Skip to main content
Log in

Perovskite bridging PbS quantum dot/polymer interface enables efficient solar cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Conjugated polymers have been explored as promising hole-transporting layer (HTL) in lead sulfide (PbS) quantum dot (QD) solar cells. The fine regulation of the inorganic/organic interface is pivotal to realize high device performance. In this work, we propose using CsPbI3 QDs as the interfacial layer between PbS QD active layer and organic polymer HTL. The relative soft perovskite can mediate the interface and form favorable energy level alignment, improving charge extraction and reducing interfacial charge recombination. As a result, the photovoltaic performance can be efficiently improved from 10.50% to 12.32%. This work may provide new guidelines to the device structural design of QD optoelectronics by integrating different solution-processed semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carey, G. H.; Abdelhady, A. L.; Ning, Z. J.; Thon, S. M.; Bakr, O. M.; Sargent, E. H. Colloidal quantum dot solar cells. Chem. Rev. 2015, 115, 12732–12763.

    CAS  Google Scholar 

  2. Liu, Y.; Shi, G. Z.; Liu, Z. K.; Ma, W. L. Toward printable solar cells based on PbX colloidal quantum dot inks. Nanoscale Horiz. 2021, 6, 8–23.

    Google Scholar 

  3. Voznyy, O.; Sutherland, B. R.; Ip, A. H.; Zhitomirsky, D.; Sargent, E. H. Engineering charge transport by heterostructuring solution-processed semiconductors. Nat. Rev. Mater. 2017, 2, 17026.

    CAS  Google Scholar 

  4. Lee, H.; Song, H. J.; Shim, M.; Lee, C. Towards the commercialization of colloidal quantum dot solar cells: Perspectives on device structures and manufacturing. Energy Environ. Sci. 2020, 13, 404–431.

    CAS  Google Scholar 

  5. Gan, J.; Yu, M.; Hoye, R. L. Z.; Musselman, K. P.; Li, Y.; Liu, X.; Zheng, Y.; Zu, X.; Li, S.; MacManus-Driscoll, J. L. et al. Defects, photophysics and passivation in Pb-based colloidal quantum dot photovoltaics. Mater. Today Nano 2021, 13, 100101.

    CAS  Google Scholar 

  6. McDonald, S. A.; Konstantatos, G.; Zhang, S. G.; Cyr, P. W.; Klem, E. J. D.; Levina, L.; Sargent, E. H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 2005, 4, 138–142.

    CAS  Google Scholar 

  7. Luther, J. M.; Gao, J. B.; Lloyd, M. T.; Semonin, O. E.; Beard, M. C.; Nozik, A. J. Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell. Adv. Mater. 2010, 22, 3704–3707.

    CAS  Google Scholar 

  8. Gao, J. B.; Perkins, C. L.; Luther, J. M.; Hanna, M. C.; Chen, H. Y.; Semonin, O. E.; Nozik, A. J.; Ellingson, R. J.; Beard, M. C. N-type transition metal oxide as a hole extraction layer in PbS quantum dot solar cells. Nano Lett. 2011, 11, 3263–3266.

    CAS  Google Scholar 

  9. Tang, J.; Kemp, K. W.; Hoogland, S.; Jeong, K. S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X. H.; Debnath, R.; Cha, D. et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 2011, 10, 765–771.

    CAS  Google Scholar 

  10. Ip, A. H.; Thon, S. M.; Hoogland, S.; Voznyy, O.; Zhitomirsky, D.; Debnath, R.; Levina, L.; Rollny, L. R.; Carey, G. H.; Fischer, A. et al. Hybrid passivated colloidal quantum dot solids. Nat. Nanotechnol. 2012, 7, 577–582.

    CAS  Google Scholar 

  11. Chuang, C. H. M.; Brown, P. R.; Bulovic, V.; Bawendi, M. G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 2014, 13, 796–801.

    CAS  Google Scholar 

  12. Lan, X. Z.; Voznyy, O.; Kiani, A.; De Arquer, F. P. G.; Abbas, A. S.; Kim, G. H.; Liu, M. X.; Yang, Z. Y.; Walters, G.; Xu, J. X. et al. Passivation using molecular halides increases quantum dot solar cell performance. Adv. Mater. 2016, 28, 299–304.

    CAS  Google Scholar 

  13. Liu, M. X.; Voznyy, O.; Sabatini, R.; De Arquer, F. P. G.; Munir, R.; Balawi, A. H.; Lan, X. Z.; Fan, F. J.; Walters, G.; Kirmani, A. R. et al. Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 2017, 16, 258–263.

    CAS  Google Scholar 

  14. Xu, J. X.; Voznyy, O.; Liu, M. X.; Kirmani, A. R.; Walters, G.; Munir, R.; Abdelsamie, M.; Proppe, A. H.; Sarkar, A.; De Arquer, F. P. G. et al. 2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids. Nat. Nanotechnol. 2018, 13, 456–462.

    CAS  Google Scholar 

  15. Liu, M. X.; Chen, Y. L.; Tan, C. S.; Quintero-Bermudez, R.; Proppe, A. H.; Munir, R.; Tan, H. R.; Voznyy, O.; Scheffel, B.; Walters, G. et al. Lattice anchoring stabilizes solution-processed semiconductors. Nature 2019, 570, 96–101.

    CAS  Google Scholar 

  16. Choi, M. J.; De Arquer, F. P. G.; Proppe, A. H.; Seifitokaldani, A.; Choi, J.; Kim, J.; Baek, S. W.; Liu, M. X.; Sun, B.; Biondi, M. et al. Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics. Nat. Commun. 2020, 11, 103.

    CAS  Google Scholar 

  17. Sun, B.; Johnston, A.; Xu, C.; Wei, M. Y.; Huang, Z. R.; Jiang, Z.; Zhou, H.; Gao, Y. J.; Dong, Y. T.; Ouellette, O. et al. Monolayer perovskite bridges enable strong quantum dot coupling for efficient solar cells. Joule 2020, 4, 1542–1556.

    CAS  Google Scholar 

  18. Kim, H. I.; Baek, S. W.; Cheon, H. J.; Ryu, S. U.; Lee, S.; Choi, M. J.; Choi, K.; Biondi, M.; Hoogland, S.; De Arquer, F. P. G. et al. A tuned alternating D-A copolymer hole-transport layer enables colloidal quantum dot solar cells with superior fill factor and efficiency. Adv. Mater. 2020, 32, 2004985.

    CAS  Google Scholar 

  19. Hu, L.; Zhao, Q.; Huang, S. J.; Zheng, J. H.; Guan, X. W.; Patterson, R.; Kim, J.; Shi, L.; Lin, C. H.; Lei, Q. et al. Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. Nat. Commun. 2021, 12, 466.

    CAS  Google Scholar 

  20. Fakharuddin, A.; Schmidt-Mende, L.; Garcia-Belmonte, G.; Jose, R.; Mora-Sero, I. Interfaces in perovskite solar cells. Adv. Energy Mater. 2017, 7, 1700623.

    Google Scholar 

  21. Correa-Baena, J. P.; Tress, W.; Domanski, K.; Anaraki, E. H.; Turren-Cruz, S. H.; Roose, B.; Boix, P. P.; Grätzel, M.; Saliba, M.; Abate, A. et al. Identifying and suppressing interfacial recombination to achieve high open-circuit voltage in perovskite solar cells. Energy Environ. Sci. 2017, 10, 1207–1212.

    CAS  Google Scholar 

  22. Stolterfoht, M.; Caprioglio, P.; Wolff, C. M.; Márquez, J. A.; Nordmann, J.; Zhang, S. S.; Rothhardt, D.; Hörmann, U.; Amir, Y.; Redinger, A. et al. The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci. 2019, 12, 2778–2788.

    CAS  Google Scholar 

  23. Lu, K. Y.; Wang, Y. J.; Liu, Z. K.; Han, L.; Shi, G. Z.; Fang, H. H.; Chen, J.; Ye, X. C.; Chen, S.; Yang, F. et al. High-efficiency PbS quantum-dot solar cells with greatly simplified fabrication processing via “solvent-curing”. Adv. Mater. 2018, 30, 1707572.

    Google Scholar 

  24. Wang, Y. J.; Liu, Z. K.; Huo, N. J.; Li, F.; Gu, M. F.; Ling, X. F.; Zhang, Y. N.; Lu, K. Y.; Han, L.; Fang, H. H. et al. Room-temperature direct synthesis of semi-conductive PbS nanocrystal inks for optoelectronic applications. Nat. Commun. 2019, 10, 5136.

    Google Scholar 

  25. Shi, G. Z.; Wang, H. B.; Zhang, Y. H.; Cheng, C.; Zhai, T. S.; Chen, B. T.; Liu, X. Y.; Jono, R.; Mao, X. N.; Liu, Y. et al. The effect of water on colloidal quantum dot solar cells. Nat. Commun. 2021, 12, 4381.

    CAS  Google Scholar 

  26. Hu, L.; Lei, Q.; Guan, X. W.; Patterson, R.; Yuan, J. Y.; Lin, C. H.; Kim, J.; Geng, X.; Younis, A.; Wu, X. X. et al. Optimizing surface chemistry of PbS colloidal quantum dot for highly efficient and stable solar cells via chemical binding. Adv. Sci. 2021, 8, 2003138.

    CAS  Google Scholar 

  27. Ding, C.; Liu, F.; Zhang, Y. H.; Hayase, S.; Masuda, T.; Wang, R. X.; Zhou, Y.; Yao, Y. F.; Zou, Z. G.; Shen, Q. Passivation strategy of reducing both electron and hole trap states for achieving high-efficiency PbS quantum-dot solar cells with power conversion efficiency over 12%. ACS Energy Lett. 2020, 5, 3224–3236.

    CAS  Google Scholar 

  28. Wang, R. L.; Shang, Y. Q.; Kanjanaboos, P.; Zhou, W. J.; Ning, Z. J.; Sargent, E. H. Colloidal quantum dot ligand engineering for high performance solar cells. Energy Environ. Sci. 2016, 9, 1130–1143.

    CAS  Google Scholar 

  29. Chen, J. X.; Zheng, S. Y.; Jia, D. L.; Liu, W. L.; Andruszkiewicz, A.; Qin, C. C.; Yu, M.; Liu, J. H.; Johansson, E. M. J.; Zhang, X. L. Regulating thiol ligands of p-type colloidal quantum dots for efficient infrared solar cells. ACS Energy Lett. 2021, 6, 1970–1979.

    CAS  Google Scholar 

  30. Aqoma, H.; Mubarok, M. A.; Lee, W.; Hadmojo, W. T.; Park, C.; Ahn, T. K.; Ryu, D. Y.; Jang, S. Y. Improved processability and efficiency of colloidal quantum dot solar cells based on organic hole transport layers. Adv. Energy Mater. 2018, 8, 1800572.

    Google Scholar 

  31. Xue, Y.; Yang, F.; Yuan, J. Y.; Zhang, Y. N.; Gu, M. F.; Xu, Y. L.; Ling, X. F.; Wang, Y.; Li, F. C.; Zhai, T. S. et al. Toward scalable PbS quantum dot solar cells using a tailored polymeric hole conductor. ACS Energy Lett. 2019, 4, 2850–2858.

    CAS  Google Scholar 

  32. Mubarok, M. A.; Wibowo, F. T. A.; Aqoma, H.; Krishna, N. V.; Lee, W.; Ryu, D. Y.; Cho, S.; Jung, I. H.; Jang, S. Y. PbS-based quantum dot solar cells with engineered π-conjugated polymers achieve 13% efficiency. ACS Energy Lett. 2020, 5, 3452–3460.

    CAS  Google Scholar 

  33. Mubarok, M. A.; Aqoma, H.; Wibowo, F. T. A.; Lee, W.; Kim, H. M.; Ryu, D. Y.; Jeon, J. W.; Jang, S. Y. Molecular engineering in hole transport π-conjugated polymers to enable high efficiency colloidal quantum dot solar cells. Adv. Energy Mater. 2020, 10, 1902933.

    Google Scholar 

  34. Baek, S. W.; Jun, S.; Kim, B.; Proppe, A. H.; Ouellette, O.; Voznyy, O.; Kim, C.; Kim, J.; Walters, G.; Song, J. H. et al. Efficient hybrid colloidal quantum dot/organic solar cells mediated by near-infrared sensitizing small molecules. Nat. Energy 2019, 4, 969–976.

    CAS  Google Scholar 

  35. Zhang, Y. N.; Kan, Y. Y.; Gao, K.; Gu, M. F.; Shi, Y.; Zhang, X. L.; Xue, Y.; Zhang, X. N.; Liu, Z. K.; Zhang, Y. et al. Hybrid quantum dot/organic heterojunction: A route to improve open-circuit voltage in PbS colloidal quantum dot solar cells. ACS Energy Lett. 2020, 5, 2335–2342.

    CAS  Google Scholar 

  36. Baek, S. W.; Molet, P.; Choi, M. J.; Biondi, M.; Ouellette, O.; Fan, J.; Hoogland, S.; de Arquer, F. P. G.; Mihi, A.; Sargent, E. H. Nanostructured back reflectors for efficient colloidal quantum-dot infrared optoelectronics. Adv. Mater. 2019, 31, 1901745.

    Google Scholar 

  37. Gao, F.; Ren, S. Q.; Wang, J. P. The renaissance of hybrid solar cells: Progresses, challenges, and perspectives. Energy Environ. Sci. 2013, 6, 2020–2040.

    CAS  Google Scholar 

  38. Liu, Z. K.; Yuan, J. Y.; Hawks, S. A.; Shi, G. Z.; Lee, S. T.; Ma, W. L. Photovoltaic devices based on colloidal PbX quantum dots: Progress and prospects. Sol. RRL 2017, 1, 1600021.

    Google Scholar 

  39. Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 2016, 354, 92–95.

    CAS  Google Scholar 

  40. Kovalenko, M. V.; Protesescu, L.; Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 2017, 358, 745–750.

    CAS  Google Scholar 

  41. Gan, J. T.; He, J. X.; Hoye, R. L. Z.; Mavlonov, A.; Raziq, F.; MacManus-Driscoll, J. L.; Wu, X. Q.; Li, S.; Zu, X. T.; Zhan, Y. Q. et al. Α-CsPbI3 colloidal quantum dots: Synthesis, photodynamics, and photovoltaic applications. ACS Energy Lett. 2019, 4, 1308–1320.

    CAS  Google Scholar 

  42. Yuan, J. Y.; Hazarika, A.; Zhao, Q.; Ling, X. F.; Moot, T.; Ma, W. L.; Luther, J. M. Metal halide perovskites in quantum dot solar cells: Progress and prospects. Joule 2020, 4, 1160–1185.

    CAS  Google Scholar 

  43. Chen, J. X.; Jia, D. L.; Johansson, E. M. J.; Hagfeldt, A.; Zhang, X. L. Emerging perovskite quantum dot solar cells: Feasible approaches to boost performance. Energy Environ. Sci. 2021, 14, 224–261.

    CAS  Google Scholar 

  44. Duan, L. P.; Hu, L.; Guan, X. W.; Lin, C. H.; Chu, D. W.; Huang, S. J.; Liu, X. G.; Yuan, J. Y.; Wu, T. Quantum dots for photovoltaics: A tale of two materials. Adv. Energy Mater. 2021, 11, 2100354.

    CAS  Google Scholar 

  45. Akkerman, Q. A.; Rainò, G.; Kovalenko, M. V.; Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 2018, 17, 394–405.

    CAS  Google Scholar 

  46. Lanigan-Atkins, T.; He, X.; Krogstad, M. J.; Pajerowski, D. M.; Abernathy, D. L.; Xu, G. N. M. N.; Xu, Z. J.; Chung, D. Y.; Kanatzidis, M. G.; Rosenkranz, S. et al. Two-dimensional overdamped fluctuations of the soft perovskite lattice in CsPbBr3. Nat. Mater. 2021, 20, 977–983.

    CAS  Google Scholar 

  47. Wang, Y. J.; Lu, K. Y.; Han, L.; Liu, Z. K.; Shi, G. Z.; Fang, H. H.; Chen, S.; Wu, T.; Yang, F.; Gu, M. F. et al. In situ passivation for efficient PbS quantum dot solar cells by precursor engineering. Adv. Mater. 2018, 30, 1704871.

    Google Scholar 

  48. Yuan, J. Y.; Ling, X. F.; Yang, D.; Li, F. C.; Zhou, S. J.; Shi, J. W.; Qian, Y. L.; Hu, J. X.; Sun, Y. S.; Yang, Y. G. et al. Band-aligned polymeric hole transport materials for extremely low energy loss αCsPbI3 perovskite nanocrystal solar cells. Joule 2018, 2, 2450–2463.

    CAS  Google Scholar 

  49. Wheeler, L. M.; Sanehira, E. M.; Marshall, A. R.; Schulz, P.; Suri, M.; Anderson, N. C.; Christians, J. A.; Nordlund, D.; Sokaras, D.; Kroll, T. et al. Targeted ligand-exchange chemistry on cesium lead halide perovskite quantum dots for high-efficiency photovoltaics. J. Am. Chem. Soc. 2018, 140, 10504–10513.

    CAS  Google Scholar 

  50. Ling, X. F.; Yuan, J. Y.; Zhang, X. L.; Qian, Y. L.; Zakeeruddin, S. M.; Larson, B. W.; Zhao, Q.; Shi, J. W.; Yang, J. C.; Ji, K. et al. Guanidinium-assisted surface matrix engineering for highly efficient perovskite quantum dot photovoltaics. Adv. Mater. 2020, 32, 2001906.

    CAS  Google Scholar 

  51. Lu, K. Y.; Wang, Y. J.; Yuan, J. Y.; Cui, Z. Q.; Shi, G. Z.; Shi, S. H.; Han, L.; Chen, S.; Zhang, Y. N.; Ling, X. F. et al. Efficient PbS quantum dot solar cells employing a conventional structure. J. Mater. Chem. A 2017, 5, 23960–23966.

    CAS  Google Scholar 

  52. Wang, Z.; Gan, J. T.; Liu, X. D.; Shi, H. B.; Wei, Q.; Zeng, Q. G.; Qiao, L.; Zheng, Y. H. Over 1 µm electron-hole diffusion lengths in CsPbI2Br for high efficient solar cells. J. Power Sources 2020, 454, 227913.

    CAS  Google Scholar 

  53. Li, F.; Liu, Y.; Shi, G. Z.; Chen, W.; Guo, R. J.; Liu, D.; Zhang, Y. H.; Wang, Y. J.; Meng, X.; Zhang, X. L. et al. Matrix manipulation of directly-synthesized PbS quantum dot inks enabled by coordination engineering. Adv. Funct. Mater. 2021, 31, 2104457.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 92163114, 22161142003, 52002260, 62022081, and 61974099), the Natural Science Foundation of Jiangsu Province of China (No. BK20200872), the State Key Laboratory of applied optics (No. SKLAO2020001A03), and Postdoctoral Science Foundation of China (No. 2021M702415). This work is also supported by Suzhou Key Laboratory of Functional Nano & Soft Materials, Collaborative Innovation Center of Suzhou Nano Science & Technology, the 111 Project, and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices. K. W. acknowledges the funding support from National Key Research and Development Program (No. 2017YFE0120400) and National Natural Science Foundation of China (No. 61875082).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zeke Liu or Wanli Ma.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Chen, Y., Yang, F. et al. Perovskite bridging PbS quantum dot/polymer interface enables efficient solar cells. Nano Res. 15, 6121–6127 (2022). https://doi.org/10.1007/s12274-022-4195-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4195-8

Keywords

Navigation