Skip to main content
Log in

Pt-Based Intermetallic Compound Catalysts for the Oxygen Reduction Reaction: Structural Control at the Atomic Scale to Achieve a Win–Win Situation Between Catalytic Activity and Stability

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

The development of ordered Pt-based intermetallic compounds is an effective way to optimize the electronic characteristics of Pt and its disordered alloys, inhibit the loss of transition metal elements, and prepare fuel cell catalysts with high activity and long-term durability for the oxygen reduction reaction (ORR). This paper reviews the structure–activity characteristics, research advances, problems, and improvements in Pt-based intermetallic compound fuel cell catalysts for the ORR. First, the structural characteristics and performance advantages of Pt-based intermetallic compounds are analyzed and explained. Second, starting with 3d transition metals such as Fe, Co, and Ni, whose research achievements are common, the preparation process and properties of Pt-based intermetallic compound catalysts for the ORR are introduced in detail according to element types. Third, in view of preparation problems, improvements in the preparation processes of Pt-based intermetallic compounds are also summarized in regard to four aspects: coating to control the crystal size, doping to promote ordering transformation, constructing a “Pt skin” to improve performance, and anchoring and confinement to enhance the interaction between the crystal and support. Finally, by analyzing the research status of Pt-based intermetallic compound catalysts for the ORR, prospective research directions are suggested.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Fabbri, E., Pergolesi, D., Traversa, E.: Materials challenges toward proton-conducting oxide fuel cells: a critical review. Chem. Soc. Rev. 39, 4355–4369 (2010). https://doi.org/10.1002/chin.201105212

    Article  CAS  PubMed  Google Scholar 

  2. Hum, B., Li, X.G.: Two-dimensional analysis of PEM fuel cells. J. Appl. Electrochem. 34, 205–215 (2004). https://doi.org/10.1023/B:JACH.0000009922.24097.29

    Article  CAS  Google Scholar 

  3. Vishnyakov, V.M.: Proton exchange membrane fuel cells. Vacuum 80, 1053–1065 (2006). https://doi.org/10.1016/j.vacuum.2006.03.029

    Article  CAS  ADS  Google Scholar 

  4. Ball, M., Wietschel, M.: The future of hydrogen: opportunities and challenges. Int. J. Hydrog. Energy 34, 615–627 (2009). https://doi.org/10.1016/j.ijhydene.2008.11.014

    Article  CAS  Google Scholar 

  5. Li, H.: PEM fuel cells: current status and challenges for electric vehicle application. J. Automot. Saf. Energ. 1, 260–269 (2010)

    Google Scholar 

  6. Mavrikakis, M., Hammer, B., Nørskov, J.K.: Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 81, 2819–2822 (1998). https://doi.org/10.1103/physrevlett.81.2819

    Article  ADS  Google Scholar 

  7. Marković, N.M., Gasteiger, H.A., Grgur, B.N., et al.: Oxygen reduction reaction on Pt(111): effects of bromide. J. Electroanal. Chem. 467, 157–163 (1999). https://doi.org/10.1016/S0022-0728(99)00020-0

    Article  Google Scholar 

  8. Hammer, B., Nørskov, J.K.: Theoretical surface science and catalysis: calculations and concepts. Adv. Catal. 45, 71–129 (2000). https://doi.org/10.1016/S0360-0564(02)45013-4

    Article  CAS  Google Scholar 

  9. Zheng, M.Y., Wang, A.Q., Ji, N., et al.: Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol. ChemSusChem 3, 63–66 (2010). https://doi.org/10.1002/cssc.200900197

    Article  CAS  PubMed  Google Scholar 

  10. Kitchin, J.R., Nørskov, J.K., Barteau, M.A., et al.: Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J. Chem. Phys. 120, 10240–10246 (2004). https://doi.org/10.1063/1.1737365

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Chen, M.S., Goodman, D.W.: The structure of catalytically active gold on titania. Science 306, 252–255 (2004). https://doi.org/10.1002/chin.200501020

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Chen, M., Kumar, D., Yi, C.W., et al.: The promotional effect of gold in catalysis by palladium-gold. Science 310, 291–293 (2005). https://doi.org/10.1126/science.1115800

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Nørskov, J.K., Bligaard, T., Logadottir, A., et al.: Universality in heterogeneous catalysis. J. Catal. 209, 275–278 (2002). https://doi.org/10.1006/jcat.2002.3615

    Article  CAS  Google Scholar 

  14. Gasteiger, H.A., Kocha, S.S., Sompalli, B., et al.: Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B: Environ. 56, 9–35 (2005). https://doi.org/10.1016/j.apcatb.2004.06.021

    Article  CAS  Google Scholar 

  15. Waszczuk, P., Wieckowski, A., Zelenay, P., et al.: Adsorption of CO poison on fuel cell nanoparticle electrodes from methanol solutions: a radioactive labeling study. J. Electroanal. Chem. 511, 55–64 (2001). https://doi.org/10.1016/S0022-0728(01)00559-9

    Article  CAS  Google Scholar 

  16. Shao, Y.Y., Yin, G.P., Gao, Y.Z.: Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. J. Power Sour. 171, 558–566 (2007). https://doi.org/10.1016/j.jpowsour.2007.07.004

    Article  CAS  ADS  Google Scholar 

  17. Nørskov, J.K., Rossmeisl, J., Logadottir, A., et al.: Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004). https://doi.org/10.1021/jp047349j

    Article  CAS  Google Scholar 

  18. Wang, L.C., Zhang, L., Zhang, J.J.: Optimizing catalyst loading in non-noble metal electrocatalyst layer to improve oxygen reduction reaction activity. Electrochem. Commun. 13, 447–449 (2011). https://doi.org/10.1016/j.elecom.2011.02.017

    Article  CAS  Google Scholar 

  19. Jaouen, F., Proietti, E., Lefèvre, M., et al.: Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuelcells. Energy Environ. Sci. 4, 114–130 (2011). https://doi.org/10.1039/c0ee00011f

    Article  CAS  Google Scholar 

  20. Wu, G., More, K.L., Johnston, C.M., et al.: High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332, 443–447 (2011). https://doi.org/10.1126/science.1200832

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Peng, Z.M., Yang, H.: Designer platinum nanoparticles: control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 4, 143–164 (2009). https://doi.org/10.1016/j.nantod.2008.10.010

    Article  CAS  Google Scholar 

  22. Wang, R.F., Liao, S.J., Liu, H.Y., et al.: Synthesis and characterization of Pt-Se/C electrocatalyst for oxygen reduction and its tolerance to methanol. J. Power Sour. 171, 471–476 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.254

    Article  CAS  ADS  Google Scholar 

  23. Stephens, I.E.L., Bondarenko, A.S., Grønbjerg, U., et al.: Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 5, 6744–6762 (2012). https://doi.org/10.1039/c2ee03590a

    Article  CAS  Google Scholar 

  24. Stamenkovic, V.R., Mun, B.S., Arenz, M., et al.: Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 6, 241–247 (2007). https://doi.org/10.1038/nmat1840

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Philippot, K., Serp, P.: Concepts in nanocatalysis. In: Serp, P., Philippot, K. (eds.) Nanomaterials in Catalysis, pp. 1–54. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2012). https://doi.org/10.1002/9783527656875.ch1

    Chapter  Google Scholar 

  26. Chen, M., Liu, J.P., Sun, S.: One-step synthesis of FePt nanoparticles with tunable size. J. Am. Chem. Soc. 126, 8394–8395 (2004). https://doi.org/10.1021/ja047648m

    Article  CAS  PubMed  Google Scholar 

  27. Burda, C., Chen, X.B., Narayanan, R., et al.: Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005). https://doi.org/10.1021/cr030063a

    Article  CAS  PubMed  Google Scholar 

  28. Sánchez-Sánchez, C.M., Solla-Gullón, J., Vidal-Iglesias, F.J., et al.: Imaging structure sensitive catalysis on different shape-controlled platinum nanoparticles. J. Am. Chem. Soc. 132, 5622–5624 (2010). https://doi.org/10.1021/ja100922h

    Article  CAS  PubMed  Google Scholar 

  29. Wang, C., van der Vliet, D., More, K.L., et al.: Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett. 11, 919–926 (2011). https://doi.org/10.1021/nl102369k

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Kuttiyiel, K.A., Sasaki, K., Choi, Y., et al.: Nitride stabilized PtNi core–shell nanocatalyst for high oxygen reduction activity. Nano Lett. 12, 6266–6271 (2012). https://doi.org/10.1021/nl303362s

    Article  CAS  PubMed  ADS  Google Scholar 

  31. Kang, Y.J., Snyder, J., Chi, M.F., et al.: Multimetallic core/interlayer/shell nanostructures as advanced electrocatalysts. Nano Lett. 14, 6361–6367 (2014). https://doi.org/10.1021/nl5028205

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Sun, X.L., Li, D.G., Ding, Y., et al.: Core/shell Au/CuPt nanoparticles and their dual electrocatalysis for both reduction and oxidation reactions. J. Am. Chem. Soc. 136, 5745–5749 (2014). https://doi.org/10.1021/ja500590n

    Article  CAS  PubMed  Google Scholar 

  33. Shimizu, W., Okada, K., Fujita, Y., et al.: Platinum nanowire network with silica nanoparticle spacers for use as an oxygen reduction catalyst. J. Power Sour. 205, 24–31 (2012). https://doi.org/10.1016/j.jpowsour.2011.12.053

    Article  CAS  Google Scholar 

  34. Du, S.F., Pollet, B.G.: Catalyst loading for Pt-nanowire thin film electrodes in PEFCs. Int. J. Hydrog. Energy 37, 17892–17898 (2012). https://doi.org/10.1016/j.ijhydene.2012.08.148

    Article  CAS  Google Scholar 

  35. Guo, S.J., Li, D.G., Zhu, H.Y., et al.: FePt and CoPt nanowires as efficient catalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 52, 3465–3468 (2013). https://doi.org/10.1002/anie.201209871

    Article  CAS  Google Scholar 

  36. Górzny, M.Ł, Walton, A.S., Evans, S.D.: Synthesis of high-surface-area platinum nanotubes using a viral template. Adv. Funct. Mater. 20, 1295–1300 (2010). https://doi.org/10.1002/adfm.200902196

    Article  CAS  Google Scholar 

  37. Chen, C., Kang, Y., Huo, Z., et al.: Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014). https://doi.org/10.1126/science.1249061

    Article  CAS  PubMed  ADS  Google Scholar 

  38. Cui, C.H., Gan, L., Heggen, M., et al.: Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 12, 765–771 (2013). https://doi.org/10.1038/nmat3668

    Article  CAS  PubMed  ADS  Google Scholar 

  39. Sakamoto, R., Omichi, K., Furuta, T., et al.: Effect of high oxygen reduction reaction activity of octahedral PtNi nanoparticle electrocatalysts on proton exchange membrane fuel cell performance. J. Power Sour. 269, 117–123 (2014). https://doi.org/10.1016/j.jpowsour.2014.07.011

    Article  CAS  ADS  Google Scholar 

  40. Huang, X.Q., Zhao, Z.P., Chen, Y., et al.: A rational design of carbon-supported dispersive Pt-based octahedra as efficient oxygen reduction reaction catalysts. Energy Environ. Sci. 7, 2957–2962 (2014). https://doi.org/10.1039/c4ee01082e

    Article  CAS  Google Scholar 

  41. Wu, J.B., Qi, L., You, H.J., et al.: Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. J. Am. Chem. Soc. 134, 11880–11883 (2012). https://doi.org/10.1021/ja303950v

    Article  CAS  PubMed  Google Scholar 

  42. Zhu, J.B., Xiao, M.L., Li, K., et al.: Active Pt3Ni (111) surface of Pt3Ni icosahedron for oxygen reduction. ACS Appl. Mater. Interfaces 8, 30066–30071 (2016). https://doi.org/10.1021/acsami.6b04237

    Article  CAS  PubMed  Google Scholar 

  43. Greeley, J., Stephens, I.E.L., Bondarenko, A.S., et al.: Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1, 552–556 (2009). https://doi.org/10.1038/nchem.367

    Article  CAS  PubMed  Google Scholar 

  44. Jia, Q.Y., Li, J.K., Caldwell, K., et al.: Circumventing metal dissolution induced degradation of Pt-alloy catalysts in proton exchange membrane fuel cells: revealing the asymmetric volcano nature of redox catalysis. ACS Catal. 6, 928–938 (2016). https://doi.org/10.1021/acscatal.5b02750

    Article  CAS  Google Scholar 

  45. Antolini, E.: Alloy vs. intermetallic compounds: effect of the ordering on the electrocatalytic activity for oxygen reduction and the stability of low temperature fuel cell catalysts. Appl. Catal. B: Environ. 217, 201–213 (2017). https://doi.org/10.1016/j.apcatb.2017.05.081

    Article  CAS  Google Scholar 

  46. Andreazza, P., Pierron-Bohnes, V., Tournus, F., et al.: Structure and order in cobalt/platinum-type nanoalloys: from thin films to supported clusters. Surf. Sci. Rep. 70, 188–258 (2015). https://doi.org/10.1016/j.surfrep.2015.02.002

    Article  CAS  ADS  Google Scholar 

  47. Frommen, C., Rösner, H.: Observation of long-period superstructures in chemically synthesised CoPt nanoparticles. Mater. Lett. 58, 123–127 (2004). https://doi.org/10.1016/S0167-577X(03)00428-2

    Article  CAS  Google Scholar 

  48. Takahashi, Y.K., Koyama, T., Ohnuma, M., et al.: Size dependence of ordering in FePt nanoparticles. J. Appl. Phys. 95, 2690–2696 (2004). https://doi.org/10.1063/1.1643187

    Article  CAS  ADS  Google Scholar 

  49. Peng, L.X., Ringe, E., van Duyne, R.P., et al.: Segregation in bimetallic nanoparticles. Phys. Chem. Chem. Phys. 17, 27940–27951 (2015). https://doi.org/10.1039/c5cp01492a

    Article  CAS  PubMed  Google Scholar 

  50. Ma, Y.G., Balbuena, P.B.: Pt surface segregation in bimetallic Pt3M alloys: a density functional theory study. Surf. Sci. 602, 107–113 (2008). https://doi.org/10.1016/j.susc.2007.09.052

    Article  CAS  ADS  Google Scholar 

  51. Stamenkovic, V.R., Mun, B.S., Mayrhofer, K.J.J., et al.: Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J. Am. Chem. Soc. 128, 8813–8819 (2006). https://doi.org/10.1021/ja0600476

    Article  CAS  PubMed  Google Scholar 

  52. Polak, M., Rubinovich, L.: The interplay of surface segregation and atomic order in alloys. Surf. Sci. Rep. 38, 127–194 (2000). https://doi.org/10.1016/S0167-5729(99)00010-2

    Article  CAS  ADS  Google Scholar 

  53. Stamenković, V., Schmidt, T.J., Ross, P.N., et al.: Surface composition effects in electrocatalysis: kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. J. Phys. Chem. B 106, 11970–11979 (2002). https://doi.org/10.1021/jp021182h

    Article  CAS  Google Scholar 

  54. Patrick, B., Ham, H.C., Shao-Horn, Y., et al.: Atomic structure and composition of “Pt3Co” nanocatalysts in fuel cells: an aberration-corrected STEM HAADF study. Chem. Mater. 25, 530–535 (2013). https://doi.org/10.1021/cm3029164

    Article  CAS  Google Scholar 

  55. Xia, W., Mahmood, A., Liang, Z.B., et al.: Earth-abundant nanomaterials for oxygen reduction. Angew. Chem. Int. Ed. 55, 2650–2676 (2016). https://doi.org/10.1002/anie.201504830

    Article  CAS  Google Scholar 

  56. Čolić, V., Bandarenka, A.S.: Pt alloy electrocatalysts for the oxygen reduction reaction: from model surfaces to nanostructured systems. ACS Catal. 6, 5378–5385 (2016). https://doi.org/10.1021/acscatal.6b00997

    Article  CAS  Google Scholar 

  57. Ou, L.H., Chen, S.L.: Comparative study of oxygen reduction reaction mechanisms on the Pd(111) and Pt(111) surfaces in acid medium by DFT. J. Phys. Chem. C 117, 1342–1349 (2013). https://doi.org/10.1021/jp309094b

    Article  CAS  Google Scholar 

  58. Gamler, J.T.L., Ashberry, H.M., Skrabalak, S.E., et al.: Random alloyed versus intermetallic nanoparticles: a comparison of electrocatalytic performance. Adv. Mater. 30, 1801563 (2018). https://doi.org/10.1002/adma.201801563

    Article  CAS  Google Scholar 

  59. Zhang, S., Zhang, X., Jiang, G.M., et al.: Tuning nanoparticle structure and surface strain for catalysis optimization. J. Am. Chem. Soc. 136, 7734–7739 (2014). https://doi.org/10.1021/ja5030172

    Article  CAS  PubMed  Google Scholar 

  60. Kim, H.Y., Kim, J.M., Ha, Y., et al.: Activity origin and multifunctionality of Pt-based intermetallic nanostructures for efficient electrocatalysis. ACS Catal. 9, 11242–11254 (2019). https://doi.org/10.1021/acscatal.9b03155

    Article  CAS  Google Scholar 

  61. Antolini, E.: Effect of atomic ordering on the activity for methanol and formic acid oxidation of Pt-based electrocatalysts. Energy Technol. 7, 1800553 (2019). https://doi.org/10.1002/ente.201800553

    Article  CAS  Google Scholar 

  62. Jovanovič, P., Šelih, V.S., Šala, M., et al.: Electrochemical in-situ dissolution study of structurally ordered, disordered and gold doped PtCu3 nanoparticles on carbon composites. J. Power Sour. 327, 675–680 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.112

    Article  CAS  ADS  Google Scholar 

  63. Chung, D.Y., Jun, S.W., Yoon, G., et al.: Highly durable and active PtFe nanocatalyst for electrochemical oxygen reduction reaction. J. Am. Chem. Soc. 137, 15478–15485 (2015). https://doi.org/10.1021/jacs.5b09653

    Article  CAS  PubMed  Google Scholar 

  64. Maillard, F., Dubau, L., Durst, J., et al.: Durability of Pt3Co/C nanoparticles in a proton-exchange membrane fuel cell: direct evidence of bulk Co segregation to the surface. Electrochem. Commun. 12, 1161–1164 (2010). https://doi.org/10.1016/j.elecom.2010.06.007

    Article  CAS  Google Scholar 

  65. Zou, L., Li, J., Yuan, T., et al.: Structural transformation of carbon-supported Pt3Cr nanoparticles from a disordered to an ordered phase as a durable oxygen reduction electrocatalyst. Nanoscale 6, 10686–10692 (2014). https://doi.org/10.1039/c4nr02799j

    Article  CAS  PubMed  ADS  Google Scholar 

  66. Koh, S., Toney, M.F., Strasser, P.: Activity-stability relationships of ordered and disordered alloy phases of Pt3Co electrocatalysts for the oxygen reduction reaction (ORR). Electrochim. Acta 52, 2765–2774 (2007). https://doi.org/10.1016/j.electacta.2006.08.039

    Article  CAS  Google Scholar 

  67. Arumugam, B., Kakade, B.A., Tamaki, T., et al.: Enhanced activity and durability for the electroreduction of oxygen at a chemically ordered intermetallic PtFeCo catalyst. RSC Adv. 4, 27510–27517 (2014). https://doi.org/10.1039/c4ra04744c

    Article  CAS  ADS  Google Scholar 

  68. Shao-Horn, Y., Sheng, W.C., Chen, S., et al.: Instability of supported platinum nanoparticles in low-temperature fuel cells. Top. Catal. 46, 285–305 (2007). https://doi.org/10.1007/s11244-007-9000-0

    Article  CAS  Google Scholar 

  69. Darling, R.M., Meyers, J.P.: Kinetic model of platinum dissolution in PEMFCs. J. Electrochem. Soc. 150, A1523–A1527 (2003). https://doi.org/10.1149/1.1613669

    Article  CAS  Google Scholar 

  70. Ferreira, P.J., La O’, G.J., Shao-Horn, Y., et al.: Instability of Pt∕C electrocatalysts in proton exchange membrane fuel cells. J. Electrochem. Soc. 152, A2256–A2271 (2005). https://doi.org/10.1149/1.2050347

    Article  Google Scholar 

  71. Duhl, D., Hirano, K.I., Cohen, M.: Diffusion of iron, cobalt and nickel in gold. Acta Metall. 11, 1–6 (1963). https://doi.org/10.1016/0001-6160(63)90119-6

    Article  CAS  Google Scholar 

  72. Kim, J., Lee, Y., Sun, S.: Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction. J. Am. Chem. Soc. 132, 4996–4997 (2010). https://doi.org/10.1021/ja1009629

    Article  CAS  PubMed  Google Scholar 

  73. Li, X., An, L., Wang, X.Y., et al.: Supported sub-5nm Pt-Fe intermetallic compounds for electrocatalytic application. J. Mater. Chem. 22, 6047–6052 (2012). https://doi.org/10.1039/c2jm16504j

    Article  CAS  Google Scholar 

  74. Arumugam, B., Tamaki, T., Yamaguchi, T.: Beneficial role of copper in the enhancement of durability of ordered intermetallic PtFeCu catalyst for electrocatalytic oxygen reduction. ACS Appl. Mater. Interfaces 7, 16311–16321 (2015). https://doi.org/10.1021/acsami.5b03137

    Article  CAS  PubMed  Google Scholar 

  75. Tamaki, T., Koshiishi, A., Sugawara, Y., et al.: Evaluation of performance and durability of platinum-iron-copper with L10 ordered face-centered tetragonal structure as cathode catalysts in polymer electrolyte fuel cells. J. Appl. Electrochem. 48, 773–782 (2018). https://doi.org/10.1007/s10800-018-1193-3

    Article  CAS  Google Scholar 

  76. He, C.M., Ma, Z.L., Wu, Q., et al.: Promoting the ORR catalysis of Pt-Fe intermetallic catalysts by increasing atomic utilization and electronic regulation. Electrochim. Acta 330, 135119 (2020). https://doi.org/10.1016/j.electacta.2019.135119

    Article  CAS  Google Scholar 

  77. Zhu, H., Cai, Y.Z., Wang, F.H., et al.: Scalable preparation of the chemically ordered Pt-Fe-Au nanocatalysts with high catalytic reactivity and stability for oxygen reduction reactions. ACS Appl. Mater. Interfaces 10, 22156–22166 (2018). https://doi.org/10.1021/acsami.8b05114

    Article  CAS  PubMed  Google Scholar 

  78. Cai, Y.Z., Gao, P., Wang, F.H., et al.: Surface tuning of carbon supported chemically ordered nanoparticles for promoting their catalysis toward the oxygen reduction reaction. Electrochim. Acta 246, 671–679 (2017). https://doi.org/10.1016/j.electacta.2017.05.068

    Article  CAS  Google Scholar 

  79. Kim, D., Saal, J.E., Zhou, L.C., et al.: Thermodynamic modeling of fcc order/disorder transformations in the Co-Pt system. Calphad 35, 323–330 (2011). https://doi.org/10.1016/j.calphad.2011.04.005

    Article  CAS  Google Scholar 

  80. Wang, D.L., Xin, H.L., Hovden, R., et al.: Structurally ordered intermetallic platinum-cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 12, 81–87 (2013). https://doi.org/10.1038/nmat3458

    Article  CAS  PubMed  ADS  Google Scholar 

  81. Xiong, Y., Xiao, L., Yang, Y., et al.: High-loading intermetallic Pt3Co/C core–shell nanoparticles as enhanced activity electrocatalysts toward the oxygen reduction reaction (ORR). Chem. Mater. 30, 1532–1539 (2018). https://doi.org/10.1021/acs.chemmater.7b04201

    Article  CAS  Google Scholar 

  82. Lee, J.D., Jishkariani, D., Zhao, Y.R., et al.: Tuning the electrocatalytic oxygen reduction reaction activity of Pt-Co nanocrystals by cobalt concentration with atomic-scale understanding. ACS Appl. Mater. Interfaces 11, 26789–26797 (2019). https://doi.org/10.1021/acsami.9b06346

    Article  CAS  PubMed  Google Scholar 

  83. Zhang, L.B., Ji, X.D., Wang, X.R., et al.: Chemically ordered Pt-Co-Cu/C as excellent electrochemical catalyst for oxygen reduction reaction. J. Electrochem. Soc. 167, 024507 (2020). https://doi.org/10.1149/1945-7111/ab69f5

    Article  CAS  ADS  Google Scholar 

  84. Kuttiyiel, K.A., Kattel, S., Cheng, S.B., et al.: Au-doped stable L10 structured platinum cobalt ordered intermetallic nanoparticle catalysts for enhanced electrocatalysis. ACS Appl. Energy Mater. 1, 3771–3777 (2018). https://doi.org/10.1021/acsaem.8b00555

    Article  CAS  Google Scholar 

  85. Liang, J.S., Li, N., Zhao, Z.L., et al.: Tungsten-doped L10-PtCo ultrasmall nanoparticles as a high-performance fuel cell cathode. Angew. Chem. Int. Ed. 58, 15471–15477 (2019). https://doi.org/10.1002/anie.201908824

    Article  CAS  Google Scholar 

  86. Lu, X.G., Sundman, B., Agren, J.: Thermodynamic assessments of the Ni-Pt and Al-Ni-Pt systems. Calphad 33, 450–456 (2009). https://doi.org/10.1016/j.calphad.2009.06.002

    Article  CAS  Google Scholar 

  87. Chen, L.X., Zhu, J., Wang, J., et al.: Phase conversion of Pt3Ni2/C from disordered alloy to ordered intermetallic with strained lattice for oxygen reduction reaction. Electrochim. Acta 283, 1253–1260 (2018). https://doi.org/10.1016/j.electacta.2018.07.016

    Article  CAS  Google Scholar 

  88. Zou, L.L., Fan, J., Zhou, Y., et al.: Conversion of PtNi alloy from disordered to ordered for enhanced activity and durability in methanol-tolerant oxygen reduction reactions. Nano Res. 8, 2777–2788 (2015). https://doi.org/10.1007/s12274-015-0784-0

    Article  CAS  Google Scholar 

  89. Wang, Y.M., Zou, L.L., Huang, Q.H., et al.: 3D carbon aerogel-supported PtNi intermetallic nanoparticles with high metal loading as a durable oxygen reduction electrocatalyst. Int. J. Hydrog. Energy 42, 26695–26703 (2017). https://doi.org/10.1016/j.ijhydene.2017.09.008

    Article  CAS  Google Scholar 

  90. Wang, Z., Yao, X., Kang, Y., et al.: Rational development of structurally ordered platinum ternary intermetallic electrocatalysts for oxygen reduction reaction. Catalysts 9, 569 (2019). https://doi.org/10.3390/catal9070569

    Article  CAS  Google Scholar 

  91. Tamaki, T., Minagawa, A., Arumugam, B., et al.: Highly active and durable chemically ordered Pt-Fe-Co intermetallics as cathode catalysts of membrane-electrode assemblies in polymer electrolyte fuel cells. J. Power Sour. 271, 346–353 (2014). https://doi.org/10.1016/j.jpowsour.2014.08.005

    Article  CAS  ADS  Google Scholar 

  92. Gao, P., Cai, Y.Z., Wang, F.H., et al.: Pt-based trimetallic nanocrystals with high proportions of M (M = Fe, Ni) metals for catalyzing oxygen reduction reaction. Int. J. Hydrog. Energy 45, 16039–16048 (2020). https://doi.org/10.1016/j.ijhydene.2020.03.152

    Article  CAS  Google Scholar 

  93. Wang, S.H., Luo, Q.Y., Zhu, Y.F., et al.: Facile synthesis of quaternary structurally ordered L12-Pt(Fe, Co, Ni)3 nanoparticles with low content of platinum as efficient oxygen reduction reaction electrocatalysts. ACS Omega 4, 17894–17902 (2019). https://doi.org/10.1021/acsomega.9b02918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bele, M., Jovanovič, P., Pavlišič, A., et al.: A highly active PtCu3 intermetallic core–shell, multilayered Pt-skin, carbon embedded electrocatalyst produced by a scale-up sol-gel synthesis. Chem. Commun. 50, 13124–13126 (2014). https://doi.org/10.1039/c4cc05637j

    Article  CAS  Google Scholar 

  95. Pavlišič, A., Jovanovič, P., Šelih, V.S., et al.: Atomically resolved dealloying of structurally ordered Pt nanoalloy as an oxygen reduction reaction electrocatalyst. ACS Catal. 6, 5530–5534 (2016). https://doi.org/10.1021/acscatal.6b00557

    Article  CAS  Google Scholar 

  96. Jeon, M.K., McGinn, P.J.: Effect of Ti addition to Pt/C catalyst on methanol electro-oxidation and oxygen electro-reduction reactions. J. Power Sour. 195, 2664–2668 (2010). https://doi.org/10.1016/j.jpowsour.2009.10.031

    Article  CAS  ADS  Google Scholar 

  97. Kim, J., Yang, S., Lee, H.: Platinum-titanium intermetallic nanoparticle catalysts for oxygen reduction reaction with enhanced activity and durability. Electrochem. Commun. 66, 66–70 (2016). https://doi.org/10.1016/j.elecom.2016.03.007

    Article  CAS  Google Scholar 

  98. Kang, Y., Murray, C.B.: Synthesis and electrocatalytic properties of cubic Mn-Pt nanocrystals (nanocubes). J. Am. Chem. Soc. 132, 7568–7569 (2010). https://doi.org/10.1021/ja100705j

    Article  CAS  PubMed  Google Scholar 

  99. Liang, J.S., Zhao, Z.L., Li, N., et al.: Biaxial strains mediated oxygen reduction electrocatalysis on Fenton reaction resistant L10-PtZn fuel cell cathode. Adv. Energy Mater. 10, 2070124 (2020). https://doi.org/10.1002/aenm.202070124

    Article  CAS  ADS  Google Scholar 

  100. Lu, Z.W., Klein, B.M., Zunger, A.: Ordering tendencies in Pd-Pt, Rh-Pt, and Ag-Au alloys. J. Ph. Equilib. 16, 36–45 (1995). https://doi.org/10.1007/BF02646247

    Article  CAS  Google Scholar 

  101. Escudero-Escribano, M., Malacrida, P., Hansen, M.H., et al.: Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 352, 73–76 (2016). https://doi.org/10.1126/science.aad8892

    Article  CAS  PubMed  ADS  Google Scholar 

  102. Kumar, V.B., Sanetuntikul, J., Ganesan, P., et al.: Sonochemical formation of Ga-Pt intermetallic nanoparticles embedded in graphene and its potential use as an electrocatalyst. Electrochim. Acta 190, 659–667 (2016). https://doi.org/10.1016/j.electacta.2015.12.193

    Article  CAS  Google Scholar 

  103. Wang, Q., Zhao, Z.L., Zhang, Z., et al.: Sub-3 nm intermetallic ordered Pt3 in clusters for oxygen reduction reaction. Adv. Sci. 7, 1901279 (2020). https://doi.org/10.1002/advs.201901279

    Article  CAS  Google Scholar 

  104. Gunji, T.K., Sakai, K., Suzuki, Y., et al.: Enhanced oxygen reduction reaction on PtPb ordered intermetallic nanoparticle/TiO2/carbon black in acidic aqueous solutions. Catal. Commun. 61, 1–5 (2015). https://doi.org/10.1016/j.catcom.2014.10.018

    Article  CAS  Google Scholar 

  105. Ando, F., Tanabe, T., Gunji, T.K., et al.: Effect of the d-band center on the oxygen reduction reaction activity of electrochemically dealloyed ordered intermetallic platinum-lead (PtPb) nanoparticles supported on TiO2-deposited cup-stacked carbon nanotubes. ACS Appl. Nano Mater. 1, 2844–2850 (2018). https://doi.org/10.1021/acsanm.8b00488

    Article  CAS  Google Scholar 

  106. Qin, Y.N., Luo, M.C., Sun, Y.J., et al.: Intermetallic hcp-PtBi/fcc-Pt core/shell nanoplates enable efficient bifunctional oxygen reduction and methanol oxidation electrocatalysis. ACS Catal. 8, 5581–5590 (2018). https://doi.org/10.1021/acscatal.7b04406

    Article  CAS  Google Scholar 

  107. Rankin, R.B., Waldt, C.T.: Computational screening for developing optimal intermetallic transition metal Pt-based ORR catalysts at the predictive volcano peak. J. Phys. Chem. C 123, 13236–13245 (2019). https://doi.org/10.1021/acs.jpcc.8b11494

    Article  CAS  Google Scholar 

  108. Feng, Q.C., Zhao, S., He, D.S., et al.: Strain engineering to enhance the electrooxidation performance of atomic-layer Pt on intermetallic Pt3Ga. J. Am. Chem. Soc. 140, 2773–2776 (2018). https://doi.org/10.1021/jacs.7b13612

    Article  CAS  PubMed  Google Scholar 

  109. Rong, H.P., Mao, J.J., Xin, P.Y., et al.: Kinetically controlling surface structure to construct defect-rich intermetallic nanocrystals: effective and stable catalysts. Adv. Mater. 28, 2540–2546 (2016). https://doi.org/10.1002/adma.201504831

    Article  CAS  PubMed  Google Scholar 

  110. Miura, A., Wang, H.S., Leonard, B.M., et al.: Synthesis of intermetallic PtZn nanoparticles by reaction of Pt nanoparticles with Zn vapor and their application as fuel cell catalysts. Chem. Mater. 21, 2661–2667 (2009). https://doi.org/10.1021/cm900048e

    Article  CAS  Google Scholar 

  111. Kim, J., Rong, C.B., Lee, Y., et al.: From core/shell structured FePt/Fe3O4/MgO to ferromagnetic FePt nanoparticles. Chem. Mater. 20, 7242–7245 (2008). https://doi.org/10.1021/cm8024878

    Article  CAS  Google Scholar 

  112. Li, J.R., Xi, Z., Pan, Y.T., et al.: Fe stabilization by intermetallic L10-FePt and Pt catalysis enhancement in L10-FePt/Pt nanoparticles for efficient oxygen reduction reaction in fuel cells. J. Am. Chem. Soc. 140, 2926–2932 (2018). https://doi.org/10.1021/jacs.7b12829

    Article  CAS  PubMed  Google Scholar 

  113. Zou, X., Chen, S.G., Wang, Q.M., et al.: Leaching- and sintering-resistant hollow or structurally ordered intermetallic PtFe alloy catalysts for oxygen reduction reactions. Nanoscale 11, 20115–20122 (2019). https://doi.org/10.1039/c9nr06698e

    Article  CAS  PubMed  Google Scholar 

  114. Mun, Y., Shim, J., Kim, K., et al.: Direct access to aggregation-free and small intermetallic nanoparticles in ordered, large-pore mesoporous carbon for an electrocatalyst. RSC Adv. 6, 88255–88264 (2016). https://doi.org/10.1039/c6ra14861a

    Article  CAS  ADS  Google Scholar 

  115. Wang, T.Y., Liang, J.S., Zhao, Z.L., et al.: Sub-6 nm fully ordered L10 -Pt-Ni-Co nanoparticles enhance oxygen reduction via Co doping induced ferromagnetism enhancement and optimized surface strain. Adv. Energy Mater. 9, 1803771 (2019). https://doi.org/10.1002/aenm.201803771

    Article  CAS  Google Scholar 

  116. Lee, H., Dellatore, S.M., Miller, W.M., et al.: Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426–430 (2007). https://doi.org/10.1126/science.1147241

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  117. Zhao, Y., Wang, C., Liu, J., et al.: PDA-assisted formation of ordered intermetallic CoPt3 catalysts with enhanced oxygen reduction activity and stability. Nanoscale 10, 9038–9043 (2018). https://doi.org/10.1039/c8nr02207k

    Article  CAS  PubMed  Google Scholar 

  118. Du, X.X., He, Y., Wang, X.X., et al.: Fine-grained and fully ordered intermetallic PtFe catalysts with largely enhanced catalytic activity and durability. Energy Environ. Sci. 9, 2623–2632 (2016). https://doi.org/10.1039/c6ee01204c

    Article  CAS  Google Scholar 

  119. He, Y., Wu, Y.L., Zhu, X.X., et al.: Remarkable improvement of the catalytic performance of PtFe nanoparticles by structural ordering and doping. ACS Appl. Mater. Interfaces 11, 11527–11536 (2019). https://doi.org/10.1021/acsami.9b01810

    Article  CAS  PubMed  Google Scholar 

  120. Jung, C., Lee, C., Bang, K., et al.: Synthesis of chemically ordered Pt3Fe/C intermetallic electrocatalysts for oxygen reduction reaction with enhanced activity and durability via a removable carbon coating. ACS Appl. Mater. Interfaces 9, 31806–31815 (2017). https://doi.org/10.1021/acsami.7b07648

    Article  CAS  PubMed  Google Scholar 

  121. Rong, C.B., Poudyal, N., Chaubey, G.S., et al.: High thermal stability of carbon-coated L10-FePt nanoparticles prepared by salt-matrix annealing. J. Appl. Phys. 103, 07E131 (2008). https://doi.org/10.1063/1.2832506

    Article  CAS  Google Scholar 

  122. Chen, H., Wang, D.L., Yu, Y.C., et al.: A surfactant-free strategy for synthesizing and processing intermetallic platinum-based nanoparticle catalysts. J. Am. Chem. Soc. 134, 18453–18459 (2012). https://doi.org/10.1021/ja308674b

    Article  CAS  PubMed  Google Scholar 

  123. Nguyen, M.T., Wakabayashi, R.H., Yang, M.H., et al.: Synthesis of carbon supported ordered tetragonal pseudo-ternary Pt2M′M″ (M = Fe Co, Ni) nanoparticles and their activity for oxygen reduction reaction. J. Power Sour. 280, 459–466 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.076

    Article  CAS  ADS  Google Scholar 

  124. Cui, Z.M., Chen, H., Zhou, W.D., et al.: Structurally ordered Pt3Cr as oxygen reduction electrocatalyst: ordering control and origin of enhanced stability. Chem. Mater. 27, 7538–7545 (2015). https://doi.org/10.1021/acs.chemmater.5b03912

    Article  CAS  Google Scholar 

  125. Liu, Q.B., Du, L., Fu, G.T., et al.: Structurally ordered Fe3Pt nanoparticles on robust nitride support as a high performance catalyst for the oxygen reduction reaction. Adv. Energy Mater. 9, 1803040 (2019). https://doi.org/10.1002/aenm.201803040

    Article  CAS  Google Scholar 

  126. Wang, Z.X., Yao, X.Z., Kang, Y.Q., et al.: Structurally ordered low-Pt intermetallic electrocatalysts toward durably high oxygen reduction reaction activity. Adv. Funct. Mater. 29, 1902987 (2019). https://doi.org/10.1002/adfm.201902987

    Article  CAS  Google Scholar 

  127. Gan, L., Rudi, S., Cui, C.H., et al.: Ni-catalyzed growth of graphene layers during thermal annealing: implications for the synthesis of carbon-supported Pt-Ni fuel-cell catalysts. ChemCatChem 5, 2691–2694 (2013). https://doi.org/10.1002/cctc.201300235

    Article  CAS  Google Scholar 

  128. Zhang, S., Guo, S.J., Zhu, H.Y., et al.: Structure-induced enhancement in electrooxidation of trimetallic FePtAu nanoparticles. J. Am. Chem. Soc. 134, 5060–5063 (2012). https://doi.org/10.1021/ja300708j

    Article  CAS  PubMed  Google Scholar 

  129. Zhu, J., Yang, Y., Chen, L.X., et al.: Copper-induced formation of structurally ordered Pt-Fe-Cu ternary intermetallic electrocatalysts with tunable phase structure and improved stability. Chem. Mater. 30, 5987–5995 (2018). https://doi.org/10.1021/acs.chemmater.8b02172

    Article  CAS  Google Scholar 

  130. Prabhudev, S., Bugnet, M., Bock, C., et al.: Strained lattice with persistent atomic order in Pt3Fe2 intermetallic core–shell nanocatalysts. ACS Nano 7, 6103–6110 (2013). https://doi.org/10.1021/nn4019009

    Article  CAS  PubMed  Google Scholar 

  131. Stamenkovic, V.R., Fowler, B., Mun, B.S., et al.: Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007). https://doi.org/10.1126/science.1135941

    Article  CAS  PubMed  ADS  Google Scholar 

  132. Li, J.R., Sharma, S., Liu, X.M., et al.: Hard-magnet L10-CoPt nanoparticles advance fuel cell catalysis. Joule 3, 124–135 (2019). https://doi.org/10.1016/j.joule.2018.09.016

    Article  CAS  Google Scholar 

  133. Strasser, P., Koh, S., Anniyev, T., et al.: Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010). https://doi.org/10.1038/nchem.623

    Article  CAS  PubMed  Google Scholar 

  134. Jung, W.S., Popov, B.N.: Effect of pretreatment on durability of fct-structured Pt-based alloy catalyst for the oxygen reduction reaction under operating conditions in polymer electrolyte membrane fuel cells. ACS Sustain. Chem. Eng. 5, 9809–9817 (2017). https://doi.org/10.1021/acssuschemeng.7b01728

    Article  CAS  Google Scholar 

  135. Yang, W.H., Zou, L.L., Huang, Q.H., et al.: Lattice contracted ordered intermetallic core–shell PtCo@Pt nanoparticles: synthesis, structure and origin for enhanced oxygen reduction reaction. J. Electrochem. Soc. 164, H331–H337 (2017). https://doi.org/10.1149/2.0851706jes

    Article  CAS  Google Scholar 

  136. Lang, X.Y., Han, G.F., Xiao, B.B., et al.: Mesostructured intermetallic compounds of platinum and non-transition metals for enhanced electrocatalysis of oxygen reduction reaction. Adv. Funct. Mater. 25, 230–237 (2015). https://doi.org/10.1002/adfm.201401868

    Article  CAS  Google Scholar 

  137. Wang, D.L., Yu, Y.C., Xin, H.L., et al.: Tuning oxygen reduction reaction activity via controllable dealloying: a model study of ordered Cu3Pt/C intermetallic nanocatalysts. Nano Lett. 12, 5230–5238 (2012). https://doi.org/10.1021/nl302404g

    Article  CAS  PubMed  ADS  Google Scholar 

  138. Wang, D.L., Yu, Y.C., Zhu, J., et al.: Morphology and activity tuning of Cu3Pt/C ordered intermetallic nanoparticles by selective electrochemical dealloying. Nano Lett. 15, 1343–1348 (2015). https://doi.org/10.1021/nl504597j

    Article  CAS  PubMed  ADS  Google Scholar 

  139. Cheng, N., Zhang, L., Mi, S.Y., et al.: L12 atomic ordered substrate enhanced Pt-skin Cu3Pt catalyst for efficient oxygen reduction reaction. ACS Appl. Mater. Interfaces 10, 38015–38023 (2018). https://doi.org/10.1021/acsami.8b11764

    Article  CAS  PubMed  Google Scholar 

  140. Xia, X.H., Wang, Y., Ruditskiy, A., et al.: 25th anniversary article. Galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well-controlled properties. Adv. Mater. 25, 6313–6333 (2013). https://doi.org/10.1002/adma.201302820

    Article  CAS  PubMed  Google Scholar 

  141. da Silva, A.G.M., Rodrigues, T.S., Haigh, S.J., et al.: Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications. Chem. Commun. 53, 7135–7148 (2017). https://doi.org/10.1039/c7cc02352a

    Article  CAS  Google Scholar 

  142. Ghosh, T., Vukmirovic, M.B., DiSalvo, F.J., et al.: Intermetallics as novel supports for Pt monolayer O2 reduction electrocatalysts: potential for significantly improving properties. J. Am. Chem. Soc. 132, 906–907 (2010). https://doi.org/10.1021/ja905850c

    Article  CAS  PubMed  Google Scholar 

  143. Gatalo, M., Jovanovič, P., Polymeros, G., et al.: Positive effect of surface doping with Au on the stability of Pt-based electrocatalysts. ACS Catal. 6, 1630–1634 (2016). https://doi.org/10.1021/acscatal.5b02883

    Article  CAS  Google Scholar 

  144. Cai, M., Ruthkosky, M.S., Merzougui, B., et al.: Investigation of thermal and electrochemical degradation of fuel cell catalysts. J. Power Sour. 160, 977–986 (2006). https://doi.org/10.1016/j.jpowsour.2006.03.033

    Article  CAS  ADS  Google Scholar 

  145. Dong, J.H., Fu, Q., Jiang, Z., et al.: Carbide-supported Au catalysts for water-gas shift reactions: a new territory for the strong metal–support interaction effect. J. Am. Chem. Soc. 140, 13808–13816 (2018). https://doi.org/10.1021/jacs.8b08246

    Article  CAS  PubMed  Google Scholar 

  146. Liang, J., Jiao, Y., Jaroniec, M., et al.: Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. Int. Ed. 51, 11496–11500 (2012). https://doi.org/10.1002/anie.201206720

    Article  CAS  Google Scholar 

  147. Choi, C.H., Park, S.H., Woo, S.I.: Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity. ACS Nano 6, 7084–7091 (2012). https://doi.org/10.1021/nn3021234

    Article  CAS  PubMed  Google Scholar 

  148. Jung, W.S., Popov, B.N.: New method to synthesize highly active and durable chemically ordered fct-PtCo cathode catalyst for PEMFCs. ACS Appl. Mater. Interfaces 9, 23679–23686 (2017). https://doi.org/10.1021/acsami.7b04750

    Article  CAS  PubMed  Google Scholar 

  149. Xia, B.Y., Wu, H.B., Chen, J.S., et al.: Formation of Pt-TiO2-rGO3-phase junctions with significantly enhanced electro-activity for methanol oxidation. Phys. Chem. Chem. Phys. 14, 473–476 (2012). https://doi.org/10.1039/c1cp23367j

    Article  CAS  PubMed  Google Scholar 

  150. Wu, Z.X., Lv, Y., Xia, Y.Y., et al.: Ordered mesoporous platinum@graphitic carbon embedded nanophase as a highly active, stable, and methanol-tolerant oxygen reduction electrocatalyst. J. Am. Chem. Soc. 134, 2236–2245 (2012). https://doi.org/10.1021/ja209753w

    Article  CAS  PubMed  Google Scholar 

  151. Ying, J., Yang, X.Y., Hu, Z.Y., et al.: One particle@one cell: highly monodispersed PtPd bimetallic nanoparticles for enhanced oxygen reduction reaction. Nano Energy 8, 214–222 (2014). https://doi.org/10.1016/j.nanoen.2014.06.010

    Article  CAS  Google Scholar 

  152. Wang, X.X., Hwang, S., Pan, Y.T., et al.: Ordered Pt3Co intermetallic nanoparticles derived from metal-organic frameworks for oxygen reduction. Nano Lett. 18, 4163–4171 (2018). https://doi.org/10.1021/acs.nanolett.8b00978

    Article  CAS  PubMed  ADS  Google Scholar 

  153. Zhao, W.Y., Ye, Y.K., Jiang, W.J., et al.: Mesoporous carbon confined intermetallic nanoparticles as highly durable electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 8, 15822–15828 (2020). https://doi.org/10.1039/d0ta01437k

    Article  CAS  Google Scholar 

  154. Xue, Y.K., Li, H.Q., Ye, X., et al.: N-doped carbon shell encapsulated PtZn intermetallic nanoparticles as highly efficient catalysts for fuel cells. Nano Res. 12, 2490–2497 (2019). https://doi.org/10.1007/s12274-019-2473-x

    Article  CAS  Google Scholar 

  155. Chen, D.K., Li, Z.Y., Zhou, Y., et al.: Fe3Pt intermetallic nanoparticles anchored on N-doped mesoporous carbon for the highly efficient oxygen reduction reaction. Chem. Commun. 56, 4898–4901 (2020). https://doi.org/10.1039/d0cc00895h

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the Program of Ministry of Science & Technology of China (No. 2021YFB4001104) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Li.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Pan, F., Chen, W. et al. Pt-Based Intermetallic Compound Catalysts for the Oxygen Reduction Reaction: Structural Control at the Atomic Scale to Achieve a Win–Win Situation Between Catalytic Activity and Stability. Electrochem. Energy Rev. 6, 6 (2023). https://doi.org/10.1007/s41918-022-00141-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41918-022-00141-x

Keywords

Navigation