Skip to main content
Log in

Efficient Regeneration Potential is Closely Related to Auxin Exposure Time and Catalase Metabolism During the Somatic Embryogenesis of Immature Embryos in Triticum aestivum L

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Regeneration of cultured tissue is a prerequisite of Agrobacterium- and biolistic-mediated plant transformation. In this study, an efficient protocol for improving wheat (Triticum aestivum L.) immature embryo regeneration was developed. Based on the statistical analysis of embryogenic callus induction efficiency, green spot differentiation efficiency, and plant regeneration efficiency from five wheat accessions, improved culture conditions were found to be more effective for embryogenic callus production than the traditional conditions. Using semi-quantitative reverse transcription polymerase chain reaction, a candidate gene, designated as TaCAT1, which encodes a catalase was identified to have a significant correlation with high-regeneration trait of wheat immature embryos. Three amino acid substitutions were found in TaCAT1 protein between high- and low-regeneration wheat accessions. Hydrogen peroxide content in the cultured calli increased from day 5 to 15, and then decreased sharply on day 20, followed by a second peak on day 25 during regeneration stage. Furthermore, a 3,500-bp 5′ flanking region upstream of the first codon ATG of TaCAT1 was isolated using inverse polymerase chain reaction. In silico, analysis revealed that the TaCAT1 promoter contained two regulatory motifs associated with responses to auxin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Özgen, M., Türet, M., Altınok, S., & Sancak, C. (1998). Efficient callus induction and plant regeneration from mature embryo culture of winter wheat (Triticum aestivum L.) genotypes. Plant Cell Reports, 18, 331–335.

    Article  Google Scholar 

  2. An, H. L., Wei, Z. M., & Huang, J. Q. (2000). High efficiency regeneration of wheat plants from immature embryos. Acta Phytophysiology Sinica, 26, 532–538.

    CAS  Google Scholar 

  3. Hess, J., & Carman, J. (1998). Embryogenic competence of immature wheat embryos: Genotypes, donor plant environment and endogenous hormone levels. Crop Science, 38, 249–253.

    Article  CAS  Google Scholar 

  4. Özgen, M., Türet, M., Özcan, S., & Sancak, C. (1996). Callus induction and plant regeneration from immature and mature embryos of winter durum wheat genotypes. Plant Breeding, 115, 455–458.

    Article  Google Scholar 

  5. Papadakis, A. K., Siminis, C. I., & Roubelakis-Angelakis, K. A. (2001). Reduced activity of antioxidant machinery is correlated with suppression of totipotency in plant protoplasts. Plant Physiology, 126, 434–444.

    Article  CAS  Google Scholar 

  6. Fennell, S., Bohorova, N., Ginkel, M. V., Crossa, J., & Hoisington, D. (1996). Plant regeneration from immature embryos of 48 elite CIMMYT bread wheats. Theoretical and Applied Genetics, 92, 163–169.

    Article  Google Scholar 

  7. Barro, F., Cannell, M. E., Lazzeri, P. A., & Barcelo, P. (1998). The influence of auxins on transformation of wheat and tritordeum and analysis of transgene integration patterns in transformants. Theoretical and Applied Genetics, 97, 684–695.

    Article  CAS  Google Scholar 

  8. Wu, H., Doherty, A., & Jones, H. D. (2009). Agrobacterium-mediated transformation of bread and durum wheat using freshly isolated immature embryos. Methods in Molecular Biology, 478, 93–103.

    Article  Google Scholar 

  9. Jiménez, V. M. (2005). Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regulation, 47, 91–110.

    Article  Google Scholar 

  10. Karami, O., & Saidi, A. (2010). The molecular basis for stress-induced acquisition of somatic embryogenesis. Molecular Biology Reports, 37, 2493–2507.

    Article  CAS  Google Scholar 

  11. Mitić, N., Nikolić, R., Ninković, S., Miljuš-Djukić, J., & Nešković, M. (2004). Agrobacterium-mediated transformation and plant regeneration of Triticum aestivum L. Biologia Plantarum, 48, 179–184.

    Article  Google Scholar 

  12. Okubara, P. A., Blechl, A. E., McCormick, S. P., Alexander, N. J., Dill-Macky, R., & Hohn, T. M. (2002). Engineering deoxynivalenol metabolism in wheat through the expression of a fungal trichothecene acetyltransferase gene. Theoretical and Applied Genetics, 106, 74–83.

    CAS  Google Scholar 

  13. Pastori, G. M., Wilkinson, M. D., Steele, S. H., Sparks, C. A., Jones, H. D., & Parry, M. A. (2001). Age-dependent transformation frequency in elite wheat varieties. Journal of Experimental Botany, 52, 857–863.

    CAS  Google Scholar 

  14. Risacher, T., Craze, M., Bowden, S., Paul, W., & Barsby, T. (2009). Highly efficient Agrobacterium-mediated transformation of wheat via in planta inoculation. Methods in Molecular Biology, 478, 115–124.

    Article  Google Scholar 

  15. Zhang, L., Rybczynski, J. J., Langenberg, W. G., Mitra, A., & French, R. (2000). An efficient wheat transformation procedure: Transformed calli with long-term morphogenic potential for plant regeneration. Plant Cell Reports, 19, 241–250.

    Article  CAS  Google Scholar 

  16. Jia, H. Y., Yu, J., Yi, D. L., Cheng, Y., Xu, W. Q., Zhang, L. X., et al. (2009). Chromosomal intervals responsible for tissue culture response of wheat immature embryos. Plant Cell, Tissue and Organ Culture, 97, 159–165.

    Article  Google Scholar 

  17. Kavas, M., Öktem, H. A., & Yuecel, M. (2008). Factors affecting plant regeneration from immature inflorescence of two winter wheat cultivars. Biologia Plantarum, 52, 621–626.

    Article  Google Scholar 

  18. Przetakiewicz, A., Orczyk, W., & Nadolska-Orczyk, A. (2003). The effect of auxin on plant regeneration of wheat, barley and triticale. Plant Cell, Tissue and Organ Culture, 73, 245–256.

    Article  CAS  Google Scholar 

  19. Jiménez, V. M., & Bangerth, F. (2001). Endogenous hormone levels in initial explants and in embryogenic and nonembryogenic callus cultures of competent and non-competent wheat genotypes. Plant Cell, Tissue and Organ Culture, 67, 37–46.

    Article  Google Scholar 

  20. Pasternak, T., Prinsen, E., Ayaydin, F., Miskolczi, P., Potters, G., Asard, H., et al. (2002). The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiology, 129, 1807–1819.

    Article  CAS  Google Scholar 

  21. Nissen, P., & Minocha, S. C. (1993). Inhibition by 2, 4-D of somatic embryogenesis in carrot as explored by its reversal by difluoromethylornithine. Physiologia Plantarum, 89, 673–680.

    Article  CAS  Google Scholar 

  22. Dan, Y. (2008). Biological functions of antioxidants in plant transformation. In Vitro Cellular and Developmental Biology Plant, 44, 149–161.

    Article  CAS  Google Scholar 

  23. Libik, M., Konieczny, R., Pater, B., Slesak, I., & Miszalski, Z. (2005). Differences in the activities of some antioxidant enzymes and in H2O2 content during rhizogenesis and somatic embryogenesis in callus cultures of the ice plant. Plant Cell Reports, 23, 834–841.

    Article  CAS  Google Scholar 

  24. Papadakis, A. K., & Roubelakis-Angelakis, K. A. (2002). Oxidative stress could be responsible for the recalcitrance of plant protoplasts. Plant Physiol Biochem, 40, 549–559.

    Article  CAS  Google Scholar 

  25. Szechyńska-Hebda, M., Skrzypek, E., Dąbrowska, G., Biesaga-Kościelniak, J., Filek, M., & Wędzony, M. (2007). The role of oxidative stress induced by growth regulators in the regeneration process of wheat. Acta Physiologiae Plantarum, 29, 327–337.

    Article  Google Scholar 

  26. Viktorova, L. V., Maksyutova, N. N., Trifonova, T. V., & Andrianov, V. V. (2010). Production of hydrogen peroxide and nitric oxide following introduction of nitrate and nitrite into wheat leaf apoplast. Biochemistry (Mosc), 75, 95–100.

    Article  CAS  Google Scholar 

  27. Gupta, S. D., and Datta, S. (2003/2004). Antioxidant enzyme activities during in vitro morphogenesis of gladiolus and the effect of application of antioxidant on plant regeneration. Biol Plant, 47, 179–183.

    Google Scholar 

  28. Pasternak, T., Potters, G., Caubergs, R., & Jansen, M. A. (2005). Complementary interactions between oxidative stress and auxins control plant growth responses at plant, organ, and cellular level. Journal of Experimental Botany, 56, 1991–2001.

    Article  CAS  Google Scholar 

  29. Zavattieri, M. A., Frederico, A. M., Lima, M., Sabino, R., & Arnholdt-Schmitt, B. (2010). Induction of somatic embryogenesis as an example of stress-related plant reactions. Electronic Journal of Biotechnology, 13, 1–9.

    Article  Google Scholar 

  30. Tao, L. L., Du, L. P., Xu, H. J., & Ye, X. G. (2011). Improvement of plant regeneration from immature embryos of wheat infected by Agrobacterium tumefaciens. Agricultural Sciences in China, 10, 317–326.

    Article  CAS  Google Scholar 

  31. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiology, 15, 473–497.

    Article  CAS  Google Scholar 

  32. Chen, J. Y., Yue, R. Q., Xu, H. X., & Chen, X. J. (2006). Study on plant regeneration of wheat mature embryos under endosperm-supported culture. Agricultural Sciences in China, 5, 572–578.

    Article  CAS  Google Scholar 

  33. Taguchi-Shiobara, F., Lin, S. Y., Tanno, K., Komatsuda, T., Yano, M., Sasaki, T., et al. (1997). Mapping quantitative trait loci associated with regeneration ability of seed callus in rice, Oryza sativa L. Theoretical and Applied Genetics, 95, 828–833.

    Article  CAS  Google Scholar 

  34. Zhang, S. G., Han, S. Y., Yang, W. H., Wei, H. L., Zhang, M., & Qi, L. W. (2010). Changes in H2O2 content and antioxidant enzyme gene expression during the somatic embryogenesis of Larix leptolepis. Plant Cell, Tissue and Organ Culture, 100, 21–29.

    Article  CAS  Google Scholar 

  35. Ochman, H., Gerber, A. S., & Hartl, D. L. (1988). Genetic applications of an inverse polymerase chain reaction. Genetics, 120, 621–623.

    CAS  Google Scholar 

  36. Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., et al. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30, 325–327.

    Article  CAS  Google Scholar 

  37. Shahmuradov, I. A., Solovyev, V. V., & Gammerman, A. J. (2005). Plant promoter prediction with confidence estimation. Nucleic Acids Research, 33, 1069–1076.

    Article  CAS  Google Scholar 

  38. Komatsuda, T., Annaka, T., & Oka, S. (1993). Genetic mapping of a quantitative trait locus (QTL) that enhances the shoot differentiation rate in Hordeum vulgare L. Theoretical and Applied Genetics, 86, 713–720.

    Article  CAS  Google Scholar 

  39. Singla, B., Tyagi, A. K., Khurana, J. P., & Khurana, P. (2007). Analysis of expression profile of selected genes expressed during auxin-induced somatic embryogenesis in leaf base system of wheat (Triticum aestivum) and their possible interactions. Plant Molecular Biology, 65, 677–692.

    Article  CAS  Google Scholar 

  40. Fehér, A., Pasternak, T. P., & Dudits, D. (2003). Transition of somatic plant cells to an embryogenic state. Plant Cell, Tissue and Organ Culture, 74, 201–228.

    Article  Google Scholar 

  41. Caliskan, M., Turet, M., & Cuming, A. (2004). Formation of wheat (Triticum aestivum L.) embryogenic callus involves peroxide-generating germin-like oxalate oxidase. Planta, 219, 132–140.

    Article  CAS  Google Scholar 

  42. Fischer-Iglesias, C., Sundberg, B., Neuhaus, G., & Jones, A. M. (2001). Auxin distribution and transport during embryonic pattern formation in wheat. The Plant Journal, 26, 115–129.

    Article  CAS  Google Scholar 

  43. Zimmerman, J. L. (1993). Somatic embryogenesis: A model for early development in higher plants. Plant Cell, 5, 1411–1423.

    Google Scholar 

  44. Gong, H. B., & Pua, E. C. (2004). Identification and expression of genes associated with shoot regeneration from leaf disc explants of mustard (Brassica juncea) in vitro. Plant Science, 167, 1191–1201.

    Article  CAS  Google Scholar 

  45. Tian, M., Gu, Q., & Zhu, M. Y. (2003). The involvement of hydrogen peroxide and antioxidant enzymes in the process of shoot organogenesis of strawberry callus. Plant Science, 165, 701–707.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (Grant No. 30971776) and the Ministry of Agriculture of China (Grant No. 2008ZX08010-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingguo Ye.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12033_2012_9583_MOESM1_ESM.pdf

Additional supporting information may be found in the online version of this article: Figure S1, Figure S2, Figure S3, and Table S1, Table S2 (PDF 337 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

She, M., Yin, G., Li, J. et al. Efficient Regeneration Potential is Closely Related to Auxin Exposure Time and Catalase Metabolism During the Somatic Embryogenesis of Immature Embryos in Triticum aestivum L. Mol Biotechnol 54, 451–460 (2013). https://doi.org/10.1007/s12033-012-9583-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9583-y

Keywords

Navigation