Skip to main content

Advertisement

Log in

DLC-1 induces mitochondrial apoptosis and epithelial mesenchymal transition arrest in nasopharyngeal carcinoma by targeting EGFR/Akt/NF-κB pathway

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Loss of deleted in liver cancer-1 (DLC-1) can induce apoptosis and inhibit the mobility, migration and metastasis in several cancers. Previously, we revealed that ectopic expression of DLC-1 can suppress proliferation, mobility, migration and tumorigenesis in nasopharyngeal carcinoma (NPC). However, the molecular mechanisms accounting for the roles of DLC-1 in NPC are still obscure. In the present work, we attempted to study and uncover the mechanisms underlying the functions of DLC-1 in NPC. The apoptosis of 5-8F-DLC-1 cells, established previously, was analyzed by mitochondrial membrane potentials assay and flow cytometer analysis. And the antibodies involving pathways such as mitochondrial-associated apoptosis, epithelial mesenchymal transition and metastasis were applied to detect and compare the expression level of targeted proteins. The obvious apoptosis of 5-8F-DLC-1 cells was observed reflected by mitochondrial depolarization and lower ratio in cell viability. Subsequently, the activation of mitochondrial apoptosis was verified by the increased expressions of Bax, Apaf1, cleave-caspases and cleave-PARP, etc, and the decreased expressions of Bcl-2, Bcl-xL, Mcl-1, Survivin, etc, in 5-8F-DLC-1 cells. Then, the inhibited epithelial mesenchymal transition of 5-8F-DLC-1 cells was validated by upregulated expression of E-cadherin and downregulated expression of N-cadherin, Snail, Vimentin. Subsequently, downregulated expressions of proteins such as FAK, RhoA, ROCK1 and cdc25 related to cell adhesion and cytoskeleton organization were also observed. And expressions of MMPs were inhibited in 5-8F-DLC-1 cells. At last, the inhibited activity of EGFR/Akt/NF-κB axis was revealed by the decreased expressions of phosho-EGFR, phosho-Akt, phosho-p38MAPK, phosho-IKKα and phosho-p65. Here, we systematically explored the mechanisms underlying the negative roles of DLC-1 in NPC cells. For the first time, we confirmed that the ectopic expression DLC-1 can induce mitochondrial apoptosis, inhibit EMT and related processes by targeting the EGFR/Akt/NF-κB pathway, which, beyond all doubt, offered beneficial guidelines for other studies and laid a good foundation for its clinical applications ultimately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Safarzadeh E, Sandoghchian Shotorbani S, Baradaran B. Herbal medicine as inducers of apoptosis in cancer treatment. Adv Pharm Bull. 2014;4:421–7.

    PubMed Central  PubMed  Google Scholar 

  2. Yuan BZ, Miller MJ, Keck CL, Zimonjic DB, Thorgeirsson SS, Popescu NC. Cloning, characterization, and chromosomal localization of a gene frequently deleted in human liver cancer (DLC-1) homologous to rat rhogap. Cancer Res. 1998;58:2196–9.

    CAS  PubMed  Google Scholar 

  3. Liao YC, Lo SH. Deleted in liver cancer-1 (DLC-1): a tumor suppressor not just for liver. Int J Biochem Cell Biol. 2008;40:843–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Durkin ME, Yuan BZ, Zhou X, Zimonjic DB, Lowy DR, Thorgeirsson SS, Popescu NC. DLC-1: a rho gtpase-activating protein and tumour suppressor. J Cell Mol Med. 2007;11:1185–207.

    Article  CAS  PubMed  Google Scholar 

  5. Feng X, Li C, Liu W, Chen H, Zhou W, Wang L, Zhu B, Yao K, Jiang X, Ren C. DLC-1, a candidate tumor suppressor gene, inhibits the proliferation, migration and tumorigenicity of human nasopharyngeal carcinoma cells. Int J Oncol. 2013;42:1973–84.

    CAS  PubMed  Google Scholar 

  6. Peng D, Ren CP, Yi HM, Zhou L, Yang XY, Li H, Yao KT. Genetic and epigenetic alterations of DLC-1, a candidate tumor suppressor gene, in nasopharyngeal carcinoma. Acta Biochim Biophys Sin. 2006;38:349–55.

    Article  CAS  PubMed  Google Scholar 

  7. Li G, Du X, Vass WC, Papageorge AG, Lowy DR, Qian X. Full activity of the deleted in liver cancer 1 (DLC1) tumor suppressor depends on an ld-like motif that binds talin and focal adhesion kinase (FAK). Proc Natl Acad Sci USA. 2011;108:17129–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Dai K, Liao S, Zhang J, Zhang X, Tu X. Solution structure of tensin2 SH2 domain and its phosphotyrosine-independent interaction with DLC-1. PLoS One. 2011;6:e21965.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Greenburg G, Hay ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J Cell Biol. 1982;95:333–9.

    Article  CAS  PubMed  Google Scholar 

  10. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Steinestel K, Eder S, Schrader AJ, Steinestel J. Clinical significance of epithelial–mesenchymal transition. Clin Transl Med. 2014;3:17.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial–mesenchymal transitions in development and disease. Cell. 2009;139:871–90.

    Article  CAS  PubMed  Google Scholar 

  13. Feng X, Ren C, Zhou W, Liu W, Zeng L, Li G, Wang L, Li M, Zhu B, Yao K, Jiang X. Promoter hypermethylation along with LOH, but not mutation, contributes to inactivation of DLC-1 in nasopharyngeal carcinoma. Mol Carcinog. 2014;53:858–70.

    Article  CAS  PubMed  Google Scholar 

  14. Feng XL, Zhou W, Li H, Fang WY, Zhou YB, Yao KT, Ren CP. The DLC-1 -29a/t polymorphism is not associated with nasopharyngeal carcinoma risk in chinese population. Genet Test. 2008;12:345–9.

    Article  CAS  PubMed  Google Scholar 

  15. Zhou W, Feng X, Ren C, Jiang X, Liu W, Huang W, Liu Z, Li Z, Zeng L, Wang L, Zhu B, Shi J, Liu J, Zhang C, Liu Y, Yao K. Over-expression of BCAT1, a c-Myc target gene, induces cell proliferation, migration and invasion in nasopharyngeal carcinoma. Mol Cancer. 2013;12:53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Schwock J, Dhani N, Hedley DW. Targeting focal adhesion kinase signaling in tumor growth and metastasis. Expert Opin Ther Targets. 2010;14:77–94.

    Article  CAS  PubMed  Google Scholar 

  17. Deryugina E, Quigley J. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev. 2006;25:9–34.

    Article  CAS  PubMed  Google Scholar 

  18. Gupta GP, Massague J. Cancer metastasis: building a framework. Cell. 2006;127:679–95.

    Article  CAS  PubMed  Google Scholar 

  19. Ceresa BP, Peterson JL. Cell and molecular biology of epidermal growth factor receptor. Int Rev Cell Mol Biol. 2014;313:145–78.

    Article  PubMed  Google Scholar 

  20. Roskoski R Jr. The erbb/her family of protein–tyrosine kinases and cancer. Pharmacol Res. 2014;79:34–74.

    Article  CAS  PubMed  Google Scholar 

  21. Ombrato L, Malanchi I. The emt universe: space between cancer cell dissemination and metastasis initiation. Crit Rev Oncog. 2014;19:349–61.

    Article  PubMed  Google Scholar 

  22. Alizadeh AM, Shiri S, Farsinejad S. Metastasis review: from bench to bedside. Tumour Biol. 2014;35:8483–523.

    Article  PubMed  Google Scholar 

  23. Tsai JH, Yang J. Epithelial–mesenchymal plasticity in carcinoma metastasis. Genes Dev. 2013;27:2192–206.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Wong RS. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res. 2011;30:87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Cotter TG. Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer. 2009;9:501–7.

    Article  CAS  PubMed  Google Scholar 

  26. Wang C, Wang J, Liu H, Fu Z. Tumor suppressor DLC-1 induces apoptosis and inhibits the growth and invasion of colon cancer cells through the wnt/beta-catenin signaling pathway. Oncol Rep. 2014;31:2270–8.

    CAS  PubMed  Google Scholar 

  27. Zhang T, Zheng J, Jiang N, Wang G, Shi Q, Liu C, Lu Y. Overexpression of DLC-1 induces cell apoptosis and proliferation inhibition in the renal cell carcinoma. Cancer Lett. 2009;283:59–67.

    Article  CAS  PubMed  Google Scholar 

  28. Zhou X, Thorgeirsson SS, Popescu NC. Restoration of DLC-1 gene expression induces apoptosis and inhibits both cell growth and tumorigenicity in human hepatocellular carcinoma cells. Oncogene. 2004;23:1308–13.

    Article  CAS  PubMed  Google Scholar 

  29. Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, Garcia De Herreros A. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000;2:84–9.

    Article  CAS  PubMed  Google Scholar 

  30. Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA. The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2:76–83.

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y, Lei R, Zhuang X, Zhang N, Pan H, Li G, Hu J, Pan X, Tao Q, Fu D, Xiao J, Chin YE, Kang Y, Yang Q, Hu G. DLC1-dependent parathyroid hormone-like hormone inhibition suppresses breast cancer bone metastasis. J Clin Investig. 2014;124:1646–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Kim TY, Vigil D, Der CJ, Juliano RL. Role of DLC-1, a tumor suppressor protein with RhoGAP activity, in regulation of the cytoskeleton and cell motility. Cancer Metastasis Rev. 2009;28:77–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA. Epithelial–mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Investig. 2009;119:1438–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Nieto MA. Epithelial–mesenchymal transitions in development and disease: old views and new perspectives. Int J Dev Biol. 2009;53:1541–7.

    Article  PubMed  Google Scholar 

  35. Lee BY, Timpson P, Horvath LG, Daly RJ. Fak signaling in human cancer as a target for therapeutics. Pharmacol Ther. 2014;146:132–49.

    Article  PubMed  Google Scholar 

  36. Hall EH, Daugherty AE, Choi CK, Horwitz AF, Brautigan DL. Tensin1 requires protein phosphatase-1alpha in addition to RhoGAP DLC-1 to control cell polarization, migration, and invasion. J Biol Chem. 2009;284:34713–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Nistico P, Bissell MJ, Radisky DC. Epithelial-mesenchymal transition: general principles and pathological relevance with special emphasis on the role of matrix metalloproteinases. Cold Spring Harb Perspect Biol. 2012;4:a011908.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE, Leake D, Godden EL, Albertson DG, Nieto MA, Werb Z, Bissell MJ. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature. 2005;436:123–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Gomez GG, Wykosky J, Zanca C, Furnari FB, Cavenee WK. Therapeutic resistance in cancer: microRNA regulation of EGFR signaling networks. Cancer Biol Med. 2013;10:192–205.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Takeuchi S, Yano S. Clinical significance of epidermal growth factor receptor tyrosine kinase inhibitors: sensitivity and resistance. Respir Investig. 2014;52:348–56.

    Article  PubMed  Google Scholar 

  41. Wang C, Wang L, Su B, Lu N, Song J, Yang X, Fu W, Tan W, Han B. Serine protease inhibitor Kazal type 1 promotes epithelial–mesenchymal transition through EGFR signaling pathway in prostate cancer. Prostate. 2014;74:689–701.

    Article  CAS  PubMed  Google Scholar 

  42. Li T, Dong ZR, Guo ZY, Wang CH, Zhi XT, Zhou JW, Li DK, Chen ZT, Chen ZQ, Hu SY. Mannose-mediated inhibitory effects of PA-MSHA on invasion and metastasis of hepatocellular carcinoma via EGFR/Akt/ikappabbeta/NF-kappab pathway. Liver Int. 2014.

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81272972), National Basic Research Program of China (2010CB833605), Incubation Program for National Natural Science Funds for Distinguished Young Scholar of Central South University (2010QYZD006), Hunan Provincial Science and Technology Department (2012FJ4040), Open-End Fund for the Valuable and Precision Instruments of Central South University.

Conflict of interest

The authors declare that they have no conflict of interest here.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangling Feng or Caiping Ren.

Additional information

Wei Huang and Jie Liu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Liu, J., Feng, X. et al. DLC-1 induces mitochondrial apoptosis and epithelial mesenchymal transition arrest in nasopharyngeal carcinoma by targeting EGFR/Akt/NF-κB pathway. Med Oncol 32, 115 (2015). https://doi.org/10.1007/s12032-015-0564-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-015-0564-4

Keywords

Navigation