Skip to main content
Log in

Conversion of PtNi alloy from disordered to ordered for enhanced activity and durability in methanol-tolerant oxygen reduction reactions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development of cost-effective oxygen reduction reaction (ORR) catalysts with a high methanol tolerance and enhanced durability is highly desirable for direct methanol fuel cells. This work focuses on the conversion of PtNi nanoparticles from a disordered solid solution to an ordered intermetallic compound. Here the effect of this conversion on ORR activity, durability, and methanol tolerance are characterized. X-ray diffraction and transmission electron microscopy results confirm the formation of ordered PtNi intermetallic nanoparticles with high dispersion and a mean particle size of about 7.6 nm. The PtNi intermetallic nanoparticles exhibited enhanced mass and specific activities toward the methanol-tolerant ORR in pure and methanol-containing electrolytes. The specific activity of the ORR at 0.85 V on the PtNi intermetallic nanoparticles is almost 6 times greater than on commercial Pt/C and 3 times greater than on disordered PtNi alloy. Durability tests indicated a minimal loss of ORR activity for PtNi intermetallic nanoparticles after 5,000 potential cycles, whereas the ORR activity decreased by 28% for disordered PtNi alloy. The enhanced methanoltolerant ORR activity and durability may be attributed to the structural and compositional stabilities of the ordered PtNi intermetallic nanoparticles compared relative to the stabilities of the disordered PtNi alloy, strongly suggesting that the PtNi intermetallic nanoparticles may serve as highly active and durable methanol-tolerant ORR electrocatalysts for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martinez-Huerta, M. V.; Rojas, S.; de la Fuente, J. L. G.; Terreros, P.; Pena, M. A.; Fierro, J. L. G. Effect of Ni addition over PtRu/C based electrocatalysts for fuel cell applications. Appl. Catal. B-Environ. 2006, 69, 75–84.

    Article  Google Scholar 

  2. Tiwari, J. N.; Tiwari, R. N.; Singh, G.; Kim, K. S. Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells. Nano Energy 2013, 2, 553–578.

    Article  Google Scholar 

  3. Wu, H. J.; Yuan, T.; Huang, Q. H.; Zhang, H. F.; Zou, Z. Q.; Zheng, J. W.; Yang, H. Polypyrrole nanowire networks as anodic micro-porous layer for passive direct methanol fuel cells. Electrochim. Acta 2014, 141, 1–5.

    Article  Google Scholar 

  4. He, W.; Chen, M.; Zou, Z. Q.; Li, Z. L.; Zhang, X. G.; Jin, S. A.; You, D. J.; Pak, C.; Yang, H. Oxygen reduction on Pd3Pt1 bimetallic nanoparticles highly loaded on different carbon supports. Appl. Catal. B-Environ. 2010, 97, 347–353.

    Article  Google Scholar 

  5. He, W.; Liu, J. Y.; Qiao, Y. J.; Zou, Z. Q.; Zhang, X. G.; Akins, D. L.; Yang, H. Simple preparation of Pd-Pt nanoalloy catalysts for methanol-tolerant oxygen reduction. J. Power Sources 2010, 195, 1046–1050.

    Article  Google Scholar 

  6. Wang, W. M.; Huang, Q. H.; Liu, J. Y.; Zou, Z. Q.; Zhao, M. Y.; Vogel, W.; Yang, H. Surface and structure characteristics of carbon-supported Pd3Pt1 bimetallic nanoparticles for methanol-tolerant oxygen reduction reaction. J. Catal. 2009, 266, 156–163.

    Article  Google Scholar 

  7. Zheng, F. L.; Wong, W. T.; Yung, K. F. Facile design of Au@Pt core-shell nanostructures: Formation of Pt submonolayers with tunable coverage and their applications in electrocatalysis. Nano Res. 2014, 7, 410–417.

    Article  Google Scholar 

  8. Wu, J. B.; Yang, H. Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 2013, 46, 1848–1857.

    Article  Google Scholar 

  9. Wang, D. L.; Xin, H. L.; Yu, Y. C.; Wang, H. S.; Rus, E.; Muller, D. A.; Abruna, H. D. Pt-decorated PdCo@Pd/C core-shell nanoparticles with enhanced stability and electrocatalytic activity for the oxygen reduction reaction. J. Am. Chem. Soc. 2010, 132, 17664–17666.

    Article  Google Scholar 

  10. Fu, G. T.; Liu, Z. Y.; Chen, Y.; Lin, J.; Tang, Y. W.; Lu, T. H. Synthesis and electrocatalytic activity of Au@Pd core-shell nanothorns for the oxygen reduction reaction. Nano Res. 2014, 7, 1205–1214.

    Article  Google Scholar 

  11. Chen, Z. W.; Higgins, D.; Yu, A. P.; Zhang, L.; Zhang, J. J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energ. Environ. Sci. 2011, 4, 3167–3192.

    Article  Google Scholar 

  12. Liu, Z. M.; Ma, L. L.; Zhang, J.; Hongsirikarn, K.; Goodwin, J. G. Pt alloy electrocatalysts for proton exchange membrane fuel cells: A review. Catal. Rev.: Sci. Eng. 2013, 55, 255–288.

    Article  Google Scholar 

  13. Ghosh, T.; Vukmirovic, M. B.; DiSalvo, F. J.; Adzic, R. R. Intermetallics as novel supports for Pt monolayer O2 reduction electrocatalysts: Potential for significantly improving properties. J. Am. Chem. Soc. 2010, 132, 906–907.

    Article  Google Scholar 

  14. Sasaki, K.; Naohara, H.; Choi, Y. M.; Cai, Y.; Chen, W. F.; Liu, P.; Adzic, R. R. Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction. Nat. Comm. 2012, 3, 1115.

    Article  Google Scholar 

  15. Wang, D. L.; Yu, Y. C.; Xin, H. L.; Hovden, R.; Ercius, P.; Mundy, J. A.; Chen, H.; Richard, J. H.; Muller, D. A.; DiSalvo, F. J. et al. Tuning oxygen reduction reaction activity via controllable dealloying: A model study of ordered Cu3Pt/C intermetallic nanocatalysts. Nano Lett. 2012, 12, 5230–5238.

    Article  Google Scholar 

  16. Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat. Chem. 2010, 2, 454–460.

    Article  Google Scholar 

  17. Lai, F. J.; Su, W. N.; Sarma, L. S.; Liu, D. G.; Hsieh, C. A.; Lee, J. F.; Hwang, B. J. Chemical dealloying mechanism of bimetallic Pt-Co nanoparticles and enhancement of catalytic activity toward oxygen reduction. Chem.-Eur. J. 2010, 16, 4602–4611.

    Article  Google Scholar 

  18. Wu, J. B.; Yang, H. Synthesis and electrocatalytic oxygen reduction properties of truncated octahedral Pt3Ni nanoparticles. Nano Res. 2011, 4, 72–82.

    Article  Google Scholar 

  19. Li, W. Z.; Haldar, P. Highly active carbon supported core-shell PtNi@Pt nanoparticles for oxygen reduction reaction. Electrochem. Solid-State Lett. 2010, 13, B47–B49.

    Article  Google Scholar 

  20. Huang, X. Q.; Zhu, E. B.; Chen, Y.; Li, Y. J.; Chiu, C. Y.; Xu, Y. X.; Lin, Z. Y.; Duan, X. F.; Huang, Y. A facile strategy to Pt3Ni nanocrystals with highly porous features as an enhanced oxygen reduction reaction catalyst. Adv. Mater. 2013, 25, 2974–2979.

    Article  Google Scholar 

  21. Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Core-shell compositional fine structures of dealloyed PtxNi1−x nanoparticles and their impact on oxygen reduction catalysis. Nano Lett. 2012, 12, 5423–5430.

    Article  Google Scholar 

  22. Cui, C. H.; Gan, L.; Neumann, M.; Heggen, M.; Cuenya, B. R.; Strasser, P. Carbon monoxide-assisted size confinement of bimetallic alloy nanoparticles. J. Am. Chem. Soc. 2014, 136, 4813–4816.

    Article  Google Scholar 

  23. Cui, C. H.; Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 2013, 12, 765–771.

    Article  Google Scholar 

  24. Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.

    Article  Google Scholar 

  25. Yang, H.; Vogel, W.; Lamy, C.; Alonso-Vante, N. Structure and electrocatalytic activity of carbon-supported Pt-Ni alloy nanoparticles toward the oxygen reduction reaction. J. Phys. Chem. B 2004, 108, 11024–11034.

    Article  Google Scholar 

  26. Yang, H.; Coutanceau, C.; Leger, J. M.; Alonso-Vante, N.; Lamy, C. Methanol tolerant oxygen reduction on carbon-supported Pt-Ni alloy nanoparticles. J. Electroanal. Chem. 2005, 576, 305–313.

    Article  Google Scholar 

  27. Oezaslan, M.; Hasché, F.; Strasser, P. Pt-based core-shell catalyst architectures for oxygen fuel cell electrodes. J. Phys. Chem. Lett. 2013, 4, 3273–3291.

    Article  Google Scholar 

  28. Gan, L.; Cui, C. H.; Rudi, S.; Strasser, P. Core-shell and nanoporous particle architectures and their effect on the activity and stability of Pt ORR electrocatalysts. Top. Catal. 2014, 57, 236–244.

    Article  Google Scholar 

  29. Du, S. F.; Lu, Y. X.; Malladi, S. K.; Xu, Q.; Steinberger-Wilckens, R. A simple approach for PtNi-MWCNT hybrid nanostructures as high performance electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 692–698.

    Article  Google Scholar 

  30. Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruna, H. D. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.

    Article  Google Scholar 

  31. Kang, Y. J.; Pyo, J. B.; Ye, X. C.; Gordon, T. R.; Murray, C. B. Synthesis, shape control, and methanol electro-oxidation properties of Pt-Zn alloy and Pt3Zn intermetallic nanocrystals. ACS Nano 2012, 6, 5642–5647.

    Article  Google Scholar 

  32. Prabhudev, S.; Bugnet, M.; Bock, C.; Botton, G. A. Strained lattice with persistent atomic order in Pt3Fe2 intermetallic core-shell nanocatalysts. ACS Nano 2013, 7, 6103–6110.

    Article  Google Scholar 

  33. Chen, H.; Wang, D. L.; Yu, Y. C.; Newton, K. A.; Muller, D. A.; Abruna, H.; DiSalvo, F. J. A surfactant-free strategy for synthesizing and processing intermetallic platinum-based nanoparticle catalysts. J. Am. Chem. Soc. 2012, 134, 18453–18459.

    Article  Google Scholar 

  34. Zou, L. L.; Li, J.; Yuan, T.; Zhou, Y.; Li, X. M.; Yang, H. Structural transformation of carbon-supported Pt3Cr nanoparticles from a disordered to an ordered phase as a durable oxygen reduction electrocatalyst. Nanoscale 2014, 6, 10686–10692.

    Article  Google Scholar 

  35. Leonard, B. M.; Zhou, Q.; Wu, D. N.; DiSalvo, F. J. Facile synthesis of PtNi intermetallic nanoparticles: Influence of reducing agent and precursors on electrocatalytic activity. Chem. Mater. 2011, 23, 1136–1146.

    Article  Google Scholar 

  36. Zou, L. L.; Guo, J.; Liu, J. Y.; Zou, Z. Q.; Akins, D. L.; Yang, H. Highly alloyed PtRu black electrocatalysts for methanol oxidation prepared using magnesia nanoparticles as sacrificial templates. J. Power Sources 2014, 248, 356–362.

    Article  Google Scholar 

  37. Wang, W. M.; Zheng, D.; Du, C.; Zou, Z. Q.; Zhang, X. Q.; Xia, B. J.; Yang, H.; Akins, D. L. Carbon-supported Pd-Co bimetallic nanoparticles as electrocatalysts for the oxygen reduction reaction. J. Power Sources 2007, 167, 243–249.

    Article  Google Scholar 

  38. Jiang, Q. A.; Jiang, L. H.; Hou, H. Y.; Qi, J.; Wang, S. L.; Sun, G. Q. Promoting effect of Ni in PtNi bimetallic electrocatalysts for the methanol oxidation reaction in alkaline media: Experimental and density functional theory studies. J. Phys. Chem. C 2010, 114, 19714–19722.

    Article  Google Scholar 

  39. Yang, H.; Alonso-Vante, N.; Leger, J. M.; Lamy, C. Tailoring, structure, and activity of carbon-supported nanosized Pt-Cr alloy electrocatalysts for oxygen reduction in pure and methanol-containing electrolytes. J. Phys. Chem. B 2004, 108, 1938–1947.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, L., Fan, J., Zhou, Y. et al. Conversion of PtNi alloy from disordered to ordered for enhanced activity and durability in methanol-tolerant oxygen reduction reactions. Nano Res. 8, 2777–2788 (2015). https://doi.org/10.1007/s12274-015-0784-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0784-0

Keywords

Navigation