Skip to main content
Log in

Superoxide-like Cu/GO single-atom catalysts nanozyme with high specificity and activity for removing superoxide free radicals

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Although nanozyme has become an emerging area of research attracting extensive attention recently, the activity and specificity of currently reported nanozymes are generally lower than those of natural enzymes. Developing highly active and specific nanozymes is therefore extremely necessary and also remains a great challenge. Superoxide dismutase (SOD) catalyzes the disproportionation of cytotoxic O2 into hydrogen peroxide and oxygen, and plays an important role in reducing human oxidative stress. In this work, we prepare Cu single-atom catalysts (Cu/GO SACs, GO = graphene oxide) through a simple and low-cost strategy at room temperature using Cu foam and graphene oxide. Cu/GO SACs can maintain excellent catalytic activity under harsh environment. Compared with the natural enzyme, SOD-like Cu/GO SAC nanozyme has higher catalytic activity and meanwhile, it does not possess the common properties of other mimic enzymes often existing in nanomaterials. Based on the excellent SOD-like enzyme activity of Cu/GO SACs, it successfully eliminates the active oxygen in cigarette smoke. This work not only provides a new idea for the design and synthesis of nanozymes with excellent SOD mimetic properties, but also is promising in the treatment of lung injury and inflammatory diseases related to free radical production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lincoln, K. M.; Gonzalez, P.; Richardson, T. E.; Julovich, D. A.; Saunders, R.; Simpkins, J. W.; Green, K. N. A potent antioxidant small molecule aimed at targeting metal-based oxidative stress in neurodegenerative disorders. Chem. Commun. 2013, 49, 2712–2714.

    Article  CAS  Google Scholar 

  2. Perez, L. R.; Franz, K. J. Minding metals: Tailoring multifunctional chelating agents for neurodegenerative disease. Dalton Trans. 2010, 39, 2177–2187.

    Article  CAS  Google Scholar 

  3. Hayyan, M.; Hashim, M. A.; AlNashef, I. M. Superoxide ion: Generation and chemical implications. Chem. Rev. 2016, 116, 3029–3085.

    Article  CAS  Google Scholar 

  4. Halliwell, B. Reactive oxygen species in living systems: Source, biochemistry, and role in human disease. Am. J. Med. 1991, 91, S14–S22.

    Article  Google Scholar 

  5. Bandyopadhyay, U.; Das, D.; Banerjee, R. K. Reactive oxygen species: Oxidative damage and pathogenesis. Curr. Sci. 1999, 77, 658–666.

    CAS  Google Scholar 

  6. Valentine, J. S.; Wertz, D. L.; Lyons, T. J.; Liou, L. L.; Goto, J. J.; Gralla, E. B. The dark side of dioxygen biochemistry. Curr. Opin. Chem. Biol. 1998, 2, 253–262.

    Article  CAS  Google Scholar 

  7. Martínez-Camarena, Á.; Sánchez-Murcia, P. A.; Blasco, S.; González, L.; García-España, E. Unveiling the reaction mechanism of novel copper N-alkylated tetra-azacyclophanes with outstanding superoxide dismutase activity. Chem. Commun. 2020, 56, 7511–7514.

    Article  Google Scholar 

  8. Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M. T. D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84.

    Article  CAS  Google Scholar 

  9. Zhong, M. X.; Chi, M. Q.; Ma, F. Q.; Zhu, Y.; Wang, C.; Lu, X. F. Dual responsive enzyme mimicking of ternary polyaniline-MnO2-Pd nanowires and its application in colorimetric biosensing. ACS Sustainable Chem. Eng. 2018, 6, 16482–16492.

    Article  CAS  Google Scholar 

  10. Fridovich, I. Superoxide dismutases. Annu. Rev. Biochem. 1975, 44, 147–159.

    Article  CAS  Google Scholar 

  11. Iuchi, Y.; Roy, D.; Okada, F.; Kibe, N.; Tsunoda, S.; Suzuki, S.; Takahashi, M.; Yokoyama, H.; Yoshitake, J.; Kondo, S. et al. Spontaneous skin damage and delayed wound healing in SOD1-deficient mice. Mol. Cell Biochem. 2010, 341, 181–194.

    Article  CAS  Google Scholar 

  12. Yasui, K.; Baba, A. Therapeutic potential of superoxide dismutase (SOD) for resolution of inflammation. Inflamm. Res. 2016, 55, 359–363.

    Article  Google Scholar 

  13. McCord, J. M.; Edeas, M. A. SOD, oxidative stress and human pathologies: A brief history and a future vision. Biomed. Pharmacother. 2005, 59, 139–142.

    Article  CAS  Google Scholar 

  14. Zhou, W. Q.; Li, H. F.; Xia, B.; Ji, W. L.; Ji, S. B.; Zhang, W. N.; Huang, W.; Huo, F. W.; Xu, H. P. Selenium-functionalized metal-organic frameworks as enzyme mimics. Nano Res. 2018, 11, 5761–5768.

    Article  CAS  Google Scholar 

  15. Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.

    Article  CAS  Google Scholar 

  16. Jiang, D. W.; Ni, D. L.; Rosenkrans, Z. T.; Huang, P.; Yan, X. Y.; Cai, W. B. Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev. 2019, 48, 3683–3704.

    Article  CAS  Google Scholar 

  17. Ding, H.; Hu, B.; Zhang, B.; Zhang, H.; Yan, X. Y.; Nie, G. H.; Liang, M. M. Carbon-based nanozymes for biomedical applications. Nano Res. 2021, 14, 570–583.

    Article  CAS  Google Scholar 

  18. Wu, J. J. X.; Li, S. R.; Wei, H. Integrated nanozymes: Facile preparation and biomedical applications. Chem. Commun. 2018, 54, 6520–6530.

    Article  CAS  Google Scholar 

  19. Zhang, X. J.; Lin, S. J.; Liu, S. W.; Tan, X. L.; Dai, Y.; Xia, F. Advances in organometallic/organic nanozymes and their applications. Coord. Chem. Rev. 2020, 429, 213652.

    Article  Google Scholar 

  20. Lu, M. J.; Wang, C.; Ding, Y. Q.; Peng, M. H.; Zhang, W.; Li, K.; Wei, W.; Lin, Y. Q. Fe-N/C single-atom catalysts exhibiting multienzyme activity and ROS scavenging ability in cells. Chem. Commun. 2019, 55, 14534–14537.

    Article  CAS  Google Scholar 

  21. Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076.

    Article  CAS  Google Scholar 

  22. Zhou, X.; Zeng, W. N.; Rong, S.; Lv, H.; Chen, Y. H.; Mao, Y. H.; Tan, W. L.; Li, H. Alendronate-modified nanoceria with multiantioxidant enzyme-mimetic activity for reactive oxygen species/reactive nitrogen species scavenging from cigarette smoke. ACS Appl. Mater. Interfaces 2021, 13, 47394–47406.

    Article  CAS  Google Scholar 

  23. Zhang, D. Y.; Liu, H. K.; Li, C. Y.; Younis, M. R.; Lei, S.; Yang, C.; Lin, J.; Li, Z. M.; Huang, P. Ceria nanozymes with preferential renal uptake for acute kidney injury alleviation. ACS Appl. Mater. Interfaces 2020, 12, 56830–56838.

    Article  CAS  Google Scholar 

  24. Huang, Y. Y.; Liu, Z.; Liu, C. Q.; Ju, E. G.; Zhang, Y.; Ren, J. S.; Qu, X. G. Self-assembly of multi-nanozymes to mimic an intracellular antioxidant defense system. Angew. Chem., Int. Ed. 2016, 55, 6646–6650.

    Article  CAS  Google Scholar 

  25. Liu, Y. F.; Cheng, Y.; Zhang, H.; Zhou, M.; Yu, Y. J.; Lin, S. C.; Jiang, B.; Zhao, X. Z.; Miao, L. Y.; Wei, C. W. et al. Integrated cascade nanozyme catalyzes in vivo ROS scavenging for antiinflammatory therapy. Sci. Adv. 2020, 6, eabb2695.

    Article  CAS  Google Scholar 

  26. Lin, S. C.; Cheng, Y.; Zhang, H.; Wang, X. Y.; Zhang, Y. Y.; Zhang, Y. J.; Miao, L. Y.; Zhao, X. Z.; Wei, H. Copper tannic acid coordination nanosheet: A potent nanozyme for scavenging ROS from cigarette smoke. Small 2020, 16, 1902123.

    Article  CAS  Google Scholar 

  27. Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

    Article  CAS  Google Scholar 

  28. Zhang, H. B.; Liu, G. G.; Shi, L.; Ye, J. H. Single-atom catalysts: Emerging multifunctional materials in heterogeneous catalysis. Adv. Energy Mater. 2018, 8, 1701343.

    Article  Google Scholar 

  29. Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    Article  CAS  Google Scholar 

  30. Zhou, M.; Jiang, Y.; Wang, G.; Wu, W. J.; Chen, W. X.; Yu, P.; Lin, Y. Q.; Mao, J. J.; Mao, L. Q. Single-atom Ni-N4 provides a robust cellular NO sensor. Nat. Commun. 2020, 11, 3188.

    Article  CAS  Google Scholar 

  31. Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

    Article  CAS  Google Scholar 

  32. Pei, J. H.; Zhao, R. L.; Mu, X. Y.; Wang, J. Y.; Liu, C. L.; Zhang, X. D. Single-atom nanozymes for biological applications. Biomater. Sci. 2020, 8, 6428–6441.

    Article  CAS  Google Scholar 

  33. Wu, K. L.; Chen, X.; Liu, S. J.; Pan, Y.; Cheong, W. C.; Zhu, W.; Cao, X.; Shen, R. G.; Chen, W. X.; Luo, J. et al. Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. Nano Res. 2018, 11, 6260–6269.

    Article  CAS  Google Scholar 

  34. Cao, F. F.; Zhang, L.; You, Y. W.; Zheng, L. R.; Ren, J. S.; Qu, X. G. An enzyme-mimicking single-atom catalyst as an efficient multiple reactive oxygen and nitrogen species scavenger for sepsis management. Angew. Chem., Int. Ed. 2020, 59, 5108–5115.

    Article  CAS  Google Scholar 

  35. Ma, W. J.; Mao, J. J.; Yang, X. T.; Pan, C.; Chen, W. X.; Wang, M.; Yu, P.; Mao, L. Q.; Li, Y. D. A single-atom Fe-N4 catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection. Chem. Commun. 2019, 55, 159–162.

    Article  CAS  Google Scholar 

  36. Li, Y. Q.; Liu, J. W. Nanozyme’s catching up: Activity, specificity, reaction conditions and reaction types. Mater. Horiz. 2021, 8, 336–350.

    Article  CAS  Google Scholar 

  37. Liu, B. W.; Liu, J. W. Surface modification of nanozymes. Nano Res. 2017, 10, 1125–1148.

    Article  CAS  Google Scholar 

  38. Dong, H. J.; Fan, Y. Y.; Zhang, W.; Gu, N.; Zhang, Y. Catalytic mechanisms of nanozymes and their applications in biomedicine. Bioconjug. Chem. 2019, 30, 1273–1296.

    Article  CAS  Google Scholar 

  39. Wang, Q. Q.; Wei, H.; Zhang, Z. Q.; Wang, E. K.; Dong, S. J. Nanozyme: An emerging alternative to natural enzyme for biosensing and immunoassay. Trends Analyt. Chem. 2018, 105, 218–224.

    Article  CAS  Google Scholar 

  40. Li, M. H.; Chen, J. X.; Wu, W. W.; Fang, Y. X.; Dong, S. J. Oxidase-like MOF-818 nanozyme with high specificity for catalysis of catechol oxidation. J. Am. Chem. Soc. 2020, 142, 15569–15574.

    Article  CAS  Google Scholar 

  41. Chen, Y. J.; Wang, P. X.; Hao, H. G.; Hong, J. J.; Li, H. J.; Ji, S. F.; Li, A.; Gao, R.; Dong, J. C.; Han, X. D. et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651.

    Article  CAS  Google Scholar 

  42. Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.

    Article  CAS  Google Scholar 

  43. Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. Z.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

    Article  CAS  Google Scholar 

  44. Bai, Y. H.; Zheng, Y. J.; Wang, Z.; Hong, Q.; Liu, S. Q.; Shen, Y. F.; Zhang, Y. J. Metal-doped carbon nitrides: Synthesis, structure and applications. New J. Chem. 2021, 45, 11876–11892.

    Article  CAS  Google Scholar 

  45. Qu, Y. T.; Wang, L. G.; Li, Z. J.; Li, P.; Zhang, Q. H.; Lin, Y.; Zhou, F. Y.; Wang, H. J.; Yang, Z. K.; Hu, Y. D. et al. Ambient synthesis of single-atom catalysts from bulk metal via trapping of atoms by surface dangling bonds. Adv. Mater. 2019, 31, 1904496.

    Article  CAS  Google Scholar 

  46. Lamberti, C.; Bordiga, S.; Salvalaggio, M.; Spoto, G.; Zecchina, A.; Geobaldo, F.; Vlaic, G.; Bellatreccia, M. XAFS, IR, and UV—vis study of the CuI environment in CuI-ZSM-5. J. Phys. Chem. B 1997, 101, 344–360.

    Article  CAS  Google Scholar 

  47. Tang, X.; Wang, L.; Yang, B.; Fei, C.; Yao, T. Y.; Liu, W.; Lou, Y.; Dai, Q. G.; Cai, Y. F.; Cao, X. M. et al. Direct oxidation of methane to oxygenates on supported single Cu atom catalyst. Appl. Catal. B Environ. 2021, 285, 119827.

    Article  CAS  Google Scholar 

  48. Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.

    Article  Google Scholar 

  49. Zhao, H. T.; Joseph, J.; Zhang, H.; Karoui, H.; Kalyanaraman, B. Synthesis and biochemical applications of a solid cyclic nitrone spin trap: A relatively superior trap for detecting superoxide anions and glutathiyl radicals. Free Radical Biol. Med. 2001, 31, 599–606.

    Article  CAS  Google Scholar 

  50. Singh, N.; NaveenKumar, S. K.; Geethika, M.; Mugesh, G. A cerium vanadate nanozyme with specific superoxide dismutase activity regulates mitochondrial function and ATP synthesis in neuronal cells. Angew. Chem., Int. Ed. 2021, 60, 3121–3130.

    Article  CAS  Google Scholar 

  51. Zhao, H. Q.; Zhang, R. F.; Yan, X. Y.; Fan, K. L. Superoxide dismutase nanozymes: An emerging star for anti-oxidation. J. Mater. Chem. B 2021, 9, 6939–6957.

    Article  CAS  Google Scholar 

  52. Puchoňová, M.; Švorec, J.; Švorc, L.; Pavlik, J.; Mazúr, M.; Dlháň, L’.; Růzičková, Z.; Moncol’, J.; Valigura, D. Synthesis, spectral, magnetic properties, electrochemical evaluation and SOD mimetic activity of four mixed-ligand Cu(II) complexes. Inorg. Chim. Acta. 2017, 455, 298–306.

    Article  Google Scholar 

  53. Guan, Y. J.; Gao, N.; Ren, J. S.; Qu, X. G. Rationally designed CeNP@MnMoS4 core-shell nanoparticles for modulating multiple facets of Alzheimer’s disease. Chem. -Eur. J. 2016, 22, 14523–14526.

    Article  Google Scholar 

  54. Proctor, R. N. The history of the discovery of the cigarette-lung cancer link: Evidentiary traditions, corporate denial, global toll. Tob. Control. 2012, 21, 87–91.

    Article  Google Scholar 

  55. Bluhm, A. L.; Weinstein, J.; Sousa, J. A. Free radicals in tobacco smoke. Nature 1971, 229, 500.

    Article  CAS  Google Scholar 

  56. Onizawa, S.; Aoshiba, K.; Kajita, M.; Miyamoto, Y.; Nagai, A. Platinum nanoparticle antioxidants inhibit pulmonary inflammation in mice exposed to cigarette smoke. Pulm. Pharmacol. Ther. 2009, 22, 340–349.

    Article  CAS  Google Scholar 

  57. Aghapour, M.; Raee, P.; Moghaddam, S. J.; Hiemstra, P. S.; Heijink, I. H. Airway epithelial barrier dysfunction in chronic obstructive pulmonary disease: Role of cigarette smoke exposure. Am. J. Respir. Cell Mol. Biol. 2018, 58, 157–169.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 22074095), Beijing Municipal Natural Science Foundation (No. 2222005) and High-level Teachers in Beijing Municipal Universities in the Period of 13th Five-Year Plan (No. CIT&TCD20190330).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenxing Chen or Yuqing Lin.

Electronic Supplementary Material

12274_2022_4557_MOESM1_ESM.pdf

Superoxide-like Cu/GO single-atom catalysts nanozyme with high specificity and activity for removing superoxide free radicals

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, M., Wang, J., Ren, G. et al. Superoxide-like Cu/GO single-atom catalysts nanozyme with high specificity and activity for removing superoxide free radicals. Nano Res. 15, 8804–8809 (2022). https://doi.org/10.1007/s12274-022-4557-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4557-2

Keywords

Navigation