Skip to main content
Log in

Strategies for the construction of supramolecular assemblies from poly-NHC ligand precursors

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The field of supramolecular assemblies has developed rapidly in the last few decades, thanks in a large part to their diverse applications. These assemblies have been mostly based on Werner-type coordination motifs in which metal centres are coordinated by nitrogen or oxygen donors. Recently, N-heterocyclic carbene (NHC) ligands have been employed as carbon donors not only because of their appealing structures but also due to the extensive applications in catalysis, biomedicine and material science of the resulting assemblies. During the last decade, NHC-based supramolecular assemblies have witnessed rapid growth and extensive application in molecular recognition, luminescent materials and catalysis. For different topological systems, a diverse selection of poly-NHC precursors and synthetic strategies is crucial to precisely control the synthesis of supramolecular architectures. Several synthetic strategies have been developed to synthesise two-dimensional (2D) molecular metallacycles and three-dimensional (3D) metallacages from a wide range of poly-NHC precursors, including a straightforward one-pot strategy, supramolecular transmetalation, stepwise synthesis, an improved one-pot strategy involving self-sorting behaviour of 3D metallacages and a subtle variation strategy of poly-NHC ligand precursors. This review offers a summary of the synthetic strategies applied for the construction of different poly-NHC-based supramolecular assemblies, particularly emphasizes recent progress in the synthesis of large and complex supramolecular assemblies from poly-NHC precursors, and further attention is given to their application in postsynthetic modifications (PSMs), host-guest chemistry, luminescent properties and biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang LJ, Li X, Bai S, Wang YY, Han YF. J Am Chem Soc, 2020, 142: 2524–2531

    Article  Google Scholar 

  2. Grommet AB, Nitschke JR. J Am Chem Soc, 2017, 139: 2176–2179

    Article  Google Scholar 

  3. Chen LJ, Ren YY, Wu NW, Sun B, Ma JQ, Zhang L, Tan H, Liu M, Li X, Yang HB. J Am Chem Soc, 2015, 137: 11725–11735

    Article  Google Scholar 

  4. Lu C, Zhang M, Tang D, Yan X, Zhang ZY, Zhou Z, Song B, Wang H, Li X, Yin S, Sepehrpour H, Stang PJ. J Am Chem Soc, 2018, 140: 7674–7680

    Article  Google Scholar 

  5. Zhao J, Yang D, Zhao Y, Yang XJ, Wang YY, Wu B. Angew Chem Int Ed, 2014, 53: 6632–6636

    Article  Google Scholar 

  6. Yu JG, Sun LY, Wang C, Li Y, Han YF. Chem Eur J, 2021, 27: 1556–1575

    Article  Google Scholar 

  7. Brown CJ, Toste FD, Bergman RG, Raymond KN. Chem Rev, 2015, 115: 3012–3035

    Article  Google Scholar 

  8. Tan C, Yang K, Dong J, Liu Y, Liu Y, Jiang J, Cui Y. J Am Chem Soc, 2019, 141: 17685–17695

    Article  Google Scholar 

  9. Leenders SHAM, Gramage-Doria R, de Bruin B, Reek JNH. Chem Soc Rev, 2015, 44: 433–448

    Article  Google Scholar 

  10. Han YF, Jia WG, Yu WB, Jin GX. Chem Soc Rev, 2009, 38: 3419–3434

    Article  Google Scholar 

  11. Zhang YY, Gao WX, Lin L, Jin GX. Coord Chem Rev, 2017, 344: 323–344

    Article  Google Scholar 

  12. Han YF, Jin GX. Acc Chem Res, 2014, 47: 3571–3579

    Article  Google Scholar 

  13. Feng T, Li X, An YY, Bai S, Sun LY, Li Y, Wang YY, Han YF. Angew Chem Int Ed, 2020, 59: 13516–13520

    Article  Google Scholar 

  14. Zhu H, Li Q, Shi B, Xing H, Sun Y, Lu S, Shangguan L, Li X, Huang F, Stang PJ. J Am Chem Soc, 2020, 142: 17340–17345

    Article  Google Scholar 

  15. Shi B, Liu Y, Zhu H, Vanderlinden RT, Shangguan L, Ni R, Acharyya K, Tang JH, Zhou Z, Li X, Huang F, Stang PJ. J Am Chem Soc, 2019, 141: 6494–6498

    Article  Google Scholar 

  16. Cook TR, Stang PJ. Chem Rev, 2015, 115: 7001–7045

    Article  Google Scholar 

  17. Zhu H, Li Q, Shi B, Ge F, Liu Y, Mao Z, Zhu H, Wang S, Yu G, Huang F, Stang PJ. Angew Chem Int Ed, 2020, 59: 20208–20214

    Article  Google Scholar 

  18. Zhou J, Yu G, Yang J, Shi B, Ye B, Wang M, Huang F, Stang PJ. Chem Mater, 2020, 32: 4564–4573

    Article  Google Scholar 

  19. Roberts DA, Pilgrim BS, Nitschke JR. Chem Soc Rev, 2018, 47: 626–644

    Article  Google Scholar 

  20. Hopkinson MN, Richter C, Schedler M, Glorius F. Nature, 2014, 510: 485–496

    Article  Google Scholar 

  21. Wanzlick HW, Schönherr HJ. Angew Chem Int Ed Engl, 1968, 7: 141–142

    Article  Google Scholar 

  22. Öfele K. J Organomet Chem, 1968, 12: 42–43

    Article  Google Scholar 

  23. Mercs L, Albrecht M. Chem Soc Rev, 2010, 39: 1903–1912

    Article  Google Scholar 

  24. Peris E. Chem Rev, 2018, 118: 9988–10031

    Article  Google Scholar 

  25. Hindi KM, Panzner MJ, Tessier CA, Cannon CL, Youngs WJ. Chem Rev, 2009, 109: 3859–3884

    Article  Google Scholar 

  26. Strassner T. Acc Chem Res, 2016, 49: 2680–2689

    Article  Google Scholar 

  27. An YY, Yu JG, Han YF. Chin J Chem, 2019, 37: 76–87

    Article  Google Scholar 

  28. Gou XX, Liu T, Wang YY, Han YF. Angew Chem Int Ed, 2020, 59: 16683–16689

    Article  Google Scholar 

  29. Visbal R, Gimeno MC. Chem Soc Rev, 2014, 43: 3551–3574

    Article  Google Scholar 

  30. Han YF, Jin GX, Hahn FE. J Am Chem Soc, 2013, 135: 9263–9266

    Article  Google Scholar 

  31. Li Y, Jin GF, An YY, Das R, Han YF. Chin J Chem, 2019, 37: 1147–1152

    Article  Google Scholar 

  32. Han YF, Jin GX, Daniliuc CG, Hahn FE. Angew Chem Int Ed, 2015, 54: 4958–4962

    Article  Google Scholar 

  33. Rit A, Pape T, Hahn FE. J Am Chem Soc, 2010, 132: 4572–4573

    Article  Google Scholar 

  34. Sinha N, Tan TTY, Peris E, Hahn FE. Angew Chem Int Ed, 2017, 56: 7393–7397

    Article  Google Scholar 

  35. Dobbe CB, Gutiérrez-Blanco A, Tan TTY, Hepp A, Poyatos M, Peris E, Hahn FE. Chem Eur J, 2020, 26: 11565–11570

    Article  Google Scholar 

  36. Pöthig A, Casini A. Theranostics, 2019, 9: 3150–3169

    Article  Google Scholar 

  37. Li Y, Yang T, Li N, Bai S, Ma LL, Wang K, Zhang Y, Han YF. CCS Chem, 2021, https://doi.org/10.31635/ccschem.021.202100780

  38. Gan MM, Liu JQ, Zhang L, Wang YY, Hahn FE, Han YF. Chem Rev, 2018, 118: 9587–9641

    Article  Google Scholar 

  39. Sinha N, Hahn FE. Acc Chem Res, 2017, 50: 2167–2184

    Article  Google Scholar 

  40. Ibáñez S, Poyatos M, Peris E. Acc Chem Res, 2020, 53: 1401–1413

    Article  Google Scholar 

  41. Wang YS, Feng T, Wang YY, Hahn FE, Han YF. Angew Chem Int Ed, 2018, 57: 15767–15771

    Article  Google Scholar 

  42. Li Y, An YY, Fan JZ, Liu XX, Li X, Hahn FE, Wang YY, Han YF. Angew Chem Int Ed, 2020, 59: 10073–10080

    Article  Google Scholar 

  43. Zhang YW, Bai S, Wang YY, Han YF. J Am Chem Soc, 2020, 142: 13614–13621

    Article  Google Scholar 

  44. Lin JCY, Huang RTW, Lee CS, Bhattacharyya A, Hwang WS, Lin IJB. Chem Rev, 2009, 109: 3561–3598

    Article  Google Scholar 

  45. Vivancos Á, Segarra C, Albrecht M. Chem Rev, 2018, 118: 9493–9586

    Article  Google Scholar 

  46. Rit A, Pape T, Hahn FE. Organometallics, 2011, 30: 6393–6401

    Article  Google Scholar 

  47. Wang CX, Gao Y, Deng YX, Lin YJ, Han YF, Jin GX. Organometallics, 2015, 34: 5801–5806

    Article  Google Scholar 

  48. Yan T, Sun LY, Deng YX, Han YF, Jin GX. Chem Eur J, 2015, 21: 17610–17613

    Article  Google Scholar 

  49. Gan MM, Han YF. Chin J Chem, 2020, 38: 1040–1044

    Article  Google Scholar 

  50. Hemmert C, Poteau R, dit Dominique FJB, Ceroni P, Bergamini G, Gornitzka H. Eur J Inorg Chem, 2012, 2012(24): 3892–3898

    Article  Google Scholar 

  51. Barnard PJ, Baker MV, Berners-Price SJ, Skelton BW, White AH. Dalton Trans, 2004, 1: 1038–1047

    Article  Google Scholar 

  52. Monticelli M, Tubaro C, Baron M, Basato M, Sgarbossa P, Graiff C, Accorsi G, Pell TP, Wilson DJD, Barnard PJ. Dalton Trans, 2016, 45: 9540–9552

    Article  Google Scholar 

  53. Danopoulos AA, Simler T, Braunstein P. Chem Rev, 2019, 119: 3730–3961

    Article  Google Scholar 

  54. Zhong R, Pöthig A, Mayer DC, Jandl C, Altmann PJ, Herrmann WA, Kühn FE. Organometallics, 2015, 34: 2573–2579

    Article  Google Scholar 

  55. Gierz V, Maichle-Mössmer C, Kunz D. Organometallics, 2012, 31: 739–747

    Article  Google Scholar 

  56. McKie R, Murphy JA, Park SR, Spicer MD, Zhou S. Angew Chem Int Ed, 2007, 46: 6525–6528

    Article  Google Scholar 

  57. Rana BK, Bertolasi V, Pal S, Mitra P, Dinda J. J Mol Struct, 2013, 1049: 458–463

    Article  Google Scholar 

  58. Liu QX, Yao ZQ, Zhao XJ, Zhao ZX, Wang XG. Organometallics, 2013, 32: 3493–3501

    Article  Google Scholar 

  59. Maity R, Rit A, Schulte to Brinke C, Kösters J, Hahn FE. Organometallics, 2013, 32: 6174–6177

    Article  Google Scholar 

  60. Raynal M, Cazin CSJ, Vallée C, Olivier-Bourbigou H, Braunstein P. Chem Commun, 2008, 3983–3985

  61. Sinha N, Roelfes F, Hepp A, Hahn FE. Chem Eur J, 2017, 23: 5939–5942

    Article  Google Scholar 

  62. Martínez-Agramunt V, Eder T, Darmandeh H, Guisado-Barrios G, Peris E. Angew Chem Int Ed, 2019, 58: 5682–5686

    Article  Google Scholar 

  63. Martínez-Agramunt V, Peris E. Inorg Chem, 2019, 58: 11836–11842

    Article  Google Scholar 

  64. Rit A, Pape T, Hepp A, Hahn FE. Organometallics, 2011, 30: 334–347

    Article  Google Scholar 

  65. Modak R, Mondal B, Howlader P, Mukherjee PS. Chem Commun, 2019, 55: 6711–6714

    Article  Google Scholar 

  66. Wang D, Zhang B, He C, Wu P, Duan C. Chem Commun, 2010, 46: 4728–4730

    Article  Google Scholar 

  67. Segarra C, Guisado-Barrios G, Hahn FE, Peris E. Organometallics, 2014, 33: 5077–5080

    Article  Google Scholar 

  68. Sun LY, Sinha N, Yan T, Wang YS, Tan TTY, Yu L, Han YF, Hahn FE. Angew Chem Int Ed, 2018, 57: 5161–5165

    Article  Google Scholar 

  69. Zhang L, Das R, Li CT, Wang YY, Hahn FE, Hua K, Sun LY, Han YF. Angew Chem Int Ed, 2019, 58: 13360–13364

    Article  Google Scholar 

  70. Hua K, An YY, Wang YY, Han YF. Chem Eur J, 2020, 26: 7190–7193

    Article  Google Scholar 

  71. Nishad RC, Rit A. Chem Eur J, 2021, 27: 594–599

    Article  Google Scholar 

  72. Maity R, Rit A, Schulte to Brinke C, Daniliuc CG, Hahn FE. Chem Commun, 2013, 49: 1011–1013

    Article  Google Scholar 

  73. Liu ZY, Liu ST. J Chin Chem Soc, 2012, 59: 321–323

    Article  Google Scholar 

  74. Rose C, Lebrun A, Clément S, Richeter S. Chem Commun, 2018, 54: 9603–9606

    Article  Google Scholar 

  75. Karaca Ö, Scalcon V, Meier-Menches SM, Bonsignore R, Brouwer JMJL, Tonolo F, Folda A, Rigobello MP, Kühn FE, Casini A. Inorg Chem, 2017, 56: 14237–14250

    Article  Google Scholar 

  76. Poethig A, Strassner T. Organometallics, 2012, 31: 3431–3434

    Article  Google Scholar 

  77. Hu X, Tang Y, Gantzel P, Meyer K. Organometallics, 2003, 22: 612–614

    Article  Google Scholar 

  78. Hu X, Castro-Rodriguez I, Olsen K, Meyer K. Organometallics, 2004, 23: 755–764

    Article  Google Scholar 

  79. Hahn FE, Radloff C, Pape T, Hepp A. Organometallics, 2008, 27: 6408–6410

    Article  Google Scholar 

  80. Radloff C, Hahn FE, Pape T, Fröhlich R. Dalton Trans, 2009, 7215–7222

  81. Schmidtendorf M, Pape T, Hahn FE. Dalton Trans, 2013, 42: 16128–16141

    Article  Google Scholar 

  82. Martínez-Agramunt V, Ruiz-Botella S, Peris E. Chem Eur J, 2017, 23: 6675–6681

    Article  Google Scholar 

  83. Xiao XQ, Jia AQ, Lin YJ, Jin GX. Organometallics, 2010, 29: 4842–4848

    Article  Google Scholar 

  84. Marcos I, Domarco O, Peinador C, Fenández A, Fernández JJ, Vázquez-García D, García MD. Dalton Trans, 2017, 46: 4182–4190

    Article  Google Scholar 

  85. Ibáñez S, Peris E. Angew Chem Int Ed, 2020, 59: 6860–6865

    Article  Google Scholar 

  86. Radloff C, Weigand JJ, Hahn FE. Dalton Trans, 2009, 1: 9392–9394

    Article  Google Scholar 

  87. Gutiérrez-Blanco A, Ibáñez S, Hahn FE, Poyatos M, Peris E. Organometallics, 2019, 38: 4565–4569

    Article  Google Scholar 

  88. Martínez-Agramunt V, Gusev DG, Peris E. Chem Eur J, 2018, 24: 14802–14807

    Article  Google Scholar 

  89. Ma LL, An YY, Sun LY, Wang YY, Hahn FE, Han YF. Angew Chem Int Ed, 2019, 58: 3986–3991

    Article  Google Scholar 

  90. Conrady FM, Frohlich R, Schulte to Brinke C, Pape T, Hahn FE. J Am Chem Soc, 2011, 133: 11496–11499

    Article  Google Scholar 

  91. Schmidtendorf M, Pape T, Hahn FE. Angew Chem Int Ed, 2012, 51: 2195–2198

    Article  Google Scholar 

  92. Ibáñez S, Peris E. Angew Chem Int Ed, 2019, 58: 6693–6697

    Article  Google Scholar 

  93. Nowick JS, Chung DM. Angew Chem Int Ed, 2003, 42: 1765–1768

    Article  Google Scholar 

  94. Lu Y, Zhang HN, Jin GX. Acc Chem Res, 2018, 51: 2148–2158

    Article  Google Scholar 

  95. Sinha N, Stegemann L, Tan TTY, Doltsinis NL, Strassert CA, Hahn FE. Angew Chem Int Ed, 2017, 56: 2785–2789

    Article  Google Scholar 

  96. Sun LY, Feng T, Das R, Hahn FE, Han YF. Chem Eur J, 2019, 25: 9764–9770

    Article  Google Scholar 

  97. Sun QF, Iwasa J, Ogawa D, Ishido Y, Sato S, Ozeki T, Sei Y, Yamaguchi K, Fujita M. Science, 2010, 328: 1144–1147

    Article  Google Scholar 

  98. Zhang YW, Das R, Li Y, Wang YY, Han YF. Chem Eur J, 2019, 25: 5472–5479

    Article  Google Scholar 

  99. Cram DJ, Cram JM. Science, 1974, 183: 803–809

    Article  Google Scholar 

  100. Altmann PJ, Pöthig A. J Am Chem Soc, 2016, 138: 13171–13174

    Article  Google Scholar 

  101. Altmann PJ, Pöthig A. Angew Chem Int Ed, 2017, 56: 15733–15736

    Article  Google Scholar 

  102. Feng HT, Yuan YX, Xiong JB, Zheng YS, Tang BZ. Chem Soc Rev, 2018, 47: 7452–7476

    Article  Google Scholar 

  103. Zhang Z, Zhao Z, Wu L, Lu S, Ling S, Li G, Xu L, Ma L, Hou Y, Wang X, Li X, He G, Wang K, Zou B, Zhang M. J Am Chem Soc, 2020, 142: 2592–2600

    Article  Google Scholar 

  104. Liu W, Gust R. Coord Chem Rev, 2016, 329: 191–213

    Article  Google Scholar 

  105. Scattolin T, Bortolamiol E, Palazzolo S, Caligiuri I, Perin T, Canzonieri V, Demitri N, Rizzolio F, Cavallo L, Dereli B, Mane MV, Nolan SP, Visentin F. Chem Commun, 2020, 56: 12238–12241

    Article  Google Scholar 

  106. Jakob CHG, Dominelli B, Schlagintweit JF, Fischer PJ, Schuderer F, Reich RM, Marques F, Correia JDG, Kühn FE. Chem Asian J, 2020, 15: 4275–4279

    Article  Google Scholar 

  107. Yuan B, Wang DX, Zhu LN, Lan YL, Cheng M, Zhang LM, Chu JQ, Li XZ, Kong DM. Chem Sci, 2019, 10: 4220–4226

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22025107, 21722105, 21771146), the National Youth Top-notch Talent Support Program of China, the Key Science and Technology Innovation Team of Shaanxi Province (2019TD-007, 2019JLZ-02) and the FM&EM International Joint Laboratory of Northwest University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Feng Han.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yu, JG., Ma, LL. et al. Strategies for the construction of supramolecular assemblies from poly-NHC ligand precursors. Sci. China Chem. 64, 701–718 (2021). https://doi.org/10.1007/s11426-020-9937-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9937-4

Keywords

Navigation