Skip to main content
Log in

From a mononuclear FeL2 complex to a Fe4L4 molecular square: Designed assembly and spin-crossover property

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

By introduction of a new Fe(L1)2 spin-crossover (SCO) unit into the polynuclear system, a nano-scale Fe4(L2)4 molecular square architecture is designed through coordination-directed self-assembly strategy. Both the mononuclear Fe(L1)2 and tetranuclear Fe4(L2)4 complexes have been structurally confirmed by 1H nuclear magnetic resonance (NMR), electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS), and temperature-dependent single crystal X-ray diffraction studies. Variable-temperature magnetic susceptibility measurements reveal the presence of an abrupt SCO behavior with a thermal hysteresis width of 4 K for Fe(L1)2. By clear contrast, Fe4(L2)4 undergoes a gradual spin transition behavior with enlarged thermal hysteresis width and higher spin transition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chappert, C.; Fert, A.; Van Dau, F. N. The emergence of spin electronics in data storage. Nat. Mater.2007, 6, 813–823.

    CAS  Google Scholar 

  2. Irie, M.; Fukaminato, T.; Matsuda, K.; Kobatake, S. Photochromism of diarylethene molecules and crystals: Memories, switches, and actuators. Chem. Rev.2014, 114, 12174–12277.

    CAS  Google Scholar 

  3. Sato, O. Dynamic molecular crystals with switchable physical properties. Nat. Chem.2016, 8, 644–656.

    CAS  Google Scholar 

  4. Meng, Y. S.; Liu, T. Manipulating spin transition to achieve switchable multifunctions. Acc. Chem. Res.2019, 52, 1369–1379.

    CAS  Google Scholar 

  5. Ruben, M.; Kumar, K. S. Sublimable spin crossover complexes: From spin-state switching to molecular devices. Angew. Chem., Int. Ed., in press, DOI: 10.1002/anie.201911256.

  6. Halcrow, M. A. Spin-Crossover Materials: Properties and Applications; Wiley: UK, 2013.

    Google Scholar 

  7. Sato, O.; Tao, J.; Zhang, Y. Z. Control of magnetic properties through external stimuli. Angew. Chem., Int. Ed.2007, 46, 2152–2187.

    CAS  Google Scholar 

  8. Tao, J.; Wei, R. J.; Huang, R. B.; Zheng, L. S. Polymorphism in spincrossover systems. Chem. Soc. Res.2012, 41, 703–737.

    CAS  Google Scholar 

  9. Bertoni, R.; Cammarata, M.; Lorenc, M.; Matar, S. F.; Létard, J. F.; Lemke, H. T.; Collet, E. Ultrafast light-induced spin-state trapping photophysics investigated in Fe(phen)2(NCS)2 spin-crossover crystal. Acc. Chem. Res.2015, 48, 774–781.

    CAS  Google Scholar 

  10. Ni, Z. P.; Liu, J. L.; Hogue, N.; Liu, W.; Li, J. Y.; Chen, Y. C.; Tong, M. L. Recent advances in guest effects on spin-crossover behavior in Hofmann-type metal-organic frameworks. Coord. Chem. Rev.2017, 335, 28–43.

    CAS  Google Scholar 

  11. Brooker, S. Spin crossover with thermal hysteresis: Practicalities and lessons learnt. Chem. Soc. Res.2015, 44, 2880–2892.

    CAS  Google Scholar 

  12. Hogue, R. W.; Singh, S.; Brooker, S. Spin crossover in discrete polynuclear iron(II) complexes. Chem. Soc. Res.2018, 47, 7303–7338.

    CAS  Google Scholar 

  13. McConnell, A. J. Spin-state switching in Fe(II) helicates and cages. Supramol. Chem.2018, 30, 858–868.

    CAS  Google Scholar 

  14. Breuning, E.; Ruben, M.; Lehn, J. M.; Renz, F.; Garcia, Y.; Ksenofontov, V.; Gütlich, P.; Wegelius, E.; Rissanen, K. Spin crossover in a supramolecular Fe4 II [2×2] grid triggered by temperature, pressure, and light. Angew. Chem., Int. Ed.2000, 39, 2504–2507.

    CAS  Google Scholar 

  15. Nihei, M.; Ui, M.; Yokota, M.; Han, L. Q.; Maeda, A.; Kishida, H.; Okamoto, H.; Oshio, H. Two-step spin conversion in a cyanide-bridged ferrous square. Angew. Chem., Int. Ed.2005, 44, 6484–6487.

    CAS  Google Scholar 

  16. Wu, D. Y.; Sato, O.; Einaga, Y.; Duan, C. Y. A spin-crossover cluster of iron(II) exhibiting a mixed-spin structure and synergy between spin transition and magnetic interaction. Angew. Chem., Int. Ed.2009, 48, 1475–1478.

    CAS  Google Scholar 

  17. Schneider, B.; Demeshko, S.; Dechert, S.; Meyer, F. A doubleswitching multistable Fe4 grid complex with stepwise spin-crossover and redox transitions. Angew. Chem., Int. Ed.2010, 49, 9274–9277.

    CAS  Google Scholar 

  18. Li, F.; Clegg, J. K.; Goux-Capes, L.; Chastanet, G.; D’Alessandro, D. M.; Létard, J. F.; Kepert, C. J. A mixed-spin molecular square with a hybrid [2×2] grid/metallocyclic architecture. Angew. Chem., Int. Ed.2011, 50, 2820–2823.

    CAS  Google Scholar 

  19. Wei, R. J.; Huo, Q.; Tao, J.; Huang, R. B.; Zheng, L. S. Spin-crossover FeII4 squares: Two-step complete spin transition and reversible singlecrystal- to-single-crystal transformation. Angew. Chem., Int. Ed.2011, 50, 8940–8943.

    CAS  Google Scholar 

  20. Wang, Y. T.; Li, S. T.; Wu, S. Q.; Cui, A. L.; Shen, D. Z.; Kou, H. Z. Spin transitions in Fe(II) metallogrids modulated by substituents, counteranions, and solvents. J. Am. Chem. Soc.2013, 135, 5942–5945.

    CAS  Google Scholar 

  21. Matsumoto, T.; Newton, G. N.; Shiga, T.; Hayami, S.; Matsui, Y.; Okamoto, H.; Kumai, R.; Murakami, Y.; Oshio, H. Programmable spin-state switching in a mixed-valence spin-crossover iron grid. Nat. Commun.2014, 5, 3865.

    CAS  Google Scholar 

  22. Schäfer, B.; Greisch, J. F.; Faus, I.; Bodenstein, T.; Šalitroš, I.; Fuhr, O.; Fink, K.; Schünemann, V.; Kappes, M. M.; Ruben, M. Divergent coordination chemistry: Parallel synthesis of [2×2] iron(II) gridcomplex tauto-conformers. Angew. Chem., Int. Ed.2016, 55, 10881–10885.

    Google Scholar 

  23. Dhers, S.; Mondal, A.; Aguilà, D.; Ramírez, J.; Vela, S.; Dechambenoit, P.; Rouzières, M.; Nitschke, J. R.; Clérac, R.; Lehn, J. M. Spin state chemistry: Modulation of ligand pa by spin state switching in a [2×2] iron(II) grid-type complex. J. Am. Chem. Soc.2018, 140, 8218–8227.

    CAS  Google Scholar 

  24. Shiga, T.; Sato, Y.; Tachibana, M.; Sato, H.; Matsumoto, T.; Sagayama, H.; Kumai, R.; Murakami, Y.; Newton, G. N.; Oshio, H. Carboxylic acid functionalized spin-crossover iron(II) grids for tunable switching and hybrid electrode fabrication. Inorg. Chem.2018, 57, 14013–14017.

    CAS  Google Scholar 

  25. Cougnon, F. B. L.; Caprice, K.; Pupier, M.; Bauzá, A.; Frontera, A. A strategy to synthesize molecular knots and links using the hydrophobic effect. J. Am. Chem. Soc.2018, 140, 12442–12450.

    CAS  Google Scholar 

  26. Li, Z. Y.; Dai, J. W.; Damjanovic, M.; Shiga, T.; Wang, J. H.; Zhao, J.; Oshio, H.; Yamashita, M.; Bu, X. H. Structure switching and modulation of the magnetic properties in diarylethene-bridged metallosupramolecular compounds by controlled coordination-driven self-assembly. Angew. Chem., Int. Ed.2019, 58, 4339–4344.

    CAS  Google Scholar 

  27. Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Supramolecular coordination: Self-assembly of finite two- and three-dimensional ensembles. Chem. Rev.2011, 111, 6810–6918.

    CAS  Google Scholar 

  28. Zhang, T.; Zhou, L. P.; Guo, X. Q.; Cai, L. X.; Sun, Q. F. Adaptive self-assembly and induced-fit transformations of anion-binding metalorganic macrocycles. Nat. Commun.2017, 8, 15898.

    CAS  Google Scholar 

  29. Tranchemontagne, D. J.; Ni, Z.; O’Keeffe, M.; Yaghi, O. M. Reticular chemistry of metal-organic polyhedra. Angew. Chem., Int. Ed.2008, 47, 5136–5147.

    CAS  Google Scholar 

  30. Lu, Y.; Zhang, H. N.; Jin, G. X. Molecular borromean rings based on half-sandwich organometallic rectangles. Acc. Chem. Res.2018, 51, 2148–2158.

    CAS  Google Scholar 

  31. Han, M. X.; Engelhard, D. M.; Clever, G. H. Self-assembled coordination cages based on banana-shaped ligands. Chem. Soc. Rev.2014, 43, 1848–1860.

    CAS  Google Scholar 

  32. Hong, C. M.; Bergman, R. G.; Raymond, K. N.; Toste, F. D. Selfassembled tetrahedral hosts as supramolecular catalysts. Acc. Chem. Res.2018, 51, 2447–2455.

    CAS  Google Scholar 

  33. McConnell, A. J.; Wood, C. S.; Neelakandan, P. P.; Nitschke, J. R. Stimuli-responsive metal-ligand assemblies. Chem. Rev.2015, 115, 7729–7793.

    CAS  Google Scholar 

  34. Harris, K.; Fujita, D.; Fujita, M. Giant hollow MnL2n spherical complexes: Structure, functionalisation and applications. Chem. Commun.2013, 49, 6703–6712.

    CAS  Google Scholar 

  35. Fujita, M.; Yazaki, J.; Ogura, K. Preparation of a macrocyclic polynuclear complex, [(en)Pd(4,4’-bpy)]4(NO3)8 (en = ethylenediamine, bpy = bipyridine), which recognizes an organic molecule in aqueous media. J. Am. Chem. Soc.1990, 112, 5645–5647.

    CAS  Google Scholar 

  36. Fujita, M.; Tominaga, M.; Hori, A.; Therrien, B. Coordination assemblies from a Pd(II)-cornered square complex. Acc. Chem. Res.2005, 38, 369–378.

    CAS  Google Scholar 

  37. Liu, Y. Z.; O’Keeffe, M.; Treacy, M. M. J.; Yaghi, O. M. The geometry of periodic knots, polycatenanes and weaving from a chemical perspective: A library for reticular chemistry. Chem. Soc. Rev.2018, 47, 4642–4664.

    CAS  Google Scholar 

  38. Wu, K.; Li, K.; Chen, S.; Hou, Y. J.; Lu, Y. L.; Wang, J. S.; Wei, M. J.; Pan, M.; Su, C. Y. The redox coupling effect in a photocatalytic RuII-PdII cage with TTF guest as electron relay mediator for visible-light hydrogen-evolving promotion. Angew. Chem., Int. Ed.2020, 59, 2639–2643.

    CAS  Google Scholar 

  39. Wang, L.; Song, B.; Khalife, S.; Li, Y. M.; Ming, L. J.; Bai, S.; Xu, Y. P.; Yu, H.; Wang, M.; Wang, H. et al. Introducing seven transition metal ions into terpyridine-based supramolecules: Self-assembly and dynamic ligand exchange study. J. Am. Chem. Soc.2020, 142, 1811–1821.

    CAS  Google Scholar 

  40. Sepehrpour, H.; Fu, W. X.; Sun, Y.; Stang, P. J. Biomedically relevant self-assembled metallacycles and metallacages. J. Am. Chem. Soc.2019, 141, 14005–14020.

    CAS  Google Scholar 

  41. Li, X. Z.; Zhou, L. P.; Yan, L. L.; Yuan, D. Q.; Lin, C. S.; Sun, Q. F. Evolution of luminescent supramolecular lanthanide M2nL3n complexes from helicates and tetrahedra to cubes. J. Am. Chem. Soc.2017, 139, 8237–8244.

    CAS  Google Scholar 

  42. Wang, H.; Qian, X. M.; Wang, K.; Su, M.; Haoyang, W. W.; Jiang, X.; Brzozowski, R.; Wang, M.; Gao, X.; Li, Y. M. et al. Supramolecular kandinsky circles with high antibacterial activity. Nat. Commun.2018, 9, 1815.

    Google Scholar 

  43. Halcrow, M. A. Iron(II) complexes of 2,6-di(pyrazol-1-yl)pyridines— A versatile system for spin-crossover research. Coord. Chem. Rev.2009, 253, 2493–2514.

    CAS  Google Scholar 

  44. Cook, L. J. K.; Mohammed, R.; Sherborne, G.; Roberts, T. D.; Alvarez, S.; Halcrow, M. A. Spin state behavior of iron(II)/dipyrazolylpyridine complexes. New insights from crystallographic and solution measurements. Coord. Chem. Rev.2015, 289–290, 2–12.

    Google Scholar 

  45. Attwood, M.; Turner, S. S. Back to back 2,6-bis(pyrazol-1-yl)pyridine and 2,2’:6’,2”-terpyridine ligands: Untapped potential for spin crossover research and beyond. Coord. Chem. Rev.2017, 353, 247–277.

    CAS  Google Scholar 

  46. Wei, R. J.; Tao, J.; Huang, R. B.; Zheng, L. S. Anion-dependent spin crossover and coordination assembly based on [Fe(tpa)]2+ [tpa = tris(2-pyridylmethyl)amine] and [N(CN)2]–: Square, zigzag, dimeric, and [4+1]-cocrystallized complexes. Eur. J. Inorg. Chem.2013, 2013, 916–926.

    CAS  Google Scholar 

  47. Real, J. A.; Gaspar, A. B.; Niel, V.; Muñoz, M. C. Communication between iron(II) building blocks in cooperative spin transition phenomena. Coord. Chem. Rev.2003, 236, 121–141.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21825107, 21971237, and 21801241) and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chong-Bin Tian or Qing-Fu Sun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhou, LP., Cai, LX. et al. From a mononuclear FeL2 complex to a Fe4L4 molecular square: Designed assembly and spin-crossover property. Nano Res. 14, 398–403 (2021). https://doi.org/10.1007/s12274-020-2777-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2777-x

Keywords

Navigation