Skip to main content
Log in

CsPbBr3 quantum dots photodetectors boosting carrier transport via molecular engineering strategy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Perovskite quantum dots (PQDs) require ligands on their surfaces to passivate defects and prevent aggregation. However, the ligands construct the interface relationship between the PQDs, which may seriously hinder the carrier transport. Hence, we propose a molecular engineering strategy of using 3,4-ethylenedioxythiophene (EDOT) to perfectly solve this problem, benefiting from its high conjugation and passivation ability to CsPbBr3 PQDs. Furthermore, EDOT on the surface of PQDs can be in-situ polymerized under the photocurrent of the photodetector, thus interconnecting the PQDs which enhanced the performance of the photodetectors up to 178% of its initial performance. We have thoroughly investigated the electropolymerization process of EDOT and its passivation effect on PQDs. The simple lateral photodetector based on EDOT PQDs exhibits a high responsivity of 11.96 A/W, which is 104 times higher than that of oleic acid caped PQDs. Due to the protection of poly(3,4-ethylenedioxythiophene) (PEDOT), the photodetector prepared from EDOT PQDs exhibited very high stability, retaining 94% of its performance after six months in air. This strategy provides a solution for the application of PQDs in high performances and stable optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pan, J.; Shang, Y. Q.; Yin, J.; De Bastiani, M.; Peng, W.; Dursun, I.; Sinatra, L.; El-Zohry, A. M.; Hedhili, M. N.; Emwas, A. H. et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes. J. Am. Chem. Soc. 2018, 140, 562–565.

    Article  CAS  Google Scholar 

  2. Begum, R.; Parida, M. R.; Abdelhady, A. L.; Murali, B.; Alyami, N. M.; Ahmed, G. H.; Hedhili, M. N.; Bakr, O. M.; Mohammed, O. F. Engineering interfacial charge transfer in CsPbBr3 perovskite nanocrystals by heterovalent doping. J. Am. Chem. Soc. 2017, 139, 731–737.

    Article  CAS  Google Scholar 

  3. Akkerman, Q. A.; D’Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 2015, 137, 10276–10281.

    Article  CAS  Google Scholar 

  4. Li, J. H.; Xu, L. M.; Wang, T.; Song, J. Z.; Chen, J. W.; Xue, J.; Dong, Y. H.; Cai, B.; Shan, Q. S.; Han, B. et al. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv. Mater. 2017, 29, 1603885.

    Article  CAS  Google Scholar 

  5. Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 2016, 354, 92–95.

    Article  CAS  Google Scholar 

  6. Jia, D. L.; Chen, J. X.; Yu, M.; Liu, J. H.; Johansson, E. M. J.; Hagfeldt, A.; Zhang, X. L. Dual passivation of CsPbI3 perovskite nanocrystals with amino acid ligands for efficient quantum dot solar cells. Small 2020, 16, e2001772.

    Article  CAS  Google Scholar 

  7. Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 2015, 6, 8056.

    Article  CAS  Google Scholar 

  8. Shi, E. Z.; Yuan, B.; Shiring, S. B.; Gao, Y.; Akriti; Guo, Y. F.; Su, C.; Lai, M. L.; Yang, P. D.; Kong, J.; Savoie, B. M. et al. Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature 2020, 580, 614–620.

    Article  CAS  Google Scholar 

  9. Li, X. M.; Yu, D. J.; Chen, J.; Wang, Y.; Cao, F.; Wei, Y.; Wu, Y.; Wang, L.; Zhu, Y.; Sun, Z. G. et al. Constructing fast carrier tracks into flexible perovskite photodetectors to greatly improve responsivity. ACS Nano 2017, 11, 2015–2023.

    Article  CAS  Google Scholar 

  10. Hu, X.; Zhang, X. D.; Liang, L.; Bao, J.; Li, S.; Yang, W. L.; Xie, Y. High-performance flexible broadband photodetector based on organolead halide perovskite. Adv. Funct. Mater. 2014, 24, 7373–7380.

    Article  CAS  Google Scholar 

  11. Song, X. F.; Liu, X. H.; Yu, D. J.; Huo, C. X.; Ji, J. P.; Li, X. M.; Zhang, S. L.; Zou, Y. S.; Zhu, G. Y.; Wang, Y. J. et al. Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl. Mater. Interfaces 2018, 10, 2801–2809.

    Article  CAS  Google Scholar 

  12. Chen, S.; Teng, C. J.; Zhang, M.; Li, Y. R.; Xie, D.; Shi, G. Q. A flexible UV-Vis -NIR photodetector based on a perovskite/conjugated-polymer composite. Adv. Mater. 2016, 28, 5969–5974.

    Article  CAS  Google Scholar 

  13. Bozyigit, D.; Lin, W. M. M.; Yazdani, N.; Yarema, O.; Wood, V. A quantitative model for charge carrier transport, trapping and recombination in nanocrystal-based solar cells. Nat. Commun. 2015, 6, 6180.

    Article  CAS  Google Scholar 

  14. Zhang, D. Y.; Gan, L.; Cao, Y.; Wang, Q.; Qi, L. M.; Guo, X. F. Understanding charge transfer at PbS-decorated graphene surfaces toward a tunable photosensor. Adv. Mater. 2012, 24, 2715–2720.

    Article  CAS  Google Scholar 

  15. Kagan, C. R.; Murray, C. B. Charge transport in strongly coupled quantum dot solids. Nat. Nanotechnol. 2015, 10, 1013–1026.

    Article  CAS  Google Scholar 

  16. Boles, M. A.; Ling, D. S.; Hyeon, T.; Talapin, D. V. Erratum: The surface science of nanocrystals. Nat. Mater. 2016, 15, 364.

    Article  CAS  Google Scholar 

  17. Dai, J. F.; Xi, J.; Li, L.; Zhao, J. F.; Shi, Y. F.; Zhang, W. W.; Ran, C. X.; Jiao, B.; Hou, X.; Duan, X. H. et al. Charge transport between coupling colloidal perovskite quantum dots assisted by functional conjugated ligands. Angew. Chem., Int. Ed. 2018, 57, 5754–5758.

    Article  CAS  Google Scholar 

  18. Vickers, E. T.; Graham, T. A.; Chowdhury, A. H.; Bahrami, B.; Dreskin, B. W.; Lindley, S.; Naghadeh, S. B.; Qiao, Q. Q.; Zhang, J. Z. Improving charge carrier delocalization in perovskite quantum dots by surface passivation with conductive aromatic ligands. ACS Energy Lett. 2018, 3, 2931–2939.

    Article  CAS  Google Scholar 

  19. Zhou, Y.; Wang, F.; Cao, Y.; Wang, J. P.; Fang, H. H.; Loi, M. A.; Zhao, N.; Wong, C. P. Benzylamine-treated wide-bandgap perovskite with high thermal-photostability and photovoltaic performance. Adv. Energy Mater. 2017, 7, 1701048.

    Article  CAS  Google Scholar 

  20. Garreau, S.; Louarn, G.; Buisson, J. P.; Froyer, G.; Lefrant, S. In situ speclroelectrochemical Raman studies of poly(3,4-ethylenedioxythiophene) (PEDT). Macromolecules 1999, 32, 6807–6812.

    Article  CAS  Google Scholar 

  21. Noel, N. K.; Abate, A.; Stranks, S. D.; Parrott, E. S.; Burlakov, V. M.; Goriely, A.; Snaith, H. J. Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites. ACS Nano 2014, 8, 9815–9821.

    Article  CAS  Google Scholar 

  22. Wang, Y. W.; Zhu, Y. H.; Huang, J. F.; Cai, J.; Zhu, J. R.; Yang, X. L.; Shen, J. H.; Li, C. Z. Perovskite quantum dots encapsulated in electrospun fiber membranes as multifunctional supersensitive sensors for biomolecules, metal ions and pH. Nanoscale Horiz. 2017, 2, 225–232.

    Article  CAS  Google Scholar 

  23. Wang, Y. W.; Varadi, L.; Trinchi, A.; Shen, J. H.; Zhu, Y. H.; Wei, G.; Li, C. Z. Spray-assisted coil-globule transition for scalable preparation of water-resistant CsPbBr3@PMMA perovskite nanospheres with application in live cell imaging. Small 2018, 14, e1803156.

    Article  CAS  Google Scholar 

  24. Li, Z. C.; Kong, L.; Huang, S. Q.; Li, L. Highly luminescent and ultrastable CsPbBr3 perovskite quantum dots incorporated into a Silica/Alumina monolith. Angew. Chem., Int. Ed. 2017, 56, 8134–8138.

    Article  CAS  Google Scholar 

  25. Wang, Y. N.; He, J.; Chen, H.; Chen, J. S.; Zhu, R. D.; Ma, P.; Towers, A.; Lin, Y.; Gesquiere, A. J.; Wu, S. T. et al. Ultrastable, highly luminescent organic-inorganic perovskite-polymer composite films. Adv. Mater. 2016, 28, 10710–10717.

    Article  CAS  Google Scholar 

  26. Vickers, E. T.; Enlow, E. E.; Delmas, W. G.; DiBenedetto, A. C.; Chowdhury, A. H.; Bahrami, B.; Dreskin, B. W.; Graham, T. A.; Hernandez, I. N.; Carter, S. A. et al. Enhancing charge carrier delocalization in perovskite quantum dot solids with energetically aligned conjugated capping ligands. ACS Energy Lett. 2020, 5, 817–825.

    Article  CAS  Google Scholar 

  27. Yeo, J. S.; Kang, R.; Lee, S.; Jeon, Y. J.; Myoung, N.; Lee, C. L.; Kim, D. Y.; Yun, J. M.; Seo, Y. H.; Kim, S. S. et al. Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer. Nano Energy 2015, 12, 96–104.

    Article  CAS  Google Scholar 

  28. Li, H.; Tao, L. M.; Huang, F. H.; Sun, Q.; Zhao, X. J.; Han, J. B.; Shen, Y.; Wang, M. K. Enhancing efficiency of perovskite solar cells via surface passivation with graphene oxide interlayer. ACS Appl. Mater. Interfaces 2017, 9, 38967–38976.

    Article  CAS  Google Scholar 

  29. Liang, P. W.; Liao, C. Y.; Chueh, C. C.; Zuo, F.; Williams, S. T.; Xin, X. K.; Lin, J.; Jen, A. K. Y. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv. Mater. 2014, 26, 3748–3754.

    Article  CAS  Google Scholar 

  30. Cao, F. R.; Liao, Q. L.; Deng, K. M.; Chen, L; Li L; Zhang, Y. Novel perovskite/TiO2/Si trilayer heterojunctions for high-performance self-powered ultraviolet-visible-near infrared (UV-Vis-NIR) photodetectors. Nano Res. 2018, 11, 1722–1730.

    Article  CAS  Google Scholar 

  31. Lee, H. C.; Van Zeghbroeck, B. A novel high-speed silicon MSM photodetector operating at 830 nm wavelength. IEEE Electron Device Lett. 1995, 16, 175–177.

    Article  CAS  Google Scholar 

  32. Laih L. H.; Chang T. C.; Chen Y. A.; Tsay W. C.; Hong J. W. Characteristics of MSM photodetectors with trench electrodes on p-type Si wafer. IEEE Trans. Electron Devices 1998, 45, 2018–2023.

    Article  CAS  Google Scholar 

  33. Tan, F. R.; Tan, H. R.; Saidaminov, M. I.; Wei, M. Y.; Liu, M. X.; Mei, A. Y.; Li, P. C.; Zhang, B. W.; Tan, C. S.; Gong, X. W. et al. In situ back-contact passivation improves photovoltage and fill factor in perovskite solar cells. Adv. Mater. 2019, 31, e1807435.

    Article  CAS  Google Scholar 

  34. Xue, Q. F.; Liu, M. Y.; Li, Z. C.; Yan, L.; Hu, Z. C.; Zhou, J. W.; Li, W. Q.; Jiang, X. F.; Xu, B. M.; Huang, F. et al. Efficient and stable perovskite solar cells via dual functionalization of dopamine semiquinone radical with improved trap passivation capabilities. Adv. Funct. Mater. 2018, 28, 1707444.

    Article  CAS  Google Scholar 

  35. Kang, L.; Wang, K.; Li, X. D.; Zou, B. High pressure structural investigation of benzoic acid: Raman spectroscopy and X-ray diffraction. J. Phys. Chem. C 2016, 120, 14758–14766.

    Article  CAS  Google Scholar 

  36. Wang, S. X.; Zheng, H. F. Research on Raman spectra of benzoic acid during decarboxylic process. Spectrosc. Spect. Anal. 2009, 29, 3312–3314.

    CAS  Google Scholar 

  37. Nitta, K.; Tsumaki, M.; Kawano, T.; Terashima, K.; Ito, T. Printing PEDOT from EDOT via plasma-assisted inkjet printing. J. Phys. D: Appl. Phys. 2019, 52, 315202.

    Article  CAS  Google Scholar 

  38. Cao, F. R.; Tian, W; Gu, B. K.; Ma, Y. L.; Lu, H; Li, L. High-performance UV-vis photodetectors based on electrospun ZnO nanofiber-solution processed perovskite hybrid structures. Nano Res. 2017, 10, 2244–2256.

    Article  CAS  Google Scholar 

  39. Zhou, X.; Zhang, Q.; Gan, L.; Li, X.; Li, H. Q.; Zhang, Y.; Golberg, D.; Zhai, T. Y. High-performance solar-blind deep ultraviolet photodetector based on individual single-crystalline Zn2GeO4 nanowire. Adv. Funct. Mater. 2016, 26, 704–712.

    Article  CAS  Google Scholar 

  40. Nenon, D. P.; Pressler, K.; Kang, J.; Koscher, B. A.; Olshansky, J. H.; Osowiecki, W. T.; Koc, M. A.; Wang, L. W.; Alivisatos, A. P. Design principles for trap-free CsPbX3 nanocrystals: Enumerating and eliminating surface halide vacancies with softer Lewis bases. J. Am. Chem. Soc. 2018, 140, 17760–17772.

    Article  CAS  Google Scholar 

  41. Zhong, Q. X.; Cao, M. H.; Xu, Y. F.; Li, P. L.; Zhang, Y.; Hu, H. C.; Yang, D.; Xu, Y.; Wang, L.; Li, Y. Y. et al. L-type ligand-assisted acid-free synthesis of CsPbBr3 nanocrystals with near-unity photoluminescence quantum yield and high stability. Nano Lett. 2019, 19, 4151–4157.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21676093, 21776092, 21978087, 21838003, and 91834301), the Shanghai Scientific and Technological Innovation Project (Nos. 19JC1410400 and 18JC1410600), Shanghai Rising-Star Program (No. 18QA1401500), the Innovation Program of Shanghai Municipal Education Commission, Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutes of High Learning, Shanghai Rising-Star Program (No. 18QA1401500) and the Fundamental Research Funds for the Central Universities (No. 222201718002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianhua Shen, Yihua Zhu or Chunzhong Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, W., Shen, J., Zhu, Y. et al. CsPbBr3 quantum dots photodetectors boosting carrier transport via molecular engineering strategy. Nano Res. 14, 4038–4045 (2021). https://doi.org/10.1007/s12274-021-3333-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3333-z

Keywords

Navigation