Skip to main content

Advertisement

Log in

Biomolecules Production from Greenhouse Gases by Methanotrophs

  • Review article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Harmful effects on living organisms and the environment are on the rise due to a significant increase in greenhouse gas (GHG) emissions through human activities. Therefore, various research initiatives have been carried out in several directions in relation to the utilization of GHGs via physicochemical or biological routes. An environmentally friendly approach to reduce the burden of significant emissions and their harmful effects is the bioconversion of GHGs, including methane (CH4) and carbon dioxide (CO2), into value-added products. Methanotrophs have enormous potential for the efficient biotransformation of CH4 to various bioactive molecules, including biofuels, polyhydroxyalkanoates, and fatty acids. This review highlights the recent developments in methanotroph-based systems for methanol production from GHGs and proposes future perspectives to improve process sustainability via biorefinery approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Patel SKS, Purohit HJ, Kalia VC (2010) Dark fermentative hydrogen production by defined mixed microbial cultures immobilized on ligno-cellulosic waste materials. Int J Hydrogen Energy 35:10674–10681. https://doi.org/10.1016/j.ijhydene.2010.03.025

    Article  CAS  Google Scholar 

  2. Patel SKS, Singh M, Kalia VC (2011) Hydrogen and polyhydroxybutyrate producing abilities of Bacillus spp. from glucose in two stage system. Indian J Microbiol 51:418–423. https://doi.org/10.1007/s12088-011-0236-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Singh M, Kumar P, Patel SKS et al (2013) Production of polyhydroxyalkanoate copolymer by Bacillus thuringiensis. Indian J Microbiol 53:77–83. https://doi.org/10.1007/s12088-012-0294-7

    Article  PubMed  CAS  Google Scholar 

  4. Kumar P, Ray S, Patel SKS et al (2015) Bioconversion of crude glycerol to polyhydroxyalkanoate by Bacillus thuringiensis under non-limiting nitrogen conditions. Int J Biol Macromol 78:9–16. https://doi.org/10.1016/j.ijbiomac.2015.03.046

    Article  PubMed  CAS  Google Scholar 

  5. Gao H, Li J, Sivakumar D et al (2019) NADH oxidase from Lactobacillus reuteri: a versatile enzyme for oxidized cofactor regeneration. Int J Biol Macromol 123:629–636. https://doi.org/10.1016/j.ijbiomac.2018.11.096

    Article  PubMed  CAS  Google Scholar 

  6. Devi N, Patel SKS, Kumar P et al (2021) Bioprocess scale-up for acetohydroxamic acid production by hyperactive acyltransferase of immobilized Rhodococcus pyridinivorans. Catal Lett. https://doi.org/10.1007/s10562-021-03696-4

    Article  Google Scholar 

  7. Kalia VC, Patel SKS, Shanmugam R et al (2021) Polyhydroxyalkanoates: trends and advances towards biotechnological applications. Bioresour Technol 326:124737. https://doi.org/10.1016/j.biortech.2021.124737

    Article  PubMed  CAS  Google Scholar 

  8. Muneeswaran G, Patel SKS, Kondaveeti S et al (2021) Biotin and Zn2+ increase xylitol production by Candida tropicalis. Indian J Microbiol 61:331–337. https://doi.org/10.1007/s12088-021-00960-4

    Article  PubMed  CAS  Google Scholar 

  9. Patel SKS, Kumar P, Kalia VC (2012) Enhancing biological hydrogen production through complementary microbial metabolisms. Int J Hydrogen Energy 37:10590–10603. https://doi.org/10.1016/j.ijhydene.2012.04.045

    Article  CAS  Google Scholar 

  10. Patel SKS, Singh M, Kumar P et al (2012) Exploitation of defined bacterial cultures for production of hydrogen and polyhydroxybutyrate from pea-shells. Biomass Bioenergy 36:218–225. https://doi.org/10.1016/j.biombioe.2011.10.027

    Article  CAS  Google Scholar 

  11. Patel SKS, Kalia VC (2013) Integrative biological hydrogen production: an overview. Indian J Microbiol 53:3–10. https://doi.org/10.1007/s12088-012-0287-6

    Article  PubMed  CAS  Google Scholar 

  12. Patel SKS, Kumar P, Mehariya S et al (2014) Enhancement in hydrogen production by co-cultures of Bacillus and Enterobacter. Int J Hydrogen Energy 39:14663–14668. https://doi.org/10.1016/j.ijhydene.2014.07.084

    Article  CAS  Google Scholar 

  13. Kumar P, Sharma R, Ray S et al (2015) Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis. Bioresour Technol 182:383–388. https://doi.org/10.1016/j.biortech.2015.01.138

    Article  PubMed  CAS  Google Scholar 

  14. Patel SKS, Lee JK, Kalia VC (2017) Dark-fermentative biological hydrogen production from mixed biowastes using defined mixed cultures. Indian J Microbiol 57:171–176. https://doi.org/10.1007/s12088-017-0643-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Patel SKS, Lee JK, Kalia VC (2018) Beyond the theoretical yields of dark-fermentative biohydrogen. Indian J Microbiol 58:529–530. https://doi.org/10.1007/s12088-018-0759-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Patel SKS, Lee JK, Kalia VC (2018) Nanoparticles in biological hydrogen production: an overview. Indian J Microbiol 58:8–18. https://doi.org/10.1007/s12088-017-0678-9

    Article  PubMed  CAS  Google Scholar 

  17. Prakash J, Sharma R, Patel SKS et al (2018) Biohydrogen production by codigestion of domestic wastewater and biodiesel industry effluent. PLoS ONE 13:e0199059. https://doi.org/10.1371/journal.pone.0199059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Mohanty SS, Koul Y, Varjani S et al (2021) A critical review on various feedstocks as sustainable substrates for biosurfactants production: a way towards cleaner production. Microb Cell Fact 20:120. https://doi.org/10.1186/s12934-021-01613-3

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shah AV, Srivastava VK, Mohanty SS et al (2021) Municipal solid waste as a sustainable resource for energy production: State-of-the-art review. J Environ Chem Eng 9:105717. https://doi.org/10.1016/j.jece.2021.105717

    Article  CAS  Google Scholar 

  20. Sonakya V, Raizada N, Kalia VC (2001) Microbial and enzymatic improvement of anaerobic digestion of waste biomass. Biotechnol Lett 23:1463–1466. https://doi.org/10.1023/A:1011664912970

    Article  CAS  Google Scholar 

  21. Kumar P, Singh M, Mehariya S et al (2014) Ecobiotechnological approach for exploiting the abilities of Bacillus to produce co-polymer of polyhydroxyalkanoate. Indian J Microbiol 54:151–157. https://doi.org/10.1007/s12088-014-0457-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Purohit HJ, Kalia VC, Vaidya AN, et al. (2017) Optimization and applicability of bioprocesses. Springer Nature, Singapore. https://doi.org/10.1007/978-981-10-6863-8

  23. Kondaveeti S, Kim IW, Otari S et al (2019) Cogeneration of hydrogen and electricity from biodiesel process effluents. Int J Hydrogen Energy 44:27285–27296. https://doi.org/10.1016/j.ijhydene.2019.08.258

    Article  CAS  Google Scholar 

  24. Arora K, Kaur P, Kumar P et al (2021) Valorization of wastewater resources into biofuels and value-added products using microalgal system. Front Energy Res 9:646571. https://doi.org/10.3389/fenrg.2021.646571

    Article  Google Scholar 

  25. Gong C, Singh A, Singh P, Singh A (2021) Anaerobic digestion of agri-food wastes for generating biofuels. Indian J Microbiol. https://doi.org/10.1007/s12088-021-00977-9

    Article  PubMed  Google Scholar 

  26. Patel SKS, Das D, Kim SC et al (2021) Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products. Renew Sust Energy Rev 150:111491. https://doi.org/10.1016/j.rser.2021.111491

    Article  CAS  Google Scholar 

  27. Patel SKS, Gupta RK, Das D et al (2021) Continuous biohydrogen production from poplar biomass hydrolysate by a defined bacterial mixture immobilized on lignocellulosic materials under non-sterile conditions. J Clean Prod 287:125037. https://doi.org/10.1016/j.jclepro.2020.125037

    Article  CAS  Google Scholar 

  28. Patel SKS, Gupta RK, Kalia VC, Lee J-K (2021) Integrating anaerobic digestion of potato peels to methanol production by methanotrophs immobilized on banana leaves. Bioresour Technol 323:124550. https://doi.org/10.1016/j.biortech.2020.124550

    Article  PubMed  CAS  Google Scholar 

  29. Varjani S, Bajaj A, Purohit HJ et al (2021) Bioremediation and circular biotechnology. Indian J Microbiol 61:235–236. https://doi.org/10.1007/s12088-021-00953-3

    Article  PubMed  Google Scholar 

  30. Varjani S, Shah AV, Vyas S et al (2021) Processes and prospects on valorizing solid waste for the production of valuable products employing bio-routes: a systematic review. Chemosphere 282:130954. https://doi.org/10.1016/j.chemosphere.2021.130954

    Article  PubMed  CAS  Google Scholar 

  31. Ramachandran P, Jagtap SS, Patel SKS et al (2016) Role of the non-conserved amino acid Asparagine 285 in the glycone-binding pocket of Neosartorya fischeri β-glucosidase. RSC Adv 6:48137–48144. https://doi.org/10.1039/c5ra28017f

    Article  CAS  Google Scholar 

  32. Selvaraj C, Krishnasamy G, Jagtap SS et al (2016) Structural insights into the binding mode of D-sorbitol with sorbitol dehydrogenase using QM-polarized ligand docking and molecular dynamics simulations. Biochem Eng J 114:244–256. https://doi.org/10.1016/j.bej.2016.07.008

    Article  CAS  Google Scholar 

  33. Kumar A, Kim I-W, Patel SKS et al (2018) Synthesis of protein-inorganic nanohybrids with improved catalytic properties using Co3(PO4)2. Indian J Microbiol 58:100–104. https://doi.org/10.1007/s12088-017-0700-2

    Article  PubMed  CAS  Google Scholar 

  34. Kumar A, Patel SKS, Madan B et al (2018) Immobilization of xylanase using a protein-inorganic hybrid system. J Microbiol Biotechnol 28:638–644. https://doi.org/10.4014/jmb.1710/.10037

    Article  PubMed  CAS  Google Scholar 

  35. Kalia VC, Ray S, Patel SKS, et al. (2019) Applications of polyhydroxyalkanoates and their metabolites as drug carriers. In: Kalia VC (ed) Biotechnological applications of polyhydroxyalkanaotes. Springer, Singapore, pp. 35–48. https://doi.org/10.1007/978-981-13-3759-8_3

  36. Kumar A, Park GD, Patel SKS et al (2019) SiO2 microparticles with carbon nanotube-derived mesopores as an efficient support for enzyme immobilization. Chem Eng J 359:1252–1264. https://doi.org/10.1016/j.cej.2018.11.052

    Article  CAS  Google Scholar 

  37. Otari SV, Patel SKS, Kim S-Y et al (2019) Copper ferrite magnetic nanoparticles for the immobilization of enzyme. Indian J Microbiol 59:105–108. https://doi.org/10.1007/s12088-018-0768-3

    Article  PubMed  CAS  Google Scholar 

  38. Panday D, Patel SKS, Singh R et al (2019) Solvent-tolerant acyltransferase from Bacillus sp. APB-6: purification and characterization. Indian J Microbiol 59:500–507. https://doi.org/10.1007/s12088-019-00836-8

    Article  CAS  Google Scholar 

  39. Patel SKS, Gupta RK, Kumar V et al (2019) Influence of metal ions on the immobilization of β-glucosidase through protein-inorganic hybrids. Indian J Microbiol 59:370–374. https://doi.org/10.1007/s12088-019-0796-z

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yaashikaa PR, Kumar PS, Varjani SJ et al (2019) A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products. J CO2 Uti. 33:131–147. https://doi.org/10.1016/j.jcou.2019.05.017

    Article  CAS  Google Scholar 

  41. Kim J-S, Patel SKS, Tiwari MK et al (2020) Phe-140 determines the catalytic efficiency of arylacetonitrilase from Alcaligenes faecalis. Int J Mol Sci 21:7859. https://doi.org/10.3390/ijms21217859

    Article  PubMed Central  CAS  Google Scholar 

  42. Otari SV, Patel SKS, Kalia VC et al (2020) One-step hydrothermal synthesis of magnetic rice straw for effective lipase immobilization and its application in esterification reaction. Bioresour Technol 302:122887. https://doi.org/10.1016/j.biortech.2020.122887

    Article  PubMed  CAS  Google Scholar 

  43. Patel SKS, Kalia VC (2021) Advancements in the nanobiotechnological applications. Indian J Microbiol. https://doi.org/10.1007/s12088-021-00979-7

    Article  PubMed  PubMed Central  Google Scholar 

  44. Comer AD, Long MR, Reed JL et al (2017) Flux balance analysis indicates that methane is the lowest cost feedstock for microbial cell factories. Met Eng Commun 5:26–33. https://doi.org/10.1016/j.meteno.2017.07.002

    Article  Google Scholar 

  45. Jawaharraj K, Shrestha N, Chilkoor G et al (2020) Valorization of methane from environmental engineering applications: A critical review. Water Res 187:116400. https://doi.org/10.1016/j.watres.2020.116400

    Article  PubMed  CAS  Google Scholar 

  46. Patel SKS, Shanmugam R, Kalia VC et al (2020) Methanol production by polymer-encapsulated methanotrophs from simulated biogas in the presence of methane vector. Bioresour Technol 304:123022. https://doi.org/10.1016/j.biortech.2020.123022

    Article  PubMed  CAS  Google Scholar 

  47. Patel SKS, Jeon MS, Gupta RK et al (2019) Hierarchical macro-porous particles for efficient whole-cell immobilization: application in bioconversion of greenhouse gases to methanol. ACS Appl Mater Interfaces 11:18968–18977. https://doi.org/10.1021/acsami.9b03420

    Article  PubMed  CAS  Google Scholar 

  48. Patel SKS, Selvaraj C, Mardina P et al (2016) Enhancement of methanol production from synthetic gas mixture by Methylosinus sporium through covalent immobilization. Appl Energy 171:383–391. https://doi.org/10.1016/j.apenergy.2016.03.022

    Article  CAS  Google Scholar 

  49. Patel SKS, Mardina P, Kim D et al (2016) Improvement in methanol production by regulating the composition of synthetic gas mixture and raw biogas. Bioresour Technol 218:202–208. https://doi.org/10.1016/j.biortech.2016.06.065

    Article  PubMed  CAS  Google Scholar 

  50. Mardina P, Li J, Patel SKS et al (2016) Potential of immobilized whole-cell Methylocella tundrae as a biocatalyst for methanol production from methane. J Microbiol Biotechnol 26:1234–1241. https://doi.org/10.4014/jmb.1602.02074

    Article  PubMed  CAS  Google Scholar 

  51. Fei Q, Guarnieri MT, Tao L et al (2014) Bioconversion of natural gas to liquid fuel: opportunities and challenges. Biotech Adv 32:596–614. https://doi.org/10.1016/j.biotechadv.2014.03.011

    Article  CAS  Google Scholar 

  52. Patel SKS, Jeong J-H, Mehariya S et al (2016) Production of methanol from methane by encapsulated Methylosinus sporium. J Microbiol Biotechnol 26:2098–2105. https://doi.org/10.4014/jmb.1608.08053

    Article  PubMed  CAS  Google Scholar 

  53. Patel SKS, Mardina P, Kim S-Y et al (2016) Biological methanol production by a type II methanotroph Methylocystis bryophila. J Microbiol Biotechnol 26:717–724. https://doi.org/10.4014/jmb.1601.01013

    Article  PubMed  CAS  Google Scholar 

  54. Hogendoorn C, Pol A, Nuijten GHL et al (2020) Methanol production by “Methylacidiphilum fumariolicum” SolV under different growth conditions. Appl Environ Microbiol 86:e01188-e1220. https://doi.org/10.1128/AEM.01188-20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Patel SKS, Kondaveeti S, Otari SV et al (2018) Repeated batch methanol production from a simulated biogas mixture using immobilized Methylocystis bryophila. Energy 145:477–485. https://doi.org/10.1016/j.energy.2017.12.142

    Article  CAS  Google Scholar 

  56. Sheets JP, Ge X, Li Y-F et al (2016) Biological conversion of biogas to methanol using methanotrophs isolated from solid-state anaerobic digestate. Bioresour Technol 201:50–57. https://doi.org/10.1016/j.biortech.2015.11.035

    Article  PubMed  CAS  Google Scholar 

  57. Kulkarni PP, Khonde VK, Deshpande MS, et al (2021) Selection of methanotrophic platform for methanol production using methane and biogas. J Biosci Bioeng. https://doi.org/10.1016/j.jbiosc.2021.07.007

    Article  PubMed  Google Scholar 

  58. Patel SKS, Gupta RK, Kumar V et al (2020) Biomethanol production from methane by immobilized cocultures of methanotrophs. Indian J Microbiol 60:318–324. https://doi.org/10.1007/s12088-020-00883-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Duan C, Luo M, Xing X (2011) High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b. Bioresour Technol 102:7349–7353. https://doi.org/10.1016/j.biortech.2011.04.096

    Article  PubMed  CAS  Google Scholar 

  60. Patel SKS, Singh R, Kumar A et al (2017) Biological methanol production by immobilized Methylocella tundrae using simulated biohythane as a feed. Bioresour Technol 241:922–927. https://doi.org/10.1016/j.biortech.2017.05.160

    Article  PubMed  CAS  Google Scholar 

  61. Patel SKS, Kumar V, Mardina P et al (2018) Methanol production from simulated biogas mixtures by co-immobilized Methylomonas methanica and Methylocella tundrae. Bioresour Technol 263:25–32. https://doi.org/10.1016/j.biortech.2018.04.096

    Article  PubMed  CAS  Google Scholar 

  62. Patel SKS, Gupta RK, Kondaveeti S et al (2020) Conversion of biogas to methanol by methanotrophs immobilized on chemically modified chitosan. Bioresour Technol 315:123791. https://doi.org/10.1016/j.biortech.2020.123791

    Article  PubMed  CAS  Google Scholar 

  63. Ghaz-Jahanian MA, Khoshfetrat AB, Rostami MH et al (2018) An innovative bioprocess for methane conversion to methanol using an efficient methane transfer chamber coupled with an airlift bioreactor. Chem Eng Res Des 134:80–89. https://doi.org/10.1016/j.cherd.2018.03.039

    Article  CAS  Google Scholar 

  64. Patel SKS, Kumar P, Singh S et al (2015) Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour Technol 176:136–141. https://doi.org/10.1016/j.biortech.2014.11.029

    Article  PubMed  CAS  Google Scholar 

  65. Patel SKS, Lee JK, Kalia VC (2016) Integrative approach for producing hydrogen and polyhydroxyalkanoate from mixed wastes of biological origin. Indian J Microbiol 56:293–300. https://doi.org/10.1007/s12088-016-0595-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Lee J-K, Patel SKS, Sung BH et al (2020) Biomolecules from municipal and food industry wastes: an overview. Bioresour Technol 298:122346. https://doi.org/10.1016/j.biortech.2019.122346

    Article  PubMed  CAS  Google Scholar 

  67. Singh M, Patel SKS, Kalia VC (2009) Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microb Cell Fact 8:38. https://doi.org/10.1186/1475-2859-8-38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Kumar P, Patel SKS, Lee JK et al (2013) Extending the limits of bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561. https://doi.org/10.1016/j.biotechadv.2013.08.007

    Article  PubMed  CAS  Google Scholar 

  69. Porwal S, Kumar T, Lal S et al (2008) Hydrogen and polyhydroxybutyrate producing abilities of microbes from diverse habitats by dark fermentative process. Bioresour Technol 99:5444–5451. https://doi.org/10.1016/j.biortech.2007.11.011

    Article  PubMed  CAS  Google Scholar 

  70. Karthikeyan OP, Chidambarampadmavathy K, Cirés S et al (2015) Review of sustainable methane mitigation and biopolymer production. Crit Rev Environ Sci Technol 45:1579–1610. https://doi.org/10.1080/10643389.2014.966422

    Article  CAS  Google Scholar 

  71. Carrillo JAZ, Stein LY, Sauvageau D (2018) Defining nutrient combinations for optimal growth and polyhydroxybutyrate production by Methylosinus trichosporium OB3b using response surface methodology. Front Microbiol 9:1513. https://doi.org/10.3389/fmicb.2018.01513

    Article  Google Scholar 

  72. López JC, Muñoz R, Ni B-J et al (2019) Chen X, Rodríguez Y, Biogas-based polyhydroxyalkanoates production by Methylocystis hirsuta: a step further in anaerobic digestion biorefineries. Chem Eng J 333:529–536. https://doi.org/10.1016/j.cej.2017.09.185

    Article  CAS  Google Scholar 

  73. Zhang T, Zhou J, Wang X et al (2019) Poly-β-hydroxybutyrate production by Methylosinus trichosporium OB3b at different gas-phase conditions. Iran J Biotechnol 17:e1866. https://doi.org/10.21859/ijb.1866

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rodríguez Y, Firmino PIM, Pérez V et al (2020) Biogas valorization via continuous polyhydroxybutyrate production by Methylocystis hirsuta in a bubble column bioreactor. Waste Manag 113:395–403. https://doi.org/10.1016/j.wasman.2020.06.009

    Article  PubMed  CAS  Google Scholar 

  75. Myung J, Galega WM, Van Nostrand JD et al (2015) Long-term cultivation of a stable Methylocystis-dominated methanotrophic enrichment enabling tailored production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Bioresour Technol 198:811–818. https://doi.org/10.1016/j.biortech.2015.09.094

    Article  PubMed  CAS  Google Scholar 

  76. Fergala A, AlSayed A, Khattab S et al (2018) Development of methane-utilizing mixed cultures for the production of polyhydroxyalkanoates (PHAs) from anaerobic digester sludge. Environ Sci Technol 52:12376–12387. https://doi.org/10.1021/acs.est.8b04142

    Article  PubMed  CAS  Google Scholar 

  77. Luangthongkam P, Laycock B, Evans P et al (2018) Defining nutrient combinations for optimal growth and polyhydroxybutyrate production by Methylosinus trichosporium OB3b using response surface methodology. Front Microbiol 9:1513. https://doi.org/10.3389/fmicb.2018.01513

    Article  Google Scholar 

  78. Luangthongkam P, Strong PJ, Mahamud SNS et al (2019) The effect of methane and odd-chain fatty acids on 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) synthesis by a Methylosinus-dominated mixed culture. Bioresour Bioprocess 6:50. https://doi.org/10.1186/s40643-019-0285-1

    Article  Google Scholar 

  79. Levett I, Birkett G, Davies N et al (2016) Techno-economic assessment of poly-3-hydroxybutyrate (PHB) production from methane —The case for thermophilic bioprocessing. J Environ Chem Eng 4:3724–3733. https://doi.org/10.1016/j.jece.2016.07.033

    Article  CAS  Google Scholar 

  80. Patel SKS, Lee J-K, Kalia VC (2020) Deploying biomolecules as anti-COVID-19 agents. Indian J Microbiol 60:263–268. https://doi.org/10.1007/s12088-020-00893-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Rishi P, Thakur K, Vij S et al (2020) Diet, gut microbiota and COVID-19. Indian J Microbiol 60:420–429. https://doi.org/10.1007/s12088-020-00908-0

    Article  PubMed Central  CAS  Google Scholar 

  82. Rani A, Porwal S, Sharma R et al (2008) Assessment of microbial diversity in effluent treatment plants by culture dependent and culture independent approaches. Bioresour Technol 99:7098–7107. https://doi.org/10.1016/j.biortech.2008.01.003

    Article  PubMed  CAS  Google Scholar 

  83. Huma N, Shankar P, Kushwah J et al (2011) Diversity and polymorphism in AHL-lactonase gene (aiiA) of Bacillus. J Microbiol Biotechnol 21:1001–1011. https://doi.org/10.4014/jmb.1105.05056

    Article  PubMed  CAS  Google Scholar 

  84. Patel SKS, Otari SV, Li J et al (2018) Synthesis of cross-linked protein-metal hybrid nanoflowers and its application in repeated batch decolorization of synthetic dyes. J Hazard Mater 347:442–450. https://doi.org/10.1016/j.jhazmat.2018.01.003

    Article  PubMed  CAS  Google Scholar 

  85. Bhatia SK, Wadhwa P, Bhatia RK et al (2019) Strategy for biosynthesis of polyhydroxyalkanoates polymers/copolymers and their application in drug delivery. In: Kalia VC (ed) Biotechnological applications of polyhydroxyalkanaotes. Springer, Singapore, pp. 13–34. https://doi.org/10.1007/978-981-13-3759-8_2

  86. Kumar V, Patel SKS, Gupta RK et al (2019) Enhanced saccharification and fermentation of rice straw by reducing the concentration of phenolic compounds using an immobilization enzyme cocktail. Biotechnol J 14:1800468. https://doi.org/10.1002/biot.201800468

    Article  CAS  Google Scholar 

  87. Otari SV, Patel SKS, Kalia VC et al (2019) Antimicrobial activity of biosynthesized silver nanoparticles decorated silica nanoparticles. Indian J Microbiol 59:379–382. https://doi.org/10.1007/s12088-019-00812-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Ray S, Patel SKS, Singh M, et al (2019) Exploiting polyhydroxyalkanoates for tissue engineering. In: Kalia VC (ed) Biotechnological applications of polyhydroxyalkanaotes. Springer, Singapore, pp. 271–282. https://doi.org/10.1007/978-981-13-3759-8_10

  89. Kalia VC, Gong C, Patel SKS, Lee J-K (2021) Regulation of plant mineral nutrition by signal molecules. Microorganisms 9:774. https://doi.org/10.3390/microorganisms9040774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Kalia VC, Patel SKS, Cho B-K et al (2021) Emerging applications of bacteria as anti-tumor agents. Sem Cancer Biol. https://doi.org/10.1016/j.semcancer.2021.05.012

    Article  Google Scholar 

  91. Kalia VC, Patel SKS, Kang YC et al (2019) Quorum sensing inhibitors as antipathogens: biotechnological applications. Biotechnol Adv 37:68–90. https://doi.org/10.1016/j.biotechadv.2018.11.006

    Article  PubMed  CAS  Google Scholar 

  92. Pagolu R, Singh R, Shanmugam R et al (2021) Sitedirected lysine modification of xylanase for oriented immobilization onto silicon dioxide nanoparticles. Bioresour Technol 331:125063. https://doi.org/10.1016/j.biortech.2021.125063

    Article  PubMed  CAS  Google Scholar 

  93. Patel SKS, Gupta RK, Kim S-Y et al (2021) Rhus vernicifera laccase immobilization on magnetic nanoparticles to improve stability and its potential application in bisphenol A degradation. Indian J Microbiol 61:45–54. https://doi.org/10.1007/s12088-020-00912-4

    Article  PubMed  CAS  Google Scholar 

  94. Shamsul NS, Kamarudin SK, Kofli NT et al (2017) Optimization of bio-methanol production from goat manure in single stage bio-reactor. Int J Hydrogen Energy 42:9031–9043. https://doi.org/10.1016/j.ijhydene.2016.05.228

    Article  CAS  Google Scholar 

  95. Kondaveeti S, Patel SKS, Pagolu R et al (2019) Conversion of simulated biogas to electricity: sequential operation of methanotrophic reactor effluents in microbial fuel cell. Energy 189:116309. https://doi.org/10.1016/j.energy.2019.116309

    Article  CAS  Google Scholar 

  96. Patel SKS, Kalia VC, Joo JB et al (2020) Biotransformation of methane into methanol by methanotrophs immobilized on coconut coir. Bioresour Technol 297:122433. https://doi.org/10.1016/j.biortech.2019.122433

    Article  PubMed  CAS  Google Scholar 

  97. Sahoo KK, Goswami G, Das D (2021) Biotransformation of methane and carbon dioxide into high-value products by methanotrophs: current state of art and future prospects. Front Microbiol 12:636486. https://doi.org/10.3389/fmicb.2021.636486

    Article  PubMed  PubMed Central  Google Scholar 

  98. Patel SKS, Ray S, Prakash J et al (2019) Co-digestion of biowastes to enhance biological hydrogen process by defined mixed bacterial cultures. Indian J Microbiol 59:154–160. https://doi.org/10.1007/s12088-018-00777-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Whittenbury R, Phillips KC, Wilkinson JF (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218. https://doi.org/10.1099/00221287-61-2-205

    Article  PubMed  CAS  Google Scholar 

  100. Bordel S, Crombie AT, Muoz R et al (2020) Genome scale metabolic model of the versatile methanotroph Methylocella silvestris. Microb Cell Fact 19:144. https://doi.org/10.1186/s12934-020-01395-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2019R1C1C11009766, 2019R1F1A1063131, 2020R1I1A1A01073483, 2021R1I1A1A01060963). This work was also supported by the KU Research Professor Program of Konkuk University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung-Kul Lee, Vipin C. Kalia or In-Won Kim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, S.K.S., Shanmugam, R., Lee, JK. et al. Biomolecules Production from Greenhouse Gases by Methanotrophs. Indian J Microbiol 61, 449–457 (2021). https://doi.org/10.1007/s12088-021-00986-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-021-00986-8

Keywords

Navigation