. F.; Lu, T. K.; Puscasu, V. A.; Yoon, C. J.; Langer, R.; Farokhzad, O. C. Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano 2012, 6, 4279–4287.

    Article  CAS  Google Scholar 

  146. Chu, L. P.; Gao, H. L.; Cheng, T. J.; Zhang, Y. M.; Liu, J. J.; Huang, F.; Yang, C. H.; Shi, L. Q.; Liu, J. F. A charge-adaptive nanosystem for prolonged and enhanced in vivo antibiotic delivery. Chem. Commun. 2016, 52, 6265–6268.

    Article  CAS  Google Scholar 

  147. Ye, M. Z.; Zhao, Y.; Wang, Y. Y.; Yodsanit, N.; Xie, R. S.; Gong, S. Q. pH-responsive polymer—drug conjugate: An effective strategy to combat the antimicrobial resistance. Adv. Funct. Mater. 2020, 30, 2002655.

    Article  CAS  Google Scholar 

  148. Pinto, R. M.; Soares, F. A.; Reis, S.; Nunes, C.; Van Dijck, P. Innovative strategies toward the disassembly of the EPS matrix in bacterial biofilms. Front. Microbiol. 2020, 11, 952.

    Article  Google Scholar 

  149. Flemming, H. C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633.

    Article  CAS  Google Scholar 

  150. Fulaz, S.; Vitale, S.; Quinn, L.; Casey, E. Nanoparticle—biofilm interactions: The role of the EPS matrix. Trends Microbiol. 2019, 27, 915–926.

    Article  CAS  Google Scholar 

  151. Su, Y. L.; Zhao, L. L.; Meng, F. C.; Qiao, Z. Z.; Yao, Y.; Luo, J. B. Triclosan loaded polyurethane micelles with pH and lipase sensitive properties for antibacterial applications and treatment of biofilms. Mater. Sci. Eng. C 2018, 93, 921–930.

    Article  CAS  Google Scholar 

  152. Hasan, N.; Cao, J. F.; Lee, J.; Naeem, M.; Hlaing, S. P.; Kim, J.; Jung, Y.; Lee, B. L.; Yoo, J. W. PEI/NONOates-doped PLGA nanoparticles for eradicating methicillin-resistant Staphylococcus aureus biofilm in diabetic wounds via binding to the biofilm matrix. Mater. Sci. Eng. C 2019, 103, 109741.

    Article  CAS  Google Scholar 

  153. Xi, Y. J.; Wang, Y.; Gao, J. Y.; Xiao, Y. F.; Du, J. Z. Dual corona vesicles with intrinsic antibacterial and enhanced antibiotic delivery capabilities for effective treatment of biofilm-induced periodontitis. ACS Nano 2019, 13, 13645–13657.

    Article  CAS  Google Scholar 

  154. Gao, Y. F.; Wang, J.; Chai, M. Y.; Li, X.; Deng, Y. Y.; Jin, Q.; Ji, J. Size and charge adaptive clustered nanoparticles targeting the biofilm microenvironment for chronic lung infection management. ACS Nano 2020, 14, 5686–5699.

    Article  CAS  Google Scholar 

  155. Li, Y. F.; Zhang, Y. M.; Wang, W. P. Phototriggered targeting of nanocarriers for drug delivery. Nano Res. 2018, 11, 5424–5438.

    Article  CAS  Google Scholar 

  156. Wang, Z. J.; Bai, H.; Lu, C. B.; Hou, C. Y.; Qiu, Y. H.; Zhang, P.; Duan, J. Y.; Mu, H. B. Light controllable chitosan micelles with ROS generation and essential oil release for the treatment of bacterial biofilm. Carbohydr. Polym. 2019, 205, 533–539.

    Article  CAS  Google Scholar 

  157. Song, Z. Y.; Wu, Y.; Cao, Q.; Wang, H. J.; Wang, X. R.; Han, H. Y. pH-responsive, light-triggered on-demand antibiotic release from functional metal-organic framework for bacterial infection combination therapy. Adv. Funct. Mater. 2018, 28, 1800011.

    Article  Google Scholar 

  158. Hu, X. L.; Chu, L. Y.; Dong, X. J.; Chen, G. R.; Tang, T. T.; Chen, D. J.; He, X. P.; Tian, H. Multivalent glycosheets for double light-driven therapy of multidrug-resistant bacteria on wounds. Adv. Funct. Mater. 2019, 29, 1806986.

    Article  Google Scholar 

  159. Qing, G C.; Zhao, X. X.; Gong, N. Q.; Chen, J.; Li, X. L.; Gan, Y. L.; Wang, Y. C.; Zhang, Z.; Zhang, Y. X.; Guo, W. S. et al. Thermo-responsive triple-function nanotransporter for efficient chemo-photothermal therapy of multidrug-resistant bacterial infection. Nat. Commun. 2019, 10, 4336.

    Article  Google Scholar 

  160. Tegl, G.; Schiffer, D.; Sigl, E.; Heinzle, A.; Guebitz, G M. Biomarkers for infection: Enzymes, microbes, and metabolites. Appl. Microbiol. Biotechnol. 2015, 99, 4595–4614.

    Article  CAS  Google Scholar 

  161. Qu, S. Q.; Liu, Y.; Hu, Q.; Han, Y. M.; Hao, Z. H.; Shen, J. Z.; Zhu, K. Programmable antibiotic delivery to combat methicillin-resistant Staphylococcus aureus through precision therapy. J. Control. Release 2020, 321, 710–717.

    Article  CAS  Google Scholar 

  162. Liu, Y.; Busscher, H. J.; Zhao, B. R.; Li, Y. F.; Zhang, Z. K.; van der Mei, H. C.; Ren, Y. J.; Shi, L. Q. Surface-adaptive, antimicrobially loaded, micellar nanocarriers with enhanced penetration and killing efficiency in staphylococcal biofilms. ACS Nano 2016, 10, 4779–4789.

    Article  CAS  Google Scholar 

  163. Sun, Y. H.; Qin, H. S.; Yan, Z. Q.; Zhao, C. Q.; Ren, J. S.; Qu, X. G. Combating biofilm associated infection in vivo: Integration of quorum sensing inhibition and photodynamic treatment based on multidrug delivered hollow carbon nitride sphere. Adv. Funct. Mater. 2019, 29, 1808222.

    Article  Google Scholar 

  164. Chen, Z. W.; Wang, Z. Z.; Ren, J. S.; Qu, X. G. Enzyme mimicry for combating bacteria and biofilms. Acc. Chem. Res. 2018, 51, 789–799.

    Article  CAS  Google Scholar 

  165. Hayashi, E.; Mokudai, T.; Yamada, Y.; Nakamura, K.; Kanno, T.; Sasaki, K.; Niwano, Y. In vitro and in vivo anti-Staphylococcus aureus activities of a new disinfection system utilizing photolysis of hydrogen peroxide. J. Biosci. Bioeng. 2012, 114, 193–197.

    Article  CAS  Google Scholar 

  166. Sun, H. J.; Gao, N.; Dong, K.; Ren, J. S.; Qu, X. G. Graphene quantum dots-band-aids used for wound disinfection. ACS Nano 2014, 8, 6202–6210.

    Article  CAS  Google Scholar 

  167. Ge, C. C.; Wu, R. F.; Chong, Y.; Fang, G.; Jiang, X. M.; Pan, Y.; Chen, C. Y.; Yin, J. J. Synthesis of Pt hollow nanodendrites with enhanced peroxidase-like activity against bacterial infections: Implication for wound healing. Adv. Funct. Mater. 2018, 28, 1801484.

    Article  Google Scholar 

  168. Hu, W. C.; Younis, M. R.; Zhou, Y.; Wang, C.; Xia, X. H. In situ fabrication of ultrasmall gold nanoparticles/2D MOFs hybrid as nanozyme for antibacterial therapy. Small 2020, 16, 2000553.

    Article  CAS  Google Scholar 

  169. Shan, J. Y.; Li, X.; Yang, K. L.; Xiu, W. J.; Wen, Q. R.; Zhang, Y. Q.; Yuwen, L. H.; Weng, L. X.; Teng, Z. G.; Wang, L. H. Efficient bacteria killing by Cu2WS4 nanocrystals with enzyme-like properties and bacteria-binding ability. ACS Nano 2019, 13, 13797–13808.

    Article  CAS  Google Scholar 

  170. Liu, X. P.; Yan, Z. Q.; Zhang, Y.; Liu, Z. W.; Sun, Y. H.; Ren, J. S.; Qu, X. G. Two-dimensional metal—organic framework/enzyme hybrid nanocatalyst as a benign and self-activated cascade reagent for in vivo wound healing. ACS Nano 2019, 13, 5222–5230.

    Article  CAS  Google Scholar 

  171. Das, T.; Krom, B. P.; van der Mei, H. C.; Busscher, H. J.; Sharma, P. K. DNA-mediated bacterial aggregation is dictated by acid—base interactions. Soft Matter 2011, 7, 2927–2935.

    Article  CAS  Google Scholar 

  172. Das, T.; Sharma, P. K.; Busscher, H. J.; van der Mei, H. C.; Krom, B. P. Role of extracellular DNA in initial bacterial adhesion and surface aggregation. Appl. Environ. Microbiol. 2010, 76, 3405–3408.

    Article  CAS  Google Scholar 

  173. Swartjes, J. J. T. M.; Das, T.; Sharifi, S.; Subbiahdoss, G.; Sharma, P. K.; Krom, B. P.; Busscher, H. J.; van der Mei, H. C. A functional DNase I coating to prevent adhesion of bacteria and the formation of biofilm. Adv. Funct. Mater. 2013, 23, 2843–2849.

    Article  CAS  Google Scholar 

  174. Chen, Z. W.; Ji, H. W.; Liu, C. Q.; Bing, W.; Wang, Z. Z.; Qu, X. G. A multinuclear metal complex based DNase-mimetic artificial enzyme: Matrix cleavage for combating bacterial biofilms. Angew. Chem., Int. Ed. 2016, 55, 10732–10736.

    Article  CAS  Google Scholar 

  175. Liu, Z. W.; Wang, F. M.; Ren, J. S.; Qu, X. G A series of MOF/Ce-based nanozymes with dual enzyme-like activity disrupting biofilms and hindering recolonization of bacteria. Biomaterials 2019, 208, 21–31.

    Article  CAS  Google Scholar 

  176. Dickey, S. W.; Cheung, G. Y. C.; Otto, M. Different drugs for bad bugs: Antivirulence strategies in the age of antibiotic resistance. Nat. Rev. Drug Discov. 2017, 16, 457–471.

    Article  CAS  Google Scholar 

  177. Maisetta, G.; Grassi, L.; Esin, S.; Kaya, E.; Morelli, A.; Puppi, D.; Piras, M.; Chiellini, F.; Pifferi, M.; Batoni, G. Targeting Pseudomonas aeruginosa in the sputum of primary ciliary dyskinesia patients with a combinatorial strategy having antibacterial and anti-virulence potential. Int. J. Mol. Sci. 2020, 21, 69.

    Article  CAS  Google Scholar 

  178. Lin, A. G.; Liu, Y. N.; Zhu, X. F.; Chen, X.; Liu, J. W.; Zhou, Y. H.; Qin, X. Y.; Liu, J. Bacteria-responsive biomimetic selenium nanosystem for multidrug-resistant bacterial infection detection and inhibition. ACS Nano 2019, 13, 13965–13984.

    Article  CAS  Google Scholar 

  179. Wei, X. L.; Ran, D. N.; Campeau, A.; Xiao, C.; Zhou, J. R.; Dehaini, D.; Jiang, Y.; Kroll, A. V.; Zhang, Q. Z.; Gao, W. W. et al. Multiantigenic nanotoxoids for antivirulence vaccination against antibiotic-resistant gram-negative bacteria. Nano Lett. 2019, 19, 4760–4769.

    Article  CAS  Google Scholar 

  180. Pang, X.; Liu, X.; Cheng, Y.; Zhang, C.; Ren, E.; Liu, C.; Zhang, Y.; Zhu, J.; Chen, X. Y.; Liu, G. Sono-immunotherapeutic nanocapturer to combat multidrug-resistant bacterial infections. Adv. Mater. 2019, 31, 1902530.

    Article  Google Scholar 

  181. Cascioferro, S.; Raffa, D.; Maggio, B.; Raimondi, M. V.; Schillaci, D.; Daidone, G. Sortase a inhibitors: Recent advances and future perspectives. J. Med. Chem. 2015, 58, 9108–9123.

    Article  CAS  Google Scholar 

  182. Zhang, J.; Liu, H. C.; Zhu, K. K.; Gong, S. Z.; Dramsi, S.; Wang, Y. T.; Li, J. F.; Chen, F. F.; Zhang, R. H.; Zhou, L. et al. Antiinfective therapy with a small molecule inhibitor of Staphylococcus aureus sortase. Proc. Natl. Acad. Sci. USA 2014, 111, 13517–13522.

    Article  CAS  Google Scholar 

  183. Huang, N.; Chen, X.; Zhu, X. F.; Xu, M. M.; Liu, J. Ruthenium complexes/polypeptide self-assembled nanoparticles for identification of bacterial infection and targeted antibacterial research. Biomaterials 2017, 141, 296–313.

    Article  CAS  Google Scholar 

  184. Tang, J. L.; Chu, B. B.; Wang, J. H.; Song, B.; Su, Y. Y.; Wang, H. Y.; He, Y. Multifunctional nanoagents for ultrasensitive imaging and photoactive killing of Gram-negative and Gram-positive bacteria. Nat. Commun. 2019, 10, 4057.

    Article  Google Scholar 

  185. Wang, C.; Wang, Y. L.; Zhang, L. L.; Miron, R. J.; Liang, J. F.; Shi, M. S.; Mo, W. T.; Zheng, S. H.; Zhao, Y. B.; Zhang, Y. F. Pretreated macrophage-membrane-coated gold nanocages for precise drug delivery for treatment of bacterial infections. Adv. Mater. 2018, 30, 1804023.

    Article  Google Scholar 

  186. Galstyan, A.; Schiller, R.; Dobrindt, U. Boronic acid functionalized photosensitizers: A strategy to target the surface of bacteria and implement active agents in polymer coatings. Angew. Chem., Int. Ed. 2017, 56, 10362–10366.

    Article  CAS  Google Scholar 

  187. Naha, P. C.; Liu, Y.; Hwang, G.; Huang, Y.; Gubara, S.; Jonnakuti, V.; Simon-Soro, A.; Kim, D.; Gao, L. Z.; Koo, H. et al. Dextran-coated iron oxide nanoparticles as biomimetic catalysts for localized and pH-activated biofilm disruption. ACS Nano 2019, 13, 4960–4971.

    Article  CAS  Google Scholar 

  188. Mogensen, T. H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev. 2009, 22, 240–273.

    Article  CAS  Google Scholar 

  189. Chen, J.; Su, F. Y.; Das, D.; Srinivasan, S.; Son, H. N.; Lee, B.; Radella II, F.; Whittington, D.; Monroe-Jones, T.; West, T. E. et al. Glycan targeted polymeric antibiotic prodrugs for alveolar macrophage infections. Biomaterials 2019, 195, 38–50.

    Article  CAS  Google Scholar 

  190. Pi, J.; Shen, L.; Yang, E. Z.; Shen, H. B.; Huang, D.; Wang, R.; Hu, C. M.; Jin, H.; Cai, H. H.; Cai, J. Y. et al. Macrophage-targeted isoniazid—selenium nanoparticles promote antimicrobial immunity and synergize bactericidal destruction of tuberculosis bacilli. Angew. Chem., Int. Ed. 2020, 59, 3226–3234.

    Article  CAS  Google Scholar 

  191. Cattoir, V.; Felden, B. Future antibacterial strategies: From basic concepts to clinical challenges. J. Infect. Dis. 2019, 220, 350–360.

    Article  Google Scholar 

  192. Wang, Y.; Yang, Y. N.; Shi, Y. R.; Song, H.; Yu, C. Z. Antibiotic-free antibacterial strategies enabled by nanomaterials: Progress and perspectives. Adv. Mater. 2020, 32, 1904106.

    Article  CAS  Google Scholar 

  193. Mantravadi, P. K.; Kalesh, K. A.; Dobson, R. C. J.; Hudson, A. O.; Parthasarathy, A. The quest for novel antimicrobial compounds: Emerging trends in research, development, and technologies. Antibiotics 2019, 8, 8.

    Article  CAS  Google Scholar 

  194. Theuretzbacher, U.; Outterson, K.; Engel, A.; Karlén, A. The global preclinical antibacterial pipeline. Nat. Rev. Microbiol. 2020, 18, 275–285.

    Article  Google Scholar 

  195. Atkins, K. E.; Flasche, S. Vaccination to reduce antimicrobial resistance. Lancet Glob. Health 2018, 6, e252.

    Article  Google Scholar 

  196. Cai, Y. J.; Bing, W.; Xu, X.; Zhang, Y. Q.; Chen, Z. W.; Gu, Z. Topographical nanostructures for physical sterilization. Drug Deliv. Transl. Res., in press, DOI: https://doi.org/10.1007/s13346-021-00906-9.

  197. Miller, K. P.; Wang, L.; Benicewicz, B. C.; Decho, A. W. Inorganic nanoparticles engineered to attack bacteria. Chem. Soc. Rev. 2015, 44, 7787–7807.

    Article  CAS  Google Scholar 

  198. Rai, M.; dos Santos, C. A. Nanotechnology Applied to Pharmaceutical Technology; Springer: Cham, 2017.

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (No. 82003673) and National Key R&D Program of China (Nos. 2019YFC0312101 and 2019YFC0312102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liangmin Yu or Zhiyu He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Chen, L., Wang, Y. et al. Nanomaterial-based strategies in antimicrobial applications: Progress and perspectives. Nano Res. 14, 4417–4441 (2021). https://doi.org/10.1007/s12274-021-3417-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3417-4

Keywords

Navigation