Skip to main content
Log in

Mechanistic insights on improved performance of PCDTBT:PC71BM hetero-structured organic photovoltaic cells via interfacing CdSe/ZnS nanostructures

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Correlations among the interface properties, optical absorption, thermal stability and power conversion efficiency (PCE) of organic photovoltaic (OPV) devices are a matter of investigation and need versatile approaches to get better understanding of such issues. In the present study, PCDTBT:PC71BM OPV devices were prepared on the ITO substrates, and the electron extracting electrodes were made of thin Al layers. The functionalization of these devices was done by interfacing the electron acceptor core–shell CdSe/ZnS nanostructures. The reduced electron–hole recombination processes, after interfacing the CdSe/ZnS nanostructures, have resulted in PL intensity quenching of the PCDTBT:PC71BM layer. FE-SEM and HR-TEM images confirm the growth of PC71BM particles as a function of annealing temperatures (100, 120 °C). At lower annealing temperature (100 °C), improved π–π stacking of PCDTBT:PC71BM layer could facilitated the significant charge production and transport which has resulted in higher Jsc values (~ 6.7 mA/cm2) as compared to those from the as-cast PCDTBT:PC71BM layer (4.3 mA/cm2). Interfacing of CdSe/ZnS nanostructures with the PCDTBT:PC71BM layer has resulted in a higher Jsc value (6.8 mA/cm2) which further enhanced to 8.9 mA/cm2, after the heat treatment at 100 °C. A burn-in process induced marginal deterioration in the Jsc and PCE values is also seen in the OPV devices after annealing at higher temperature (120 °C). Maximum PCE of 4.6% is achieved in the PCDTBT:PC71BM@CdSe/ZnS device, when compared with the PCE of PCDTBT:PC71BM basic device (3.2%), for the same operating temperature and annealing time, i.e. 100 °C for a 2 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barik P, Mandal AR, Kuznetsov D, Godymchuk A (2015) Synthesis and optical properties of CdSe and CdSe/ZnS core/shell quantum dots. Adv Mater Res 1085:176–181

    Article  Google Scholar 

  • Bertho S, Janssen G, Cleij TJ, Conings B, Moons W, Gadisa A, D’Haen J, Goovaerts E, Lutsen L, Manca J, Vanderzande D (2008) Effect of temperature on the morphological and photovoltaic stability of bulk heterojunction polymer: fullerene solar cells. Sol Energy Mater Sol Cells 92:753–760

    Article  CAS  Google Scholar 

  • Blouni N, Michaud A, Leclerc M (2007) A Low-Bandgap Poly(2,7-Carbazole) derivative for use in high-performance solar cells. Adv Mater 19(17):2295–2300

    Article  Google Scholar 

  • Chen R, Shen YQ, Xiao F, Liu B, Gurzadyan GG, Dong ZL, Sun XW, Sun HD (2010) Surface Eu-treated ZnO nanowires with efficient red emission. J Phys Chem C 114(42):18081–18084

    Article  CAS  Google Scholar 

  • Cheng Y, Hsieh C, Li P, Hsu C (2011) Morphological stabilization by in situ polymerization of fullerene derivatives leading to efficient, thermally stable organic photovoltaics. Adv Funct Mater 21(09):1723–1732

    Article  CAS  Google Scholar 

  • Cho S, Seo JH, Park SH, Beaupre S, Leclerc M, Heeger AJ (2010) A thermally stable semiconducting polymer. Adv Mater 22(11):1253–1257

    Article  CAS  Google Scholar 

  • Dang C, Lee J, Breen C, Steckel JS, Coe-Sullivan S, Nurmikko A (2012) Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nat Nanotechnol 7(5):335–339

    Article  CAS  Google Scholar 

  • Dixit SK, Madan S, Madhwal D, Kumar J, Singh I, Bhatia CS, Bhatnagar PK, Mathur PC (2012) Bulk heterojunction formation with induced concentration gradient from a bilayer structure of P3HT:CdSe/ZnS quantum dots using interdiffusion process for developing high efficiency solar cell. Org Electron 13:710–714

    Article  CAS  Google Scholar 

  • Ebadian S, Gholamkhass B, Shambayati S, Steven H, Peyman S (2010) Effects of annealing and degradation on regioregular polythiophene-based bulk heterojunction organic photovoltaic devices. Sol Energy Mater Sol Cells 94(12):2258–2264

    Article  CAS  Google Scholar 

  • Etzold F, Howard IA, Meister M, Kim T, Lee k, Baek NS, Laquai F, (2011) Ultrafast exciton dissociation followed by non geminate charge recombination in PCDTBT:PCBM photovoltaic blends. J Am Chem Soc 133(24):9469–9479

    Article  CAS  Google Scholar 

  • Freitas JN, Goncalves AS, Nogueira AF (2014) A comprehensive review of the application of chalcogenide nanoparticles in polymer solar cells. Nanoscale 6:6371–6397

    Article  CAS  Google Scholar 

  • Fu W, Wang L, Zhang Y, Ma R, Zuo L, Mai J, Lau TK, Du S, Lu X, Shi M, Li H, Chen H (2014) Improving polymer/nanocrystal hybrid solar cell performance via tuning ligand orientation at cdse quantum dot surface. ACS Appl Mater Interfaces 6(21):19154–19160

    Article  CAS  Google Scholar 

  • Fu Y, Kim D, Jiang W, Yin W, Ahn TK, Chae H (2017) Excellent stability of thicker shell CdSe@ZnS/ZnS quantum dots. RSC Adv 7:40866–40872

    Article  CAS  Google Scholar 

  • Gadalla A, Abd El-Sadek MS, Hamood R (2017) Characterization of Cdse core and Cdse/Zns core/shell quantum dots synthesized using a modified method. Chalcogenide Letters 14:239–249

    CAS  Google Scholar 

  • Hernandez-Martineza D, Martínez-Alonsob C, Castillo-Ortegac MM, Arenas-Arrocenad MC, Nicho ME (2015) Preparation and characterization of electrospun fibers containing Poly(3-hexylthiophene) and Poly(3-hexylthiophene)/CdS. Synth Met 209:496–501

    Article  Google Scholar 

  • Jamieson FC, Domingo EB, McCarthy-Ward T, Heeney M, Stingelin N, Durrant JR (2012) Fullerene crystallisation as a key driver of charge separation in polymer/fullerene bulk heterojunction solar cells. Chem Sci 3:485–492

    Article  CAS  Google Scholar 

  • Jorgensen M, Norrman K, Govergyan SA, Tromholt T, Andreasen B, Krebs FC (2012) Stability of polymer solar cells. Adv Mater 24(05):580–612

    Article  Google Scholar 

  • Jorgenson M, Norrman K, Gevorgyan SA, Tromholt T, Andreasen B, Krebs FC (2012) Stability of polymer solar cells. Adv Mater 24(5):580–612

    Article  Google Scholar 

  • Km JS, Lee Y, Lee JH, Park JH, Kim JK, Cho K (2010) High-efficiency organic solar cells based on end-functional-group-modified poly(3-hexylthiophene). Adv Mater 22(12):1355–1360

    Article  Google Scholar 

  • Kurpiers J, Neher D (2016) Dispersive non-geminate recombination in an amorphous polymer: fullerene blend. Sci Rep 6:26832

    Article  CAS  Google Scholar 

  • Landsberg PT, Nussbaumer H, Willeke G (1993) Band-band impact ionization and solar cell efficiency. J Appl Phys 74(02):1451–1452

    Article  CAS  Google Scholar 

  • Li Z, Chiu KHO, Ashraf RS, Fearn S, Dattani R, Wong HC, Tan CH, Wu J, Cabral JT, Durrant JR (2015) Toward Improved Lifetimes of Organic Solar Cells under Thermal Stress: Substrate-Dependent Morphological Stability of PCDTBT:PCBM Films and Devices. Sci. Rep. 5:15149

    Article  CAS  Google Scholar 

  • Li G, Shrotriya V, Huang JS, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4(11):864–868

    Article  CAS  Google Scholar 

  • Li G, Yao Y, Yang G, Yang Y, Yang H, Shrotriya V (2007) Solvent annealing effect in polymer solar cells based on poly(3- hexylthiophene) and methanofullerenes. Adv Funct Mater 17(10):1636–1644

    Article  Google Scholar 

  • Li Z, Wong HC, Huang Z, Zhong H, Tan CH, Tsoi WC, Kim JS, Durrant JR, Cabral JT (2013) Performance enhancement of fullerene-based solar cells by light processing. Nat Commun 4:2227

    Article  Google Scholar 

  • Li N, Perea J, Kassar T, Richter M, Heumueller T, Matt GJ, Hou Y, Juldal NS, Chen H, Chen S, Langner S, Berlinghof M, Unruh T, Brabec CJ (2017) Abnormal strong burn-in degradation of highly efficient polymer solar cells caused by spinodal donor-acceptor demixing. Nat Commun 8:14541

    Article  CAS  Google Scholar 

  • Long Y, Hedley GJ, Ruseckas A, Chowdhury M, Roland T, Serrano LA, Cooke G, Samuel DW (2017) Effect of annealing on exciton diffusion in a high performance small molecule organic photovoltaic material. ACS Appl Mater Interfaces 9(17):14945–14952

    Article  CAS  Google Scholar 

  • Melianas A, Etzold F, Savenije JT, Laquai F, Inganas O, Kemerink M (2015) Photo-generated carriers lose energy during extraction from polymer-fullerene solar cells. Nat Commun 6:8778

    Article  CAS  Google Scholar 

  • Moreels I, Rainò G, Gomes R, Zeger H, Stoferle T, Mahrt RF (2012) Nearly temperature-independent threshold for amplified spontaneous emission in colloidal CdSe/CdS quantum dot-in-rods. Adv Mater 24(35):231–235

    Article  Google Scholar 

  • Park S, Roy A, Beaupré S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photon 3:297–302

    Article  CAS  Google Scholar 

  • Piersimoni F, Degutis G, Bertho S, Vandewal K, Spoltore D, Vangerven T, Drijkoningen J, Bael MK, Hardy A, D’Haen J, Maes W, Vanderzande D, Nesladek M, Manca J (2013) Influence of fullerene photodimerization on the PCBM crystallisation in polymer: fullerene bulk heterojunctions under thermal stress. J Polym Sci Part B Polym Phys 51:1209–1214

    Article  CAS  Google Scholar 

  • Potscavage WJ, Yoo S, Domercq B, Kippelen B (2007) Encapsulation of pentacene/ C60 organic solar cells with AL2O3 deposited by atomic layer deposition. Appl Phys Lett 90:25

    Article  Google Scholar 

  • Sach-Quintana IT, Heumuller T, Mateker WR, Orozco DE, Cheacharoen R, Sweetnam S, Brabec CJ, Mcgehee MD (2014) Electron barrier formation at the organic-back contact interface is the first step in thermal degradation of polymer solar cells. Adv Funct Mater 24:3978–3985

    Article  Google Scholar 

  • Scharber MC, Muhlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Design rules for donors in bulk heterojunction solar cells—towards 10% energy-conversion efficiency. Adv Mater 18(6):789–794

    Article  CAS  Google Scholar 

  • Seo JH, Gutacker A, Sun Y, Wu H, Huang F, Cao Y, Scherf U, Heeger AJ, Bazan GC (2011) Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer. J Am Chem Soc 133(22):8416–8419

    Article  CAS  Google Scholar 

  • Shrotriya V, Yao Y, Li G, Yang Y (2006) Effect of self-organization in polymer/fullerene bulk heterojunctions on solar cell performance. Appl Phys Lett 89:06

    Article  Google Scholar 

  • Synooka O, Eberhardt KR, Balko J, Thurn-Albrecht T, Gobsch G, Mitchell W, Berny S, Carrasco-Orozco M, Hoppe H (2016) Thermally stable and efficient polymer solar cells based on a novel donor-acceptor copolymer. Nanotechnology 27:254001

    Article  CAS  Google Scholar 

  • Ta VD, Chen R, Sun H (2014) Coupled polymer microfiber lasers for single mode operation and enhanced refractive index sensing. Adv Opt Mater 2(3):220–225

    Article  Google Scholar 

  • Talapin DV, Lee JS, Kovalenko MV, Shevchenko EV (2009) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110(01):389–458

    Article  Google Scholar 

  • Wang L, Zhao D, Su Z, Li B, Zhang Z, Shen D (2011) Enhanced efficiency of polymer/ZnO nanorods hybrid solar cell sensitized by CdS quantum dots. J Electrochem 158(08):804–807

    Article  Google Scholar 

  • Wang T, Pearson AJ, Dunbar ADF, Staniec PA, Watters DC, Yi H, Ryan AJ, Jones RAL, Iraqi A, Lidzey DG (2012) Correlating structure with function in thermally annealed PCDTBT:PC70BM photovoltaic blends. Adv Funct Mater 22(7):1399–1408

    Article  CAS  Google Scholar 

  • Wang X, Yu J, Chen R (2018) Optical characteristics of ZnS passivated CdSe/CdS quantum dots for high photostability and lasing. Sci Rep 08(01):17323

    Article  Google Scholar 

  • Wong HC, Li Z, Tan CH, Zhong H, Huang Z, Bronstein H, McCulloch I, Cabral JT, Durrant JR (2014) Morphological stability and performance of polymer-fullerene solar cells under thermal stress: the impact of photoinduced PC60BM oligomerization. ACS Nano 8(2):1297–1308

    Article  CAS  Google Scholar 

  • Yang X, van Duren JKJ, Janssen RAJ, Michels MAJ, Loos J (2004) Morphology and thermal stability of the active layer in poly(p-phenylenevinylene)/methanofullerene plastic photovoltaic devices. Macromolecules 37(6):2151–2158

    Article  CAS  Google Scholar 

  • Yang X, Loos J, Veenstra SC, Verhees WJH, Weink MM, Kroon JM, Michels MAJ, Janssen RAJ (2005) Nanoscale morphology of high-performance polymer solar cells. Nano Lett 5(4):579–583

    Article  CAS  Google Scholar 

  • Yang Z, Chen CY, Roy P, Chang HT (2011) Quantum dot sensitized solar cells incorporating nanomaterials. Chem Commun 47:9561–9571

    Article  CAS  Google Scholar 

  • Zhou W, Chen H, Lv J, Chen Y, Zhang W, Yu G, Li F (2015) Improving the efficiency of polymer solar cells based on furan-flanked diketopyrrolopyrrole copolymer via solvent additive and methanol treatment. Nanoscale 7:15945–15952

    Article  CAS  Google Scholar 

  • Zimmermann B, Wurfel U, Niggermann M (2009) Longterm stability of efficient inverted P3HT:PCBM solar cells. Sol Energy Mater Sol Cells 93(4):491–496

    Article  CAS  Google Scholar 

  • Zuo G, Linares M, Upreti T, Kemerink M (2019) General rule for the energy of water-induced traps in organic semiconductors. Nat Mater 18:588–593

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Funding from UGC – BSR and Department of Science and Technology, India are gratefully acknowledged. One of the authors Prof. P.K. Bhatnagar acknowledges with thanks to University Grants Commission for BSR faculty fellowship. One of the authors (VK) is thankful to DST, New Delhi, India for support through DST-Inspire faculty award [DST/INSPIRE/04/2015/001497].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiv Kumar Dixit.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5663 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nitika, Gupta, S., Dixit, S.K. et al. Mechanistic insights on improved performance of PCDTBT:PC71BM hetero-structured organic photovoltaic cells via interfacing CdSe/ZnS nanostructures. Appl Nanosci 13, 443–452 (2023). https://doi.org/10.1007/s13204-021-01789-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-021-01789-5

Keywords

Navigation