Skip to main content
Log in

Bottom-up construction of mesoporous supramolecular isomers based on a Pd3L6 triangular prism as templates for shape specific aggregation of polyiodide

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Bottom-up construction of highly complex architecture from simple components remains one of the long-standing challenges in chemistry. Herein two supramolecular isomers based on large trigonal prismatic Pd3L16 building block are reported. Significantly, they can be controllably obtained by adjusting the solute concentration during crystal growth. Specifically, the square shape crystals, α-[Pd3L16](PF6)12 in the cubic system with \(I\bar 43m\) space group, can be isolated from a high-concentration solution of Pd3L16. Interestingly, a mesoporous cage assembled from eight Pd3L16 units with a diameter of 24 Å is observed in the crystal structure. For the low-concentration solution of Pd3L16, the rectangular shape crystals β-[Pd3L16](PF6)12 are obtained, which crystallize in the hexagonal system with P63Im space group, and display two-dimension packing pattern and one-dimension mesoporous channels (diameter ca. 22 Å) along the c axis. Moreover, the two supramolecular isomers were used as nanoporous reactors to induce the specific formation of polyiodides with different compositions and shapes as evidenced from single crystal X-ray diffraction studies. These findings provide a reference in targeting functional crystalline mesoporous supramolecular materials from a single complex building unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schreiber, G.; Haran, G.; Zhou, H. X. Fundamental aspects of protein-protein association kinetics. Chem. Rev. 2009, 109, 839–860.

    Article  CAS  Google Scholar 

  2. Cook, T. R.; Stang, P. J. Recent developments in the preparation and chemistry of metallacycles and metallacages via coordination. Chem. Rev. 2015, 115, 7001–7045.

    Article  CAS  Google Scholar 

  3. Liu, Y. Z.; Hu, C. H.; Comotti, A.; Ward, M. D. Supramolecular archimedean cages assembled with 72 hydrogen bonds. Science 2011, 333, 436–440.

    Article  CAS  Google Scholar 

  4. Deng, H. X.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A. C.; Liu, Z.; Asahina, S. et al. Large-pore apertures in a series of metal-organic frameworks. Science 2012, 336, 1018–1023.

    Article  CAS  Google Scholar 

  5. Fujita, D.; Ueda, Y.; Sato, S.; Mizuno, N.; Kumasaka, T.; Fujita M. Self-assembly of tetravalent goldberg polyhedra from 144 small components. Nature 2016, 540, 563–566.

    Article  CAS  Google Scholar 

  6. Gan, M. M.; Liu, J. Q.; Zhang, L.; Wang, Y. Y.; Hahn, F. E.; Han, Y. F. Preparation and post-assembly modification of metallosupramolecular assemblies from poly(N-heterocyclic carbene) ligands. Chem. Rev. 2018, 118, 9587–9641.

    Article  CAS  Google Scholar 

  7. Li, P.; Vermeulen, N. A.; Malliakas, C. D.; Gómez-Gualdrón, D. A.; Howarth, A. J.; Mehdi, B. L.; Dohnalkova, A.; Browning, N. D.; O’Keeffe, M.; Farha, O. K. Bottom-up construction of a superstructure in a porous uranium-organic crystal. Science 2017, 356, 624–627.

    Article  CAS  Google Scholar 

  8. Li, Y.; Yu, J. G.; Ma, L. L.; Li, M.; An, Y. Y.; Han, Y. F. Strategies for the construction of supramolecular assemblies from poly-NHC ligand precursors. Sci. China Chem. 2021, 64, 701–718.

    Article  CAS  Google Scholar 

  9. Tong, H. Y.; Liang, J.; Wu, Q. J.; Zou, Y. H.; Huang, Y. B.; Cao, R. Soluble imidazolium-functionalized coordination cages for efficient homogeneous catalysis of CO2 cycloaddition reactions. Chem. Commun. 2021, 57, 2140–2143.

    Article  CAS  Google Scholar 

  10. Li, P.; Chen, Q. S.; Wang, T. C.; Vermeulen, N. A.; Mehdi, B. L.; Dohnalkova, A.; Browning, N. D.; Shen, D. K.; Anderson, R.; Gómez-Gualdrón, D. A. et al. Hierarchically engineered mesoporous metal-organic frameworks toward cell-free immobilized enzyme systems. Chem 2018, 4, 1022–1034.

    Article  CAS  Google Scholar 

  11. Wang, W.; Wang, Y. X.; Yang, H. B. Supramolecular transformations within discrete coordination-driven supramolecular architectures. Chem. Soc. Rev. 2016, 45, 2656–2693.

    Article  CAS  Google Scholar 

  12. Kim, J.; Nam, D.; Kitagawa, H.; Lim, D. W.; Choe, W. Discovery of Zr-based metal-organic polygon: Unveiling new design opportunities in reticular chemistry. Nano Res. 2021, 14, 392–397.

    Article  CAS  Google Scholar 

  13. Wang, Z.; Zhou, L. P.; Cai, L. X.; Tian, C. B.; Sun, Q. F. From a mononuclear FeL2 complex to a Fe4L4 molecular square: Designed assembly and spin-crossover property. Nano Res. 2021, 14, 398–403.

    Article  CAS  Google Scholar 

  14. Fang, Y.; Powell, J. A.; Li, E.; Wang, Q.; Perry, Z.; Kirchon, A.; Yang, X. Y.; Xiao, Z. F.; Zhu, C. F.; Zhang, L. L. et al. Catalytic reactions within the cavity of coordination cages. Chem. Soc. Rev. 2019, 48, 4707–4730.

    Article  CAS  Google Scholar 

  15. Shi, W. J.; Liu, D.; Li, X.; Bai, S.; Wang, Y. Y.; Han, Y. F. Supramolecular coordination cages based on N-heterocyclic carbene-gold(I) ligands and their precursors: Self-assembly, structural transformation and guest-binding properties. Chem. —Eur. J. 2021, 27, 7853–7861.

    Article  CAS  Google Scholar 

  16. Zou, Y. H.; Wu, Q. J.; Yin, Q.; Huang, Y. B.; Cao, R. Self-assembly of imidazolium-functionalized Zr-based metal-organic polyhedra for catalytic conversion of CO2 into cyclic carbonates. Inorg. Chem. 2021, 60, 2112–2116.

    Article  CAS  Google Scholar 

  17. Sinha, N.; Hahn, F. E. Metallosupramolecular architectures obtained from poly-N-heterocyclic carbene ligands. Acc. Chem. Res. 2017, 50, 2167–2184.

    Article  CAS  Google Scholar 

  18. Luo, D.; Zhou, X. P.; Li, D. Beyond molecules: Mesoporous supramolecular frameworks self-assembled from coordination cages and inorganic anions. Angew. Chem., Int. Ed. 2015, 54, 6190–6195.

    Article  CAS  Google Scholar 

  19. Guo, Q. H.; Liu, Z. C.; Li, P.; Shen, D. K.; Xu, Y. B.; Ryder, M. R.; Chen, H. Y.; Stern, C. L.; Malliakas, C. D.; Zhang, X. et al. A hierarchical nanoporous diamondoid superstructure. Chem 2019, 5, 2353–2364.

    Article  CAS  Google Scholar 

  20. Li, G. L.; Zhuo, Z.; Wang, B.; Cao, X. L.; Su, H. F.; Wang, W.; Huang, Y. G.; Hong, M. C. Constructing π-stacked supramolecular cage based hierarchical self-assemblies via π⋯π stacking and hydrogen bonding. J. Am. Chem. Soc. 2021, 143, 10920–10929.

    Article  CAS  Google Scholar 

  21. Grancha, T.; Carné-Sánchez, A.; Zarekarizi, F.; Hernández-López, L.; Albalad, J.; Khobotov, A.; Guillerm, V.; Morsali, A.; Juanhuix, J.; Gándara, F. et al. Synthesis of polycarboxylate rhodium(II) metal-organic polyhedra (MOPs) and their use as building blocks for highly connected metal-organic frameworks (MOFs). Angew. Chem., Int. Ed. 2021, 60, 5729–5733.

    Article  CAS  Google Scholar 

  22. Liu, G. L.; Zhou, M.; Su, K. Z.; Babarao, R.; Yuan, D. Q.; Hong, M. C. Stabilizing the extrinsic porosity in metal-organic cages-based supramolecular framework by in situ catalytic polymerization. CCS Chem. 2021, 2, 1382–1390.

    Article  Google Scholar 

  23. Gosselin, A. J.; Rowland, C. A.; Bloch, E. D. Permanently microporous metal-organic polyhedra. Chem. Rev. 2020, 120, 8987–9014.

    Article  CAS  Google Scholar 

  24. Niu, Z.; Wang, L.; Fang, S.; Lan, P. C.; Aguila, B.; Perman, J.; Ma, J. G.; Cheng, P.; Li, X.; Ma, S. Solvent-assisted coordination driven assembly of a supramolecular architecture featuring two types of connectivity from discrete nanocages. Chem. Sci. 2019, 10, 6661–6665.

    Article  CAS  Google Scholar 

  25. Sava, D. F.; Kravtsov, V. C.; Eckert, J.; Eubank, J. F.; Nouar, F.; Eddaoudi, M. Exceptional stability and high hydrogen uptake in hydrogen-bonded metal-organic cubes possessing ACO and AST zeolite-like topologies. J. Am. Chem. Soc. 2009, 131, 10394–10396.

    Article  CAS  Google Scholar 

  26. Wang, H.; Wang, K.; Xu, Y. P.; Wang, W.; Chen, S. H.; Hart, M.; Wojtas, L.; Zhou, L. P.; Gan, L.; Yan, X. Z. et al. Hierarchical self-assembly of nanowires on the surface by metallo-supramolecular truncated cuboctahedra. J. Am. Chem. Soc. 2021, 143, 5826–5835.

    Article  CAS  Google Scholar 

  27. Yao, S. Y.; Fang, W. H.; Sun, Y. Y.; Wang, S. T.; Zhang, J. Mesoporous assembly of aluminum molecular rings for iodine capture. J. Am. Chem. Soc. 2021, 143, 2325–2330.

    Article  CAS  Google Scholar 

  28. Moulton, B.; Zaworotko, M. J. From molecules to crystal engineering: Supramolecular isomerism and polymorphism in network solids. Chem. Rev. 2001, 101, 1629–1658.

    Article  CAS  Google Scholar 

  29. Makal, T. A.; Yakovenko, A. A.; Zhou, H. C. Isomerism in metal-organic frameworks: “Framework isomers”. J. Phys. Chem. Lett. 2011, 2, 1682–1689.

    Article  CAS  Google Scholar 

  30. Zhang, J. P.; Huang, X. C.; Chen, X. M. Supramolecular isomerism in coordination polymers. Chem. Soc. Rev. 2009, 38, 2385–2396.

    Article  CAS  Google Scholar 

  31. Karmakar, A.; Paul, A.; Pombeiro, A. J. L. Recent advances on supramolecular isomerism in metal-organic frameworks. CrystEngComm 2017, 19, 4666–4695.

    Article  CAS  Google Scholar 

  32. Desiraju, G. R. Crystal engineering: A holistic view. Angew. Chem., Int. Ed. 2007, 46, 8342–8356.

    Article  CAS  Google Scholar 

  33. Desiraju, G. R. Crystal engineering: From molecule to crystal. J. Am. Chem. Soc. 2013, 135, 9952–9967.

    Article  CAS  Google Scholar 

  34. Masaoka, S.; Tanaka, D.; Nakanishi, Y.; Kitagawa, S. Reaction-temperature-dependent supramolecular isomerism of coordination networks based on the organometallic building block [CuI22-BQ)(µ2-OAc)2]. Angew. Chem., Int. Ed. 2004, 43, 2530–2534.

    Article  CAS  Google Scholar 

  35. Dikhtiarenko, A.; Serra-Crespo, P.; Castellanos, S.; Pustovarenko, A.; Mendoza-Meroño, R.; García-Granda, S.; Gascon, J. Temperature-dependent supramolecular isomerism of lutetium-aminoterephthalate metal-organic frameworks: Synthesis, crystallography, and physical properties. Cryst. Growth Des. 2016, 16, 5636–5645.

    Article  CAS  Google Scholar 

  36. Wang, J.; Gao, L. L.; Zhang, J.; Zhao, L.; Wang, X. Q.; Niu, X. Y.; Fan, L. M.; Hu, T. P. Syntheses, gas adsorption, and sensing properties of solvent-controlled Zn(II) pseudo-supramolecular isomers and Pb(II) supramolecular isomers. Cryst. Growth Des. 2019, 19, 630–637.

    Article  CAS  Google Scholar 

  37. Huang, X. C.; Zhang, J. P.; Lin, Y. Y.; Chen, X. M. Triple-stranded helices and zigzag chains of copper(I) 2-ethylimidazolate: Solvent polarity-induced supramolecular isomerism. Chem. Commun. 2005, 2232–2234.

  38. Li, C. P.; Du, M. Role of Solvents in coordination supramolecular systems. Chem. Commun. 2011, 47, 5958–5972.

    Article  CAS  Google Scholar 

  39. Aitipamula, S.; Nangia, A. Guest-induced supramolecular isomerism in inclusion complexes of T-shaped host 4, 4-bis(4′-hydroxyphenyl)cyclohexanone. Chem.—Eur. J. 2005, 11, 6727–6742.

    Article  CAS  Google Scholar 

  40. An, S. W.; Mei, L.; Wang, C. Z.; Xia, C. Q.; Chai, Z. F.; Shi, W. Q. The first case of actinide triple helices: pH-dependent structural evolution and kinetically-controlled transformation of two supramolecular conformational isomers. Chem. Commun. 2015, 51, 8978–8981.

    Article  CAS  Google Scholar 

  41. Lee, E.; Kim, J. Y.; Lee, S. S.; Park, K. M. Molar-ratio-dependent supramolecular isomerism: AgI coordination polymers with bis(cyanobenzyl)sulfides. Chem. —Eur. J. 2013, 19, 13638–13645.

    Article  CAS  Google Scholar 

  42. Sun, M. J.; Liu, Y. Y.; Zeng, W.; Zhao, Y. S.; Zhong, Y. W.; Yao, J. N. Photoluminescent anisotropy amplification in polymorphic organic nanocrystals by light-harvesting energy transfer. J. Am. Chem. Soc. 2019, 141, 6157–6161.

    Article  CAS  Google Scholar 

  43. Nangia, A. Conformational polymorphism in organic crystals. Acc. Chem. Res. 2008, 41, 595–604.

    Article  CAS  Google Scholar 

  44. Aitipamula, S.; Chow, P. S.; Tan, R. B. H. Polymorphism in cocrystals: A review and assessment of its significance. CrystEngComm 2014, 16, 3451–3465.

    Article  CAS  Google Scholar 

  45. Lu, B.; Liu, S. Y.; Yan, D. P. Recent advances in photofunctional polymorphs of molecular materials. Chin. Chem. Lett. 2019, 30, 1908–1922.

    Article  CAS  Google Scholar 

  46. Gong, Y. R.; Zhang, Y. T.; Qin, C.; Sun, C. Y.; Wang, X. L.; Su, Z. M. Bottom-up construction and reversible structural transformation of supramolecular isomers based on large truncated tetrahedra. Angew. Chem., Int. Ed. 2019, 58, 780–784.

    Article  CAS  Google Scholar 

  47. Zhou, M.; Liu, G. L.; Ju, Z. F.; Su, K. Z.; Du, S. F.; Tan, Y. X.; Yuan, D. Q. Hydrogen-bonded framework isomers based on Zr-metal organic cage: Connectivity, stability, and porosity. Cryst. Growth Des. 2020, 20, 4127–4134.

    Article  CAS  Google Scholar 

  48. Clever, G. H.; Tashiro, S.; Shionoya, M. Inclusion of anionic guests inside a molecular cage with palladium(II) centers as electrostatic anchors. Angew. Chem., Int. Ed. 2009, 48, 7010–7012.

    Article  CAS  Google Scholar 

  49. Desiraju, G. R. Hydrogen bridges in crystal engineering: Interactions without borders. Acc. Chem. Res. 2002, 35, 565–573.

    Article  CAS  Google Scholar 

  50. Molina, P.; Zapata, F.; Caballero, A. Anion recognition strategies based on combined noncovalent interactions. Chem. Rev. 2017, 117, 9907–9972.

    Article  CAS  Google Scholar 

  51. Chen, L. J.; Berry, S. N.; Wu, X.; Howe, E. N. W.; Gale, P. A. Advances in anion receptor chemistry. Chem 2020, 6, 61–141.

    Article  CAS  Google Scholar 

  52. Zhou, X. P.; Zhang, X. J.; Lin, S. H.; Li, D. Anion-π-interaction-directed self-assembly of Ag(I) coordination networks. Cryst. Growth Des. 2007, 7, 485–487.

    Article  CAS  Google Scholar 

  53. Brooker, S.; White, N. G.; Bauzá, A.; Deyà, P. M.; Frontera, A. Understanding the forces that govern packing: A density functional theory and structural investigation of anion-π-anion and nonclassical C-H⋯anion interactions. Inorg. Chem. 2012, 51, 10334–10340.

    Article  CAS  Google Scholar 

  54. Svensson, P. H.; Kloo, L. Synthesis, structure, and bonding in polyiodide and metal iodide-iodine systems. Chem. Rev. 2003, 103, 1649–1684.

    Article  CAS  Google Scholar 

  55. Blake, A. J.; Li, W. S.; Lippolis, V.; Schröder, M.; Devillanova, F. A.; Gould, R. O.; Parsons, S.; Radek, C. Template self-assembly of polyiodide networks. Chem. Soc. Rev. 1998, 27, 195–206.

    Article  CAS  Google Scholar 

  56. Savastano, M. Words in supramolecular chemistry: The ineffable advances of polyiodide chemistry. Dalton Trans. 2021, 50, 1142–1165.

    Article  CAS  Google Scholar 

  57. Hiramatsu, T.; Yamamoto, N.; Ha, S.; Masuda, Y.; Yasuda, M.; Ishigaki, M.; Yuzu, K.; Ozaki, Y.; Chatani, E. Iodine staining as a useful probe for distinguishing insulin amyloid polymorphs. Sci. Rep. 2020, 10, 16741.

    Article  CAS  Google Scholar 

  58. Küpper, F. C.; Feiters, M. C.; Olofsson, B.; Kaiho, T.; Yanagida, S.; Zimmermann, M. B.; Carpenter, L. J.; Luther, G. W.; Lu, Z. L.; Jonsson, M. et al. Commemorating two centuries of iodine research: An interdisciplinary overview of current research. Angew. Chem., Int. Ed. 2011, 50, 11598–11620.

    Article  Google Scholar 

  59. Ma, J. Z.; Liu, M. M.; He, Y. L.; Zhang, J. T. Iodine redox chemistry in rechargeable batteries. Angew. Chem., Int. Ed. 2021, 60, 12636–12647.

    Article  CAS  Google Scholar 

  60. Starkholm, A.; Kloo, L.; Svensson, P. H. Polyiodide hybrid perovskites: A strategy to convert intrinsic 2D systems into 3D photovoltaic materials. ACS Appl. Energy Mater. 2019, 2, 477–485.

    Article  CAS  Google Scholar 

  61. Yin, Z.; Wang, Q. X.; Zeng, M. H. Iodine release and recovery, influence of polyiodide anions on electrical conductivity and nonlinear optical activity in an interdigitated and interpenetrated bipillared-bilayer metal-organic framework. J. Am. Chem. Soc. 2012, 134, 4857–4863.

    Article  CAS  Google Scholar 

  62. Hasell, T.; Schmidtmann, M.; Cooper, A. I. Molecular doping of porous organic cages. J. Am. Chem. Soc. 2011, 133, 14920–14923.

    Article  CAS  Google Scholar 

  63. Pan, F. F.; Beyeh, N. K.; Ras, R. H. A.; Rissanen, K. N-alkyl ammonium resorcinarene polyiodides. CrystEngComm 2016, 18, 5724–5727.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation for Distinguished Young Scholars of China (No. 22025107), the National Youth Top-notch Talent Support Program of China, the Key Science and Technology Innovation Team of Shaanxi Province (Nos. 2019TD-007 and 2019JLZ-02), and the FM&EM International Joint Laboratory of Northwest University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Feng Han.

Electronic Supplementary Material

12274_2021_3889_MOESM1_ESM.pdf

Bottom-up construction of mesoporous supramolecular isomers based on a Pd3L6 triangular prism as templates for shape specific aggregation of polyiodiden

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, WJ., Li, X., Li, P. et al. Bottom-up construction of mesoporous supramolecular isomers based on a Pd3L6 triangular prism as templates for shape specific aggregation of polyiodide. Nano Res. 15, 2655–2660 (2022). https://doi.org/10.1007/s12274-021-3889-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3889-7

Keywords

Navigation