Skip to main content
Log in

Chemical cross-linking and mechanically reinforced carbon network constructed by graphene boosts potassium ion storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Carbon-based electrodes of potassium-ion batteries are of great research interest ascribed to their low cost and environmentally friendly distinctions. However, traditional carbon materials usually exhibit weak mechanical properties and incomplete crosslinking, resulting in poor stability and electrochemical performance. Herein, we report a new strategy for modifying reduced graphene oxide into a uniform few-layer structure through a sol—gel method combined with acid etching treatment. The obtained chemical cross-linking and mechanically reinforced carbon network constructed by graphene (CNCG) demonstrates excellent electrochemical and mechanical properties. Adopted as a free-standing anode (∼ 7 mg·cm−2) for potassium ion battery, the as-achieved CNCG delivers a high reversible specific capacity of 317.7 mAh·g−1 at a current density of 50 mA·g−1 and admirable cycle stability (208.4 mAh·g−1 at 50 mA·g−1 after 500 cycles). The highly reversible structural stability and fully cross-linked properties during potassiation are revealed by ex-situ characterization. This work provides new ideas for the synthesis of new carbon materials and the development of high-performance electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.

    Article  CAS  Google Scholar 

  2. Mai, L. Q.; Yan, M. Y.; Zhao, Y. L. Track batteries degrading in real time. Nature 2017, 546, 469–470.

    Article  CAS  Google Scholar 

  3. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    Article  CAS  Google Scholar 

  4. Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

    Article  CAS  Google Scholar 

  5. Liang, G. J.; Li, X. L.; Wang, Y. B.; Yang, S.; Huang, Z. D.; Yang, Q.; Wang, D. H.; Dong, B. B.; Zhu, M. S.; Zhi, C. Y. Building durable aqueous K-ion capacitors based on MXene family. Nano Res. Energy 2022, 1: e9120002.

    Article  Google Scholar 

  6. Wu, X. Y.; Leonard, D. P.; Ji, X. L. Emerging non-aqueous potassium-ion batteries: Challenges and opportunities. Chem. Mater. 2017, 29, 5031–5042.

    Article  CAS  Google Scholar 

  7. Kubota, K.; Dahbi, M.; Hosaka, T.; Kumakura, S.; Komaba, S. Towards K-ion and Na-ion batteries as “beyond Li-ion”. Chem. Rec. 2018, 18, 459–479.

    Article  CAS  Google Scholar 

  8. Min, X.; Xiao, J.; Fang, M. H.; Wang, W.; Zhao, Y. J.; Liu, Y. A.; Abdelkader, A. M.; Xi, K.; Kumar, R. V.; Huang, Z. H. Potassium-ion batteries: Outlook on present and future technologies. Energy Environ. Sci. 2021, 14, 2186–2243.

    Article  CAS  Google Scholar 

  9. Matsuda, Y.; Nakashima, H.; Morita, M.; Takasu, Y. Behavior of some ions in mixed organic electrolytes of high energy density batteries. J. Electrochem. Soc. 1981, 128, 2552–2556.

    Article  CAS  Google Scholar 

  10. Ma, L. B.; Lv, Y. H.; Wu, J. X.; Xia, C.; Kang, Q.; Zhang, Y. Z.; Liang, H. F.; Jin, Z. Recent advances in anode materials for potassium-ion batteries: A review. Nano Res. 2021, 14, 4442–4470.

    Article  CAS  Google Scholar 

  11. Ge, X. F.; Liu, S. H.; Qiao, M.; Du, Y. C.; Li, Y. F.; Bao, J. C.; Zhou, X. S. Enabling superior electrochemical properties for highly efficient potassium storage by impregnating ultrafine Sb nanocrystals within nanochannel-containing carbon nanofibers. Angew. Chem., Int. Ed. 2019, 58, 14578–14583.

    Article  CAS  Google Scholar 

  12. Deng, S. K.; Berry, V. Wrinkled, rippled and crumpled graphene: An overview of formation mechanism, electronic properties, and applications. Mater. Today 2016, 19, 197–212.

    Article  CAS  Google Scholar 

  13. Chen, Y. C.; Qin, L.; Lei, Y.; Li, X. J.; Dong, J. H.; Zhai, D. Y.; Li, B. H.; Kang, F. Y. Correlation between microstructure and potassium storage behavior in reduced graphene oxide materials. ACS Appl. Mater. Interfaces 2019, 11, 45578–45585.

    Article  CAS  Google Scholar 

  14. Xu, C. H.; Xu, B. H.; Gu, Y.; Xiong, Z. G.; Sun, J.; Zhao, X. S. Graphene-based electrodes for electrochemical energy storage. Energy Environ. Sci. 2013, 6, 1388–1414.

    Article  CAS  Google Scholar 

  15. Li, H.; Liu, L. F.; Yang, F. L. Covalent assembly of 3D graphene/polypyrrole foams for oil spill cleanup. J. Mater. Chem. A 2013, 1, 3446–3453.

    Article  CAS  Google Scholar 

  16. Liu, L. Y.; Lin, Z. F.; Chane-Ching, J. Y.; Shao, H.; Taberna, P. L.; Simon, P. 3D rGO aerogel with superior electrochemical performance for K-ion battery. Energy Storage Mater. 2019, 19, 306–313.

    Article  Google Scholar 

  17. Ju, Z. C.; Li, P. Z.; Ma, G. Y.; Xing, Z.; Zhuang, Q. C.; Qian, Y. T. Few layer nitrogen-doped graphene with highly reversible potassium storage. Energy Storage Mater. 2018, 11, 38–46.

    Article  Google Scholar 

  18. Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Carbon-based nanocages: A new platform for advanced energy storage and conversion. Adv. Mater. 2020, 32, 1904177.

    Article  CAS  Google Scholar 

  19. Luo, W.; Wan, J. Y.; Ozdemir, B.; Bao, W. Z.; Chen, Y. N.; Dai, J. Q.; Lin, H.; Xu, Y.; Gu, F.; Barone, V. et al. Potassium ion batteries with graphitic materials. Nano Lett. 2015, 15, 7671–7677.

    Article  CAS  Google Scholar 

  20. Hu, G. W.; Zhong, K. Z.; Yu, R. H.; Liu, Z. H.; Zhang, Y. Y.; Wu, J. S.; Zhou, L.; Mai, L. Q. Enveloping SiOx in N-doped carbon for durable lithium storage via an eco-friendly solvent-free approach. J. Mater. Chem. A 2020, 8, 13285–13291.

    Article  CAS  Google Scholar 

  21. Xia, Q.; Wang, B.; Wu, Y. P.; Luo, H. J.; Zhao, S. Y.; van Ree, T. Phenyl tris-2-methoxydiethoxy silane as an additive to PC-based electrolytes for lithium-ion batteries. J. Power Sources 2008, 180, 602–606.

    Article  CAS  Google Scholar 

  22. Hu, G. W.; Yu, R. H.; Liu, Z. H.; Yu, Q.; Zhang, Y. Y.; Chen, Q.; Wu, J. S.; Zhou, L.; Mai, L. Q. Surface oxidation layer-mediated conformal carbon coating on Si nanoparticles for enhanced lithium storage. ACS Appl. Mater. Interfaces 2021, 13, 3991–3998.

    Article  CAS  Google Scholar 

  23. Sun, X. H.; Li, C. P.; Wong, W. K.; Wong, N. B.; Lee, C. S.; Lee, S. T.; Teo, B. K. Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes. J. Am. Chem. Soc. 2002, 124, 14464–14471.

    Article  CAS  Google Scholar 

  24. Liu, Z. H.; Zhao, Y. L.; He, R. H.; Luo, W.; Meng, J. S.; Yu, Q.; Zhao, D. Y.; Zhou, L.; Mai, L. Q. Yolk@shell SiOx/C microspheres with semi-graphitic carbon coating on the exterior and interior surfaces for durable lithium storage. Energy Storage Mater. 2019, 19, 299–305.

    Article  Google Scholar 

  25. Yi, Y. Y.; Li, J. Q.; Zhao, W.; Zeng, Z. H.; Lu, C.; Ren, H.; Sun, J. Y.; Zhang, J.; Liu, Z. F. Temperature-mediated engineering of graphdiyne framework enabling high-performance potassium storage. Adv. Funct. Mater. 2020, 30, 2003039.

    Article  CAS  Google Scholar 

  26. Oliver, W. C.; Pharr, G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583.

    Article  CAS  Google Scholar 

  27. Wang, Z. H.; Qie, L.; Yuan, L. X.; Zhang, W. X.; Hu, X. L.; Huang, Y. H. Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon 2013, 55, 328–334.

    Article  CAS  Google Scholar 

  28. Zhou, X. F.; Chen, L. L.; Zhang, W. H.; Wang, J. W.; Liu, Z. J.; Zeng, S. F.; Xu, R.; Wu, Y.; Ye, S. F.; Feng, Y. Z. et al. Three-dimensional ordered macroporous metal-organic framework single crystal-derived nitrogen-doped hierarchical porous carbon for highperformance potassium-ion batteries. Nano Lett. 2019, 19, 4965–4973.

    Article  CAS  Google Scholar 

  29. Feng, W. C.; Wang, H.; Jiang, Y. L.; Zhang, H. Z.; Luo, W.; Chen, W.; Shen, C. L.; Wang, C. X.; Wu, J. S.; Mai, L. Q. A strain-relaxation red phosphorus freestanding anode for non-aqueous potassium ion batteries. Adv. Energy Mater. 2022, 12, 2103343.

    Article  CAS  Google Scholar 

  30. Ge, J. M.; Fan, L.; Rao, A. M.; Zhou, J.; Lu, B. A. Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries. Nat. Sustainability 2022, 5, 225–234.

    Article  Google Scholar 

  31. Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.

    Article  CAS  Google Scholar 

  32. Choi, C.; Ashby, D. S.; Butts, D. M.; DeBlock, R. H.; Wei, Q. L.; Lau, J.; Dunn, B. Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 2020, 5, 5–19.

    Article  Google Scholar 

  33. Chen, M.; Wang, W.; Liang, X.; Gong, S.; Liu, J.; Wang, Q.; Guo, S. J.; Yang, H. Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1800171.

    Article  Google Scholar 

  34. Dai, Y. H.; Liao, X. B.; Yu, R. H.; Li, J. H.; Li, J. T.; Tan, S. S.; He, P.; An, Q. Y.; Wei, Q. L.; Chen, L. N. et al. Quicker and more Zn2+ storage predominantly from the interface. Adv. Mater. 2021, 33, 2100359.

    Article  CAS  Google Scholar 

  35. Luo, W.; Li, F.; Zhang, W. R.; Han, K.; Gaumet, J. J.; Schaefer, H. E.; Mai, L. Q. Encapsulating segment-like antimony nanorod in hollow carbon tube as long-lifespan, high-rate anodes for rechargeable K-ion batteries. Nano Res. 2019, 12, 1025–1031.

    Article  CAS  Google Scholar 

  36. Zhang, C.; Firestein, K. L.; Fernando, J. F. S.; Siriwardena, D.; von Treifeldt, J. E.; Golberg, D. Recent progress of in situ transmission electron microscopy for energy materials. Adv. Mater. 2020, 32, 1904094.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51904216). The TEM work was performed at the Nanostructure Research Center (NRC), which is supported by the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and the State Key Laboratory of Silicate Materials for Architectures (all the laboratories are at Wuhan University of Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Luo.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Yu, R., Luo, W. et al. Chemical cross-linking and mechanically reinforced carbon network constructed by graphene boosts potassium ion storage. Nano Res. 15, 9019–9025 (2022). https://doi.org/10.1007/s12274-022-4586-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4586-x

Keywords

Navigation