Skip to main content

Advertisement

Log in

Metastasis review: from bench to bedside

  • Review
  • Published:
Tumor Biology

Abstract

Cancer is the final result of uninhibited cell growth that involves an enormous group of associated diseases. One major aspect of cancer is when cells attack adjacent components of the body and spread to other organs, named metastasis, which is the major cause of cancer-related mortality. In developing this process, metastatic cells must successfully negotiate a series of complex steps, including dissociation, invasion, intravasation, extravasation, and dormancy regulated by various signaling pathways. In this review, we will focus on the recent studies and collect a comprehensive encyclopedia in molecular basis of metastasis, and then we will discuss some new potential therapeutics which target the metastasis pathways. Understanding the new aspects on molecular mechanisms and signaling pathways controlling tumor cell metastasis is critical for the development of therapeutic strategies for cancer patients that would be valuable for researchers in both fields of molecular and clinical oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GFs:

Growth factors

MMPs:

Matrix metalloproteinases

CTCs:

Circulating tumor cells

ECM:

Extracellular matrix

ROS:

Reactive oxygen species

FAs:

Focal adhesions

FAK:

Focal adhesion kinase

MAPK:

Mitogen-activated protein kinase

uPAR:

Uroplasminogen activator receptor

PIP3:

Phosphatidylinositol 3

PI3K:

Phosphatidylinositol 3 kinase

Src:

Pronounced “sarc” as it is short for “sarcoma”

ILK:

Integrin-linked kinase

PKB (known as Akt):

Protein kinase B

GSK3β:

Glycogen synthase kinase 3 beta

EGF:

Epidermal growth factor

TNF-α:

Tumor necrosis factor alpha

IL:

Interleukin

IgSF:

Immunoglobulin superfamily

CAMs:

Cell adhesion molecules

MCAM:

Melanoma CAM

L1CAM:

L1 protein family CAM

NCAM:

Neural CAM

PECAM:

Platelet endothelial CAM

ALCAM:

Aplysia CAM

ICAM-1:

Intercellular CAM-1

VCAM-1:

Vascular cell CAM-1

HA:

Hyaluronan

VEGFR-2:

Vascular endothelial growth factor-2

MT-MMPs:

Membrane-type MMPs

TIMPs:

Tissue inhibitors of metalloproteases

bFGF:

Basic fibroblast growth factor

Pro-TGFα:

Protransforming growth factor alpha

PAR:

Protease-activated receptor

Fas-L:

Fas-ligand

FADD:

Fas-associated protein with death domain

TSP:

Thrombospondin

LRP:

Lipoprotein receptor-related protein

ERKs:

Extracellular signal-regulated kinases

CXCL5:

Chemokine C-X-C motif ligand-5

MCP-3:

Monocyte chemoattractant protein-3

SDF-1:

Stromal cell-derived factor-1

ADAM-10:

A disintegrin and metalloproteinase domain-containing protein 10

IGFs:

Insulin-like growth factors

IGFBP:

IGF binding protein

CECs:

Capillary endothelial cells

NF-κB:

Nuclear factor-κb

cis-ACCP:

cis-2-Aminocyclohexylcarbamoyl phosphonic acid

SPs:

Serine proteases

PAI-1:

Plasminogen activator inhibitor-1

Serpin:

Serine proteinase inhibitors

HGF:

Hepatocyte growth factor

STAT3:

Signal transducer and activator of transcription 3

Cath-D:

Cathepsin D

MHC:

Major histocompatibility complex

CAFs:

Cancer-associated fibroblasts

TAMs:

Tumor-associated macrophages

PLC:

Phosphoinositide-specific phospholipase C

CAT:

Collective to amoeboid transition

EMT:

Epithelial to mesenchymal transition

MAT:

Mesenchymal to amoeboid transition

CSF1:

Colony-stimulating factor-1

TrkB:

Also known as TrkB tyrosine kinase or BDNF/NT-3 growth factors receptor or neurotrophic tyrosine kinase receptor type 2

Ras:

An abbreviation of “rat sarcoma”

TF:

Tissue factor

EphA5:

Eph receptor A5

References

  1. Jemal A et al. Global cancer statistics. CA: Cancer J Clin. 2011;61(2):69–90.

    Google Scholar 

  2. Jonsson B, Wilking N. A global comparison regarding patient access to cancer drugs. Ann Oncol. 2007;18:1–78.

    Google Scholar 

  3. Miovic M, Block S. Psychiatric disorders in advanced cancer. Cancer. 2007;110(8):1665–76.

    PubMed  Google Scholar 

  4. Khan N, Mukhtar H. Cancer and metastasis: prevention and treatment by green tea. Cancer Metastasis Rev. 2010;29(3):435–45.

    PubMed Central  PubMed  Google Scholar 

  5. Weigelt B, Peterse JL, Van’t Veer LJ. Breast cancer metastasis: markers and models. Nat Rev Cancer. 2005;5(8):591–602.

    CAS  PubMed  Google Scholar 

  6. Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10(8):789–99.

    CAS  PubMed  Google Scholar 

  7. Ferlay J et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917.

    CAS  PubMed  Google Scholar 

  8. Liotta LA, Kohn EC. Cancer’s deadly signature. Nat Genet. 2003;33(1):10–1.

    CAS  PubMed  Google Scholar 

  9. Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3(6):453–8.

    CAS  PubMed  Google Scholar 

  10. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7(2):131–42.

    CAS  PubMed  Google Scholar 

  11. Nguyen DX, Bos PD, Massagué J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009;9(4):274–84.

    CAS  PubMed  Google Scholar 

  12. Chung LW et al. Molecular insights into prostate cancer progression: the missing link of tumor microenvironment. J Urol. 2005;173(1):10–20.

    PubMed  Google Scholar 

  13. Wang J, Loberg R, Taichman RS. The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis. Cancer Metastasis Rev. 2006;25(4):573–87.

    CAS  PubMed  Google Scholar 

  14. Weinberg RA. Is metastasis predetermined? Mol Oncol. 2007;1(3):263–4.

    PubMed  Google Scholar 

  15. Hyoudou K et al. Inhibition of metastatic tumor growth in mouse lung by repeated administration of polyethylene glycol-conjugated catalase quantitative analysis with firefly luciferase-expressing melanoma cells. Clin Cancer Res. 2004;10(22):7685–91.

    CAS  PubMed  Google Scholar 

  16. Folkman J, Klagsbrun M. Angiogenic factors. Science. 1987;235(4787):442–7.

    CAS  PubMed  Google Scholar 

  17. Leong SP et al. Clinical patterns of metastasis. Cancer Metastasis Rev. 2006;25(2):221–32.

    PubMed  Google Scholar 

  18. Tuttle TM. Technical advances in sentinel lymph node biopsy for breast cancer. Am Surg. 2004;70(5):407–13.

    PubMed  Google Scholar 

  19. Pepper MS et al. Lymphangiogenesis and tumor metastasis. Cell Tissue Res. 2003;314(1):167–77.

    CAS  PubMed  Google Scholar 

  20. Bacac M, Stamenkovic I. Metastatic cancer cell. Annu Rev Pathmechdis Mech Dis. 2008;3:221–47.

    CAS  Google Scholar 

  21. Brooks SA et al. Molecular interactions in cancer cell metastasis. Acta Histochemica. 2010;112(1):3–25.

    CAS  PubMed  Google Scholar 

  22. Spano D, et al. Molecular networks that regulate cancer metastasis. in Seminars in cancer biology. 2012. Elsevier.

  23. Feller L, Kramer B, Lemmer J. Pathobiology of cancer metastasis: a short account. Cancer Cell Int. 2012;12(1):24–24.

    PubMed Central  PubMed  Google Scholar 

  24. Chambers AF, Groom AC, MacDonald IC. Metastasis: dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002;2(8):563–72.

    CAS  PubMed  Google Scholar 

  25. Meighan CM, Schwarzbauer JE. Temporal and spatial regulation of integrins during development. Curr Opin Cell Biol. 2008;20(5):520–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  26. van Zijl F, Krupitza G, Mikulits W. Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res/Rev Mutat Res. 2011;728(1):23–34.

    Google Scholar 

  27. Cavallaro U, Christofori G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer. 2004;4(2):118–32.

    CAS  PubMed  Google Scholar 

  28. Engers R, Gabbert HE. Mechanisms of tumor metastasis: cell biological aspects and clinical implications. J Cancer Res Clin Oncol. 2000;126(12):682–92.

    CAS  PubMed  Google Scholar 

  29. Stoecklein NH, Klein CA. Genetic disparity between primary tumours, disseminated tumour cells, and manifest metastasis. Int J Cancer. 2010;126(3):589–98.

    CAS  PubMed  Google Scholar 

  30. Sporn MB. The war on cancer. Lancet. 1996;347(9012):1377–81.

    CAS  PubMed  Google Scholar 

  31. Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat Rev Cancer. 2002;2(2):91–100.

    PubMed  Google Scholar 

  32. Angst BD, Marcozzi C, Magee AI. The cadherin superfamily: diversity in form and function. J Cell Sci. 2001;114(4):629–41.

    CAS  PubMed  Google Scholar 

  33. Gumbiner BM. Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol. 2005;6(8):622–34.

    CAS  PubMed  Google Scholar 

  34. Takeichi M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science. 1991;251(5000):1451–5.

    CAS  PubMed  Google Scholar 

  35. Kashima T et al. Overexpression of cadherins suppresses pulmonary metastasis of osteosarcoma in vivo. Int J Cancer. 2003;104(2):147–54.

    CAS  PubMed  Google Scholar 

  36. Shapiro L, Weis WI. Structure and biochemistry of cadherins and catenins. Cold Spring Harbor Perspect Biol. 2009;1(3):a003053.

    Google Scholar 

  37. Mohamet L.Hawkins K. and Ward C.M. Loss of function of e-cadherin in embryonic stem cells and the relevance to models of tumorigenesis. Journal of oncology, 2010. 2011.

  38. Li L, Bennett S, Wang L. Role of E-cadherin and other cell adhesion molecules in survival and differentiation of human pluripotent stem cells. Cell Adh Migr. 2012;6(1):59–70.

    PubMed Central  PubMed  Google Scholar 

  39. Beavon I. The E-cadherin–catenin complex in tumour metastasis: structure, function and regulation. Eur J Cancer. 2000;36(13):1607–20.

    CAS  PubMed  Google Scholar 

  40. Leber MF, Efferth T. Molecular principles of cancer invasion and metastasis (review). Int J Oncol. 2009;34(4):881–95.

    CAS  PubMed  Google Scholar 

  41. Takeichi M. Morphogenetic roles of classic cadherins. Curr Opin Cell Biol. 1995;7(5):619–27.

    CAS  PubMed  Google Scholar 

  42. Provost E, Rimm DL. Controversies at the cytoplasmic face of the cadherin-based adhesion complex. Curr Opin Cell Biol. 1999;11(5):567–72.

    CAS  PubMed  Google Scholar 

  43. Nagafuchi A. Molecular architecture of adherens junctions. Curr Opin Cell Biol. 2001;13(5):600–3.

    CAS  PubMed  Google Scholar 

  44. Ozawa M, Ringwald M, Kemler R. Uvomorulin-catenin complex formation is regulated by a specific domain in the cytoplasmic region of the cell adhesion molecule. Proc Natl Acad Sci U S A. 1990;87(11):4246–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Hazan RB et al. Cadherin switch in tumor progression. Ann N Y Acad Sci. 2004;1014(1):155–63.

    CAS  PubMed  Google Scholar 

  46. Ireton RC et al. A novel role for p120 catenin in E-cadherin function. J Cell Biol. 2002;159(3):465–76.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Niessen CM, Leckband D. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol Rev. 2011;91(2):691–731.

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell. 1996;84(3):345–57.

    CAS  PubMed  Google Scholar 

  49. Hajra KM, Fearon ER. Cadherin and catenin alterations in human cancer. Genes Chromosom Cancer. 2002;34(3):255–68.

    CAS  PubMed  Google Scholar 

  50. Volk T, Geiger B. A 135-kd membrane protein of intercellular adherens junctions. EMBO J. 1984;3(10):2249.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Zhao D et al. Derivation and characterization of hepatic progenitor cells from human embryonic stem cells. PLoS One. 2009;4(7):e6468.

    PubMed Central  PubMed  Google Scholar 

  52. Li G, Satyamoorthy K, Herlyn M. N-cadherin-mediated intercellular interactions promote survival and migration of melanoma cells. Cancer Res. 2001;61(9):3819–25.

    CAS  PubMed  Google Scholar 

  53. Ramis-Conde I et al. Multi-scale modelling of cancer cell intravasation: the role of cadherins in metastasis. Phys Biol. 2009;6(1):016008.

    PubMed  Google Scholar 

  54. Takeichi M. The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development. 1988;102(4):639–55.

    CAS  PubMed  Google Scholar 

  55. Hazan RB et al. Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol. 2000;148(4):779–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  56. De Wever O et al. Critical role of N-cadherin in myofibroblast invasion and migration in vitro stimulated by colon-cancer-cell-derived TGF-β or wounding. J Cell Sci. 2004;117(20):4691–703.

    PubMed  Google Scholar 

  57. Islam S et al. Expression of N-cadherin by human squamous carcinoma cells induces a scattered fibroblastic phenotype with disrupted cell-cell adhesion. J Cell Biol. 1996;135(6):1643–54.

    CAS  PubMed  Google Scholar 

  58. Tomita K et al. Cadherin switching in human prostate cancer progression. Cancer Res. 2000;60(13):3650–4.

    CAS  PubMed  Google Scholar 

  59. Hsu M et al. Cadherin repertoire determines partner-specific gap junctional communication during melanoma progression. J Cell Sci. 2000;113(Pt 9):1535–42.

    CAS  PubMed  Google Scholar 

  60. Shintani Y et al. Collagen I-mediated up-regulation of N-cadherin requires cooperative signals from integrins and discoidin domain receptor 1. J Cell Biol. 2008;180(6):1277–89.

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Augustine CK et al. Targeting N-cadherin enhances antitumor activity of cytotoxic therapies in melanoma treatment. Cancer Res. 2008;68(10):3777–84.

    CAS  PubMed  Google Scholar 

  62. Beasley GM et al. A phase 1 study of systemic ADH-1 in combination with melphalan via isolated limb infusion in patients with locally advanced in-transit malignant melanoma. Cancer. 2009;115(20):4766–74.

    CAS  PubMed  Google Scholar 

  63. Tanaka H et al. Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance. Nat Med. 2010;16(12):1414–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Gumbiner BM. Regulation of cadherin adhesive activity. J Cell Biol. 2000;148(3):399–404.

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Pećina-Šlaus N. Tumor suppressor gene E-cadherin and its role in normal and malignant cells. Cancer Cell Int. 2003;3(1):17.

    PubMed Central  PubMed  Google Scholar 

  66. Shi Q et al. Allosteric cross talk between cadherin extracellular domains. Biophys J. 2010;99(1):95–104.

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Pinho SS et al. Modulation of E-cadherin function and dysfunction by N-glycosylation. Cell Mol Life Sci. 2011;68(6):1011–20.

    CAS  PubMed  Google Scholar 

  68. Van Roy F, Berx G. The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci. 2008;65(23):3756–88.

    CAS  PubMed  Google Scholar 

  69. Jiang W. E‐cadherin and its associated protein catenins, cancer invasion and metastasis. Br J Surg. 1996;83(4):437–46.

    CAS  PubMed  Google Scholar 

  70. Larue L et al. A role for cadherins in tissue formation. Development. 1996;122(10):3185–94.

    CAS  PubMed  Google Scholar 

  71. Luo J, Lubaroff DM, Hendrix MJ. Suppression of prostate cancer invasive potential and matrix metalloproteinase activity by E-cadherin transfection. Cancer Res. 1999;59(15):3552–6.

    CAS  PubMed  Google Scholar 

  72. Hsu M-Y et al. E-cadherin expression in melanoma cells restores keratinocyte-mediated growth control and down-regulates expression of invasion-related adhesion receptors. Am J Pathol. 2000;156(5):1515–25.

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Bogenrieder T, Herlyn M. Axis of evil: molecular mechanisms of cancer metastasis. Oncogene. 2003;22(42):6524–36.

    CAS  PubMed  Google Scholar 

  74. Vleminckx K et al. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell. 1991;66(1):107–19.

    CAS  PubMed  Google Scholar 

  75. Riethmacher D, Brinkmann V, Birchmeier C. A targeted mutation in the mouse E-cadherin gene results in defective preimplantation development. Proc Natl Acad Sci U S A. 1995;92(3):855–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Hermiston ML, Wong MH, Gordon JI. Forced expression of E-cadherin in the mouse intestinal epithelium slows cell migration and provides evidence for nonautonomous regulation of cell fate in a self-renewing system. Genes Dev. 1996;10(8):985–96.

    CAS  PubMed  Google Scholar 

  77. Schmalhofer O, Brabletz S, Brabletz T. E-cadherin, β-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev. 2009;28(1–2):151–66.

    CAS  PubMed  Google Scholar 

  78. Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis 1. Endocr Rev. 2000;21(2):115–37.

    CAS  PubMed  Google Scholar 

  79. Bennett J, Moffatt S, Horton M. Cell adhesion molecules in human osteoblasts: structure and function. 2001.

    Google Scholar 

  80. Ferrari SL et al. A role for N‐cadherin in the development of the differentiated osteoblastic phenotype. J Bone Miner Res. 2000;15(2):198–208.

    CAS  PubMed  Google Scholar 

  81. Hippo Y et al. Differential gene expression profiles of scirrhous gastric cancer cells with high metastatic potential to peritoneum or lymph nodes. Cancer Res. 2001;61(3):889–95.

    CAS  PubMed  Google Scholar 

  82. Rathinam R, Alahari SK. Important role of integrins in the cancer biology. Cancer Metastasis Rev. 2010;29(1):223–37.

    CAS  PubMed  Google Scholar 

  83. Gahmberg CG et al. Regulation of integrin activity and signalling. Biochim Biophys Acta (BBA)-Gen Subj. 2009;1790(6):431–44.

    CAS  Google Scholar 

  84. Plow EF et al. Ligand binding to integrins. J Biol Chem. 2000;275(29):21785–8.

    CAS  PubMed  Google Scholar 

  85. Takagi J et al. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell. 2002;110(5):599–611.

    CAS  PubMed  Google Scholar 

  86. Luo B-H, Carman CV, Springer TA. Structural basis of integrin regulation and signaling. Annu Rev Immunol. 2007;25:619.

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Sastry SK, Burridge K. Focal adhesions: a nexus for intracellular signaling and cytoskeletal dynamics. Exp Cell Res. 2000;261(1):25–36.

    CAS  PubMed  Google Scholar 

  88. Berman A, Kozlova N, Morozevich G. Integrins: structure and signaling. Biochemistry (Moscow). 2003;68(12):1284–99.

    CAS  Google Scholar 

  89. Mierke CT et al. Contractile forces in tumor cell migration. Eur J Cell Biol. 2008;87(8):669–76.

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110(6):673–87.

    CAS  PubMed  Google Scholar 

  91. Jin H, Varner J. Integrins: roles in cancer development and as treatment targets. Br J Cancer. 2004;90(3):561–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  92. White DE, Muller WJ. Multifaceted roles of integrins in breast cancer metastasis. J Mammary Gland Biol Neoplasia. 2007;12(2–3):135–42.

    PubMed  Google Scholar 

  93. Janik ME, Lityńska A, Vereecken P. Cell migration—the role of integrin glycosylation. Biochim Biophys Acta (BBA)-Gen Subj. 2010;1800(6):545–55.

    CAS  Google Scholar 

  94. Chung J, Kim TH. Integrin‐dependent translational control: implication in cancer progression. Microsc Res Tech. 2008;71(5):380–6.

    CAS  PubMed  Google Scholar 

  95. Schlaepfer DD, Jones K, Hunter T. Multiple Grb2-mediated integrin-stimulated signaling pathways to ERK2/mitogen-activated protein kinase: summation of both c-Src- and focal adhesion kinase-initiated tyrosine phosphorylation events. Mol Cell Biol. 1998;18(5):2571–85.

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Liapis H, Flath A, Kitazawa S. Integrin [alpha] v [beta] 3 expression by bone-residing breast cancer metastases. Diagn Mol Pathol. 1996;5(2):127–35.

    CAS  PubMed  Google Scholar 

  97. Pawelek JM, Chakraborty AK. Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis. Nat Rev Cancer. 2008;8(5):377–86.

    CAS  PubMed  Google Scholar 

  98. Aumailley M et al. Altered synthesis of laminin 1 and absence of basement membrane component deposition in (beta) 1 integrin-deficient embryoid bodies. J Cell Sci. 2000;113(2):259–68.

    CAS  PubMed  Google Scholar 

  99. Brooks PC et al. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin αvβ3. Cell. 1996;85(5):683–93.

    CAS  PubMed  Google Scholar 

  100. Deryugina EI et al. Matrix metalloproteinase-2 activation modulates glioma cell migration. J Cell Sci. 1997;110(19):2473–82.

    CAS  PubMed  Google Scholar 

  101. He Y et al. Interaction between cancer cells and stromal fibroblasts is required for activation of the uPAR-uPA-MMP-2 cascade in pancreatic cancer metastasis. Clin Cancer Res. 2007;13(11):3115–24.

    CAS  PubMed  Google Scholar 

  102. Desgrosellier JS et al. An integrin αvβ3–c-Src oncogenic unit promotes anchorage-independence and tumor progression. Nat Med. 2009;15(10):1163–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Wang Y et al. RGD-modified polymeric micelles as potential carriers for targeted delivery to integrin-overexpressing tumor vasculature and tumor cells. J Drug Targeting. 2009;17(6):459–67.

    CAS  Google Scholar 

  104. Meyer T, Marshall J, Hart I. Expression of alphav integrins and vitronectin receptor identity in breast cancer cells. Br J Cancer. 1998;77(4):530.

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Rolli M et al. Activated integrin alphavbeta3 cooperates with metalloproteinase MMP-9 in regulating migration of metastatic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(16):9482–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Nieswandt B et al. Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res. 1999;59(6):1295–300.

    CAS  PubMed  Google Scholar 

  107. Tang BL, Ng EL. Rabs and cancer cell motility. Cell Motil Cytoskeleton. 2009;66(7):365–70.

    CAS  PubMed  Google Scholar 

  108. Giancotti FG, Ruoslahti E. Integrin signaling. Science. 1999;285(5430):1028–33.

    CAS  PubMed  Google Scholar 

  109. Morozevich GE et al. Implication of alpha5beta1 integrin in invasion of drug-resistant MCF-7/ADR breast carcinoma cells: a role for MMP-2 collagenase. Biochemistry (Mosc). 2008;73(7):791–6.

    CAS  Google Scholar 

  110. Humphries MJ, Olden K, Yamada KM. A synthetic peptide from fibronectin inhibits experimental metastasis of murine melanoma cells. Science. 1986;233(4762):467–70.

    CAS  PubMed  Google Scholar 

  111. Hehlgans S, Haase M, Cordes N. Signalling via integrins: implications for cell survival and anticancer strategies. Biochim Biophys Acta. 2007;1775(1):163–80.

    CAS  PubMed  Google Scholar 

  112. Cox D, Brennan M, Moran N. Integrins as therapeutic targets: lessons and opportunities. Nat Rev Drug Discovery. 2010;9(10):804–20.

    CAS  PubMed  Google Scholar 

  113. Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10(1):9–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Mullamitha SA et al. Phase I evaluation of a fully human anti-alphav integrin monoclonal antibody (CNTO 95) in patients with advanced solid tumors. Clin Cancer Res. 2007;13(7):2128–35.

    CAS  PubMed  Google Scholar 

  115. Nabors LB et al. Phase I and correlative biology study of cilengitide in patients with recurrent malignant glioma. J Clin Oncol. 2007;25(13):1651–7.

    CAS  PubMed  Google Scholar 

  116. Reardon DA et al. Randomized phase II study of cilengitide, an integrin-targeting arginine-glycine-aspartic acid peptide, in recurrent glioblastoma multiforme. J Clin Oncol. 2008;26(34):5610–7.

    CAS  PubMed  Google Scholar 

  117. MacDonald TJ et al. Phase I clinical trial of cilengitide in children with refractory brain tumors: Pediatric Brain Tumor Consortium Study PBTC-012. J Clin Oncol. 2008;26(6):919–24.

    CAS  PubMed  Google Scholar 

  118. Ricart AD et al. Volociximab, a chimeric monoclonal antibody that specifically binds alpha5beta1 integrin: a phase I, pharmacokinetic, and biological correlative study. Clin Cancer Res. 2008;14(23):7924–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Danen EH et al. Requirement for the synergy site for cell adhesion to fibronectin depends on the activation state of integrin alpha 5 beta 1. J Biol Chem. 1995;270(37):21612–8.

    CAS  PubMed  Google Scholar 

  120. Khalili P et al. A non-RGD-based integrin binding peptide (ATN-161) blocks breast cancer growth and metastasis in vivo. Mol Cancer Ther. 2006;5(9):2271–80.

    CAS  PubMed  Google Scholar 

  121. Cianfrocca ME et al. Phase 1 trial of the antiangiogenic peptide ATN-161 (Ac-PHSCN-NH(2)), a beta integrin antagonist, in patients with solid tumours. Br J Cancer. 2006;94(11):1621–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Mulgrew K et al. Direct targeting of alphavbeta3 integrin on tumor cells with a monoclonal antibody. Abegrin Mol Cancer Ther. 2006;5(12):3122–9.

    CAS  PubMed  Google Scholar 

  123. Gutheil JC et al. Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin alphavbeta3. Clin Cancer Res. 2000;6(8):3056–61.

    CAS  PubMed  Google Scholar 

  124. McNeel DG et al. Phase I trial of a monoclonal antibody specific for alphavbeta3 integrin (MEDI-522) in patients with advanced malignancies, including an assessment of effect on tumor perfusion. Clin Cancer Res. 2005;11(21):7851–60.

    CAS  PubMed  Google Scholar 

  125. Hersey P et al. Phase I/II study of immunotherapy with T-cell peptide epitopes in patients with stage IV melanoma. Cancer Immunol Immunother. 2005;54(3):208–18.

    CAS  PubMed  Google Scholar 

  126. Trikha M et al. CNTO 95, a fully human monoclonal antibody that inhibits alphav integrins, has antitumor and antiangiogenic activity in vivo. Int J Cancer. 2004;110(3):326–35.

    CAS  PubMed  Google Scholar 

  127. Chen Q et al. CNTO 95, a fully human anti alphav integrin antibody, inhibits cell signaling, migration, invasion, and spontaneous metastasis of human breast cancer cells. Clin Exp Metastasis. 2008;25(2):139–48.

    CAS  PubMed  Google Scholar 

  128. Martin PL et al. Reviews preclinical safety and immune-modulating effects of therapeutic monoclonal antibodies to interleukin-6 and tumor necrosis factor-alpha in cynomolgus macaques. J Immunotoxicol. 2005;1(3):131–9.

    PubMed  Google Scholar 

  129. Ley K. The role of selectins in inflammation and disease. Trends Mol Med. 2003;9(6):263–8.

    CAS  PubMed  Google Scholar 

  130. McEver RP. Selectins: lectins that initiate cell adhesion under flow. Curr Opin Cell Biol. 2002;14(5):581–6.

    CAS  PubMed  Google Scholar 

  131. Läubli H. and Borsig.L., Selectins promote tumor metastasis. in Seminars in cancer biology. 2010. Elsevier.

  132. Kansas GS. Selectins and their ligands: current concepts and controversies. Blood. 1996;88(9):3259–87.

    CAS  PubMed  Google Scholar 

  133. Rosen SD. Ligands for L-selectin: homing, inflammation, and beyond. Annu Rev Immunol. 2004;22:129–56.

    CAS  PubMed  Google Scholar 

  134. Lowe JB. Glycan-dependent leukocyte adhesion and recruitment in inflammation. Curr Opin Cell Biol. 2003;15(5):531–8.

    CAS  PubMed  Google Scholar 

  135. Bendas G, Borsig L. Cancer cell adhesion and metastasis: selectins, integrins, and the inhibitory potential of heparins. Int J Cell Biol. 2012;2012:1–10.

    Google Scholar 

  136. Sperandio M. Selectins and glycosyltransferases in leukocyte rolling in vivo. Febs J. 2006;273(19):4377–89.

    CAS  PubMed  Google Scholar 

  137. Köhler S et al. E-/P-selectins and colon carcinoma metastasis: first in vivo evidence for their crucial role in a clinically relevant model of spontaneous metastasis formation in the lung. Br J Cancer. 2009;102(3):602–9.

    PubMed Central  PubMed  Google Scholar 

  138. Ley K et al. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7(9):678–89.

    CAS  PubMed  Google Scholar 

  139. Sallusto F et al. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 1999;401(6754):708–12.

    CAS  PubMed  Google Scholar 

  140. Sipkins DA et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature. 2005;435(7044):969–73.

    PubMed Central  CAS  PubMed  Google Scholar 

  141. Mannori G et al. Differential colon cancer cell adhesion to E-, P-, and L-selectin: role of mucin-type glycoproteins. Cancer Res. 1995;55(19):4425–31.

    CAS  PubMed  Google Scholar 

  142. Witz IP. The selectin–selectin ligand axis in tumor progression. Cancer Metastasis Rev. 2008;27(1):19–30.

    CAS  PubMed  Google Scholar 

  143. Läubli H, Spanaus K-S, Borsig L. Selectin-mediated activation of endothelial cells induces expression of CCL5 and promotes metastasis through recruitment of monocytes. Blood. 2009;114(20):4583–91.

    PubMed  Google Scholar 

  144. Barthel SR et al. Targeting selectins and selectin ligands in inflammation and cancer. Expert Opin Ther Targets. 2007;11(11):1473–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  145. Preusser M et al. Brain metastases: pathobiology and emerging targeted therapies. Acta Neuropathologica. 2012;123(2):205–22.

    CAS  PubMed  Google Scholar 

  146. Crockett-Torabi E. Selectins and mechanisms of signal transduction. J Leukocyte Biol. 1998;63(1):1–14.

    CAS  PubMed  Google Scholar 

  147. Burdick MM et al. HCELL is the major E- and L-selectin ligand expressed on LS174T colon carcinoma cells. J Biol Chem. 2006;281(20):13899–905.

    CAS  PubMed  Google Scholar 

  148. Gout S et al. Death receptor-3, a new E-Selectin counter-receptor that confers migration and survival advantages to colon carcinoma cells by triggering p38 and ERK MAPK activation. Cancer Res. 2006;66(18):9117–24.

    CAS  PubMed  Google Scholar 

  149. Aychek T et al. E‐selectin regulates gene expression in metastatic colorectal carcinoma cells and enhances HMGB1 release. Int J Cancer. 2008;123(8):1741–50.

    CAS  PubMed  Google Scholar 

  150. Ludwig RJ et al. Endothelial P-selectin as a target of heparin action in experimental melanoma lung metastasis. Cancer Res. 2004;64(8):2743–50.

    CAS  PubMed  Google Scholar 

  151. Borsig L et al. Sulfated hexasaccharides attenuate metastasis by inhibition of P-selectin and heparanase. Neoplasia. 2011;13(5):445–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  152. Soroka, V., Kasper C., and Poulsen F.M. Structural biology of NCAM, in structure and function of the neural cell adhesion molecule NCAM. 2010, Springer. p. 3-22.

  153. Wai Wong C, Dye DE, Coombe DR. The role of immunoglobulin superfamily cell dhesion molecules in cancer metastasis. Int J Cell Biol. 2012;2012:340296.

    PubMed Central  PubMed  Google Scholar 

  154. Barclay A.N. Membrane proteins with immunoglobulin-like domains—a master superfamily of interaction molecules. in Seminars in immunology. 2003. Elsevier.

  155. Maddaluno L et al. The adhesion molecule L1 regulates transendothelial migration and trafficking of dendritic cells. J Exp Med. 2009;206(3):623–35.

    PubMed Central  CAS  PubMed  Google Scholar 

  156. Garrido-Urbani S et al. Vascular and epithelial junctions: a barrier for leucocyte migration. Biochem Soc Trans. 2008;36(2):203–12.

    CAS  PubMed  Google Scholar 

  157. Francavilla C., Maddaluno L., and Cavallaro U. The functional role of cell adhesion molecules in tumor angiogenesis. in Seminars in cancer biology. 2009. Elsevier.

  158. Johnson JP et al. Melanoma progression-associated glycoprotein MUC18/MCAM mediates homotypic cell adhesion through interaction with a heterophilic ligand. Int J Cancer. 1997;73(5):769–74.

    CAS  PubMed  Google Scholar 

  159. Wu G-J et al. Enforced expression of METCAM/MUC18 increases tumorigenesis of human prostate cancer LNCaP cells in nude mice. J Urol. 2011;185(4):1504–12.

    CAS  PubMed  Google Scholar 

  160. Zeng G-F, Cai S-X, Wu G-J. Up-regulation of METCAM/MUC18 promotes motility, invasion, and tumorigenesis of human breast cancer cells. BMC Cancer. 2011;11(1):113.

    PubMed Central  CAS  PubMed  Google Scholar 

  161. Roland CL et al. ICAM-1 expression determines malignant potential of cancer. Surgery. 2007;141(6):705–7.

    PubMed  Google Scholar 

  162. Siesser PF, Maness PF. L1 cell adhesion molecules as regulators of tumor cell invasiveness. Cell Adh Migr. 2009;3(3):275–7.

    PubMed Central  PubMed  Google Scholar 

  163. Jezierska A, Matysiak W, Motyl T. ALCAM/CD166 protects breast cancer cells against apoptosis and autophagy. Med Sci Monit Basic Res. 2006;12(8):BR263–73.

    CAS  Google Scholar 

  164. Deng C et al. Angiogenic effect of intercellular adhesion molecule-1. J Huazhong Univ Sci Technol. 2007;27:9–12.

    Google Scholar 

  165. Kevil CG et al. Intercellular adhesion molecule-1 (ICAM-1) regulates endothelial cell motility through a nitric oxide-dependent pathway. J Biol Chem. 2004;279(18):19230–8.

    CAS  PubMed  Google Scholar 

  166. Gratzinger D, Barreuther M, Madri JA. Platelet–endothelial cell adhesion molecule-1 modulates endothelial migration through its immunoreceptor tyrosine-based inhibitory motif. Biochem Biophys Res Commun. 2003;301(1):243–9.

    CAS  PubMed  Google Scholar 

  167. Park S et al. PECAM-1 regulates proangiogenic properties of endothelial cells through modulation of cell-cell and cell-matrix interactions. Am J Physiol-Cell Physiol. 2010;299(6):C1468–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  168. Gavert N et al. L1-CAM in cancerous tissues. Expert Opin Biol Ther. 2008;8(11):1749–57.

    CAS  PubMed  Google Scholar 

  169. Friedl P, Gilmour D. Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol. 2009;10(7):445–57.

    CAS  PubMed  Google Scholar 

  170. Orian-Rousseau V. CD44, a therapeutic target for metastasising tumours. Eur J Cancer. 2010;46(7):1271–7.

    CAS  PubMed  Google Scholar 

  171. Fox SB et al. Normal human tissues, in addition to some tumors, express multiple different CD44 isoforms. Cancer Res. 1994;54(16):4539–46.

    CAS  PubMed  Google Scholar 

  172. Richter U et al. The interaction between CD44 on tumour cells and hyaluronan under physiologic flow conditions: implications for metastasis formation. Histochem Cell Biol. 2012;137(5):687–95.

    CAS  PubMed  Google Scholar 

  173. UNDERHILL C. CD44: the hyaluronan receptor. J Cell Sci. 1992;103(2):293–8.

    CAS  PubMed  Google Scholar 

  174. Lesley J, Hyman R, Kincade PW. CD44 and its interaction with extracellular matrix. Adv Immunol. 1993;54:271–335.

    CAS  PubMed  Google Scholar 

  175. Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol. 2003;4(1):33–45.

    CAS  PubMed  Google Scholar 

  176. Ishii S et al. CD44 participates in the adhesion of human colorectal carcinoma cells to laminin and type IV collagen. Surg Oncol. 1993;2(4):255–64.

    CAS  PubMed  Google Scholar 

  177. Jalkanen S, Jalkanen M. Lymphocyte CD44 binds the COOH-terminal heparin-binding domain of fibronectin. J Cell Biol. 1992;116(3):817–25.

    CAS  PubMed  Google Scholar 

  178. Marhaba R, Zöller M. CD44 in cancer progression: adhesion, migration and growth regulation. J Mol Histol. 2004;35(3):211–31.

    CAS  PubMed  Google Scholar 

  179. Legg JW et al. A novel PKC-regulated mechanism controls CD44–ezrin association and directional cell motility. Nat Cell Biol. 2002;4(6):399–407.

    CAS  PubMed  Google Scholar 

  180. Lokeshwar V, Bourguignon L. Post-translational protein modification and expression of ankyrin-binding site (s) in GP85 (Pgp-1/CD44) and its biosynthetic precursors during T-lymphoma membrane biosynthesis. J Biol Chem. 1991;266(27):17983–9.

    CAS  PubMed  Google Scholar 

  181. Iczkowski KA. Cell adhesion molecule CD44: its functional roles in prostate cancer. Am J Transl Res. 2011;3(1):1.

    PubMed Central  CAS  Google Scholar 

  182. Shimizu Y et al. Dual role of the CD44 molecule in T cell adhesion and activation. J Immunol. 1989;143(8):2457–63.

    CAS  PubMed  Google Scholar 

  183. Trochon V et al. Evidence of involvement of CD44 in endothelial cell proliferation, migration and angiogenesis in vitro. Int J Cancer. 1996;66(5):664–8.

    CAS  PubMed  Google Scholar 

  184. Webb D et al. LFA-3, CD44, and CD45: physiologic triggers of human monocyte TNF and IL-1 release. Science. 1990;249(4974):1295–7.

    CAS  PubMed  Google Scholar 

  185. Aruffo A et al. CD44 is the principal cell surface receptor for hyaluronate. Cell. 1990;61(7):1303–13.

    CAS  PubMed  Google Scholar 

  186. Naor D, Sionov RV, Ish-Shalom D. CD44: structure, function and association with the malignant process. Adv Cancer Res. 1997;71:241–319.

    CAS  PubMed  Google Scholar 

  187. Naor D et al. CD44 in cancer. Crit Rev Clin Lab Sci. 2002;39(6):527–79.

    CAS  PubMed  Google Scholar 

  188. Wielenga VJ et al. CD44 glycoproteins in colorectal cancer: expression, function, and prognostic value. Adv Cancer Res. 1999;77:169–87.

    Google Scholar 

  189. Hsieh H et al. Molecular studies into the role of CD44 variants in metastasis in gastric cancer. Mol Pathol. 1999;52(1):25.

    PubMed Central  CAS  PubMed  Google Scholar 

  190. Seiter S et al. Prevention of tumor metastasis formation by anti-variant CD44. J Exp Med. 1993;177(2):443–55.

    CAS  PubMed  Google Scholar 

  191. Ayhan A, Tok EC, Bildirici I. Overexpression of CD44 variant 6 in human endometrial cancer and its prognostic significance. Gynecol Oncol. 2001;80(3):355–8.

    CAS  PubMed  Google Scholar 

  192. Tijink BM et al. A phase I dose escalation study with anti-CD44v6 bivatuzumab mertansine in patients with incurable squamous cell carcinoma of the head and neck or esophagus. Clin Cancer Res. 2006;12(20 Pt 1):6064–72.

    CAS  PubMed  Google Scholar 

  193. Orian-Rousseau V, Ponta H. Adhesion proteins meet receptors: a common theme? Adv Cancer Res. 2008;101:63–92.

    CAS  PubMed  Google Scholar 

  194. Liu C et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011;17(2):211–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  195. Sahai E. Illuminating the metastatic process. Nat Rev Cancer. 2007;7(10):737–49.

    CAS  PubMed  Google Scholar 

  196. Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011;147(5):992–1009.

    CAS  PubMed  Google Scholar 

  197. Friedl P, Wolf K. Plasticity of cell migration: a multiscale tuning model. J Cell Biol. 2010;188(1):11–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  198. Friedl P. Prespecification and plasticity: shifting mechanisms of cell migration. Curr Opin Cell Biol. 2004;16(1):14–23.

    CAS  PubMed  Google Scholar 

  199. Yilmaz M, Christofori G, Lehembre F. Distinct mechanisms of tumor invasion and metastasis. Trends Mol Med. 2007;13(12):535–41.

    CAS  PubMed  Google Scholar 

  200. Gray RS, Cheung KJ, Ewald AJ. Cellular mechanisms regulating epithelial morphogenesis and cancer invasion. Curr Opin Cell Biol. 2010;22(5):640–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  201. Gaggioli C et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol. 2007;9(12):1392–400.

    CAS  PubMed  Google Scholar 

  202. Condeelis J, Segall JE. Intravital imaging of cell movement in tumours. Nat Rev Cancer. 2003;3(12):921–30.

    CAS  PubMed  Google Scholar 

  203. Mandeville J, Lawson MA, Maxfield FR. Dynamic imaging of neutrophil migration in three dimensions: mechanical interactions between cells and matrix. J Leukocyte Biol. 1997;61(2):188–200.

    CAS  PubMed  Google Scholar 

  204. Sahai E, Marshall CJ. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol. 2003;5(8):711–9.

    CAS  PubMed  Google Scholar 

  205. Rösel D et al. Up-regulation of Rho/ROCK signaling in sarcoma cells drives invasion and increased generation of protrusive forces. Mol Cancer Res. 2008;6(9):1410–20.

    PubMed  Google Scholar 

  206. Micuda S et al. ROCK inhibitors as emerging therapeutic candidates for sarcomas. Curr Cancer Drug Targets. 2010;10(2):127–34.

    CAS  PubMed  Google Scholar 

  207. Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer. 2003;3(5):362–74.

    CAS  PubMed  Google Scholar 

  208. Wyckoff JB et al. ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Curr Biol. 2006;16(15):1515–23.

    CAS  PubMed  Google Scholar 

  209. Sabeh F, Shimizu-Hirota R, Weiss SJ. Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J Cell Biol. 2009;185(1):11–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  210. Turk B. Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discovery. 2006;5(9):785–99.

    CAS  PubMed  Google Scholar 

  211. Rawlings ND, Tolle DP, Barrett AJ. MEROPS: the peptidase database. Nucleic Acids Res. 2004;32 suppl 1:D160–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  212. Boy R.G., et al. Enzymes/transporters, in Molecular imaging II. 2008, Springer. p. 131-143.

  213. Yang Y et al. Molecular imaging of proteases in cancer. Cancer Growth Metastasis. 2009;2:13.

    PubMed Central  CAS  PubMed  Google Scholar 

  214. Woodward JK et al. The roles of proteolytic enzymes in the development of tumour-induced bone disease in breast and prostate cancer. Bone. 2007;41(6):912–27.

    CAS  PubMed  Google Scholar 

  215. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2(3):161–74.

    CAS  PubMed  Google Scholar 

  216. Blobel CP. ADAMs: key components in EGFR signalling and development. Nat Rev Mol Cell Biol. 2005;6(1):32–43.

    CAS  PubMed  Google Scholar 

  217. López-Otín C, Overall CM. Protease degradomics: a new challenge for proteomics. Nat Rev Mol Cell Biol. 2002;3(7):509–19.

    PubMed  Google Scholar 

  218. López-Otín C, Matrisian LM. Emerging roles of proteases in tumour suppression. Nat Rev Cancer. 2007;7(10):800–8.

    PubMed  Google Scholar 

  219. Sympson C.J., Bissell M.J. ,and Werb Z. Mammary gland tumor formation in transgenic mice overexpressing stromelysin-1. in Seminars in cancer biology. 1995. NIH Public Access.

  220. Koblinski JE, Ahram M, Sloane BF. Unraveling the role of proteases in cancer. Clin Chim Acta. 2000;291(2):113–35.

    CAS  PubMed  Google Scholar 

  221. Shim K-N et al. Clinical significance of tissue levels of matrix metalloproteinases and tissue inhibitors of metalloproteinases in gastric cancer. J Gastroenterol. 2007;42(2):120–8.

    CAS  PubMed  Google Scholar 

  222. Roy R, Yang J, Moses MA. Matrix metalloproteinases as novel biomarker s and potential therapeutic targets in human cancer. J Clin Oncol. 2009;27(31):5287–97.

    PubMed Central  CAS  PubMed  Google Scholar 

  223. Chu D et al. Matrix metalloproteinase‐9 is associated with disease‐free survival and overall survival in patients with gastric cancer. Int J Cancer. 2011;129(4):887–95.

    CAS  PubMed  Google Scholar 

  224. Gerstein E et al. Comparative enzyme immunoassay of matrix metalloproteinases-2,-7,-9 and their tissue inhibitor-2 in tumors and plasma of patients with gastric cancer. Bull Exp Biol Med. 2009;148(6):899–902.

    CAS  PubMed  Google Scholar 

  225. Fanjul-Fernández M et al. Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochimica et Biophysica Acta (BBA)-Molecular. Cell Res. 2010;1803(1):3–19.

    Google Scholar 

  226. Lynch CC. Matrix metalloproteinases as master regulators of the vicious cycle of bone metastasis. Bone. 2011;48(1):44–53.

    CAS  PubMed  Google Scholar 

  227. Brew K, Nagase H. The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochimica et Biophysica Acta (BBA)-Molecular. Cell Res. 2010;1803(1):55–71.

    CAS  Google Scholar 

  228. Lambert E et al. TIMPs as multifacial proteins. Crit Rev Oncol Hematol. 2004;49(3):187–98.

    PubMed  Google Scholar 

  229. Remacle A et al. Furin regulates the intracellular activation and the uptake rate of cell surface-associated MT1-MMP. Oncogene. 2006;25(41):5648–55.

    CAS  PubMed  Google Scholar 

  230. Hua H et al. Matrix metalloproteinases in tumorigenesis: an evolving paradigm. Cell Mol Life Sci. 2011;68(23):3853–68.

    CAS  PubMed  Google Scholar 

  231. Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006;69(3):562–73.

    CAS  PubMed  Google Scholar 

  232. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52–67.

    PubMed Central  CAS  PubMed  Google Scholar 

  233. Hojilla CV, Wood GA, Khokha R. Metalloproteinases as common effectors of inflammation and extracellular matrix breakdown in breast cancer. Breast Cancer Res. 2008;10(2):205.

    PubMed Central  PubMed  Google Scholar 

  234. Kähäri V-M, Saarialho-Kere U. Trends in molecular medicine: matrix metalloproteinases and their inhibitors in tumour growth and invasion. Ann Med. 1999;31(1):34–45.

    PubMed  Google Scholar 

  235. Ala-aho R, Kähäri V-M. Collagenases in cancer. Biochimie. 2005;87(3):273–86.

    CAS  PubMed  Google Scholar 

  236. Husmann K et al. Matrix metalloproteinase 1 promotes tumor formation and lung metastasis in an intratibial injection osteosarcoma mouse model. Biochim Biophys Acta (BBA)-Mol Basis Dis. 2013;1832(2):p. 347–354.

    Google Scholar 

  237. Brinckerhoff CE, Rutter JL, Benbow U. Interstitial collagenases as markers of tumor progression. Clin Cancer Res. 2000;6(12):4823–30.

    CAS  PubMed  Google Scholar 

  238. Trivedi V et al. Platelet matrix metalloprotease-1 mediates thrombogenesis by activating PAR1 at a cryptic ligand site. Cell. 2009;137(2):332–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  239. Vincenti MP et al. Regulating expression of the gene for matrix metalloproteinase-1 (collagenase): mechanisms that control enzyme activity, transcription, and mRNA stability. Crit Rev™ Eukaryot Gene Expr. 1996;6(4):391–411.

    CAS  Google Scholar 

  240. Huntington JT et al. Overexpression of collagenase 1 (MMP-1) is mediated by the ERK pathway in invasive melanoma cells: role of BRAF mutation and fibroblast growth factor signaling. J Biol Chem. 2004;279(32):33168–76.

    CAS  PubMed  Google Scholar 

  241. Nikkola J et al. High expression levels of collagenase‐1 and stromelysin‐1 correlate with shorter disease‐free survival in human metastatic melanoma. Int J Cancer. 2002;97(4):432–8.

    CAS  PubMed  Google Scholar 

  242. Iida J, McCarthy JB. Expression of collagenase-1 (MMP-1) promotes melanoma growth through the generation of active transforming growth factor-β. Melanoma Res. 2007;17(4):205–13.

    CAS  PubMed  Google Scholar 

  243. Hotary KB et al. Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix. Cell. 2003;114(1):33–45.

    CAS  PubMed  Google Scholar 

  244. Goerge T et al. Tumor-derived matrix metalloproteinase-1 targets endothelial proteinase-activated receptor 1 promoting endothelial cell activation. Cancer Res. 2006;66(15):7766–74.

    CAS  PubMed  Google Scholar 

  245. Blackburn JS et al. A matrix metalloproteinase-1/protease activated receptor-1 signaling axis promotes melanoma invasion and metastasis. Oncogene. 2009;28(48):4237–48.

    PubMed Central  CAS  PubMed  Google Scholar 

  246. Foley CJ et al. Matrix metalloprotease-1a promotes tumorigenesis and metastasis. J Biol Chem. 2012;287(29):24330–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  247. Kamel H et al. Immunoexpression of matrix metalloproteinase-2 (MMP-2) in malignant ovarian epithelial tumours. J Obstet Gynaecol Can. 2010;32(6):580–6.

    PubMed  Google Scholar 

  248. Määttä M et al. Differential expression of matrix metalloproteinase (MMP)-2, MMP-9, and membrane type 1-MMP in hepatocellular and pancreatic adenocarcinoma: implications for tumor progression and clinical prognosis. Clin Cancer Res. 2000;6(7):2726–34.

    PubMed  Google Scholar 

  249. Galis ZS et al. Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circ Res. 1994;75(1):181–9.

    CAS  PubMed  Google Scholar 

  250. Łukaszewicz-Zając M, Mroczko B, Szmitkowski M. Gastric cancer—the role of matrix metalloproteinases in tumor progression. Clin Chim Acta. 2011;412(19):1725–30.

    PubMed  Google Scholar 

  251. Ben-Yosef Y et al. Hypoxia of endothelial cells leads to MMP-2-dependent survival and death. Am J Physiol-Cell Physiol. 2005;289(5):C1321–31.

    CAS  PubMed  Google Scholar 

  252. McQuibban GA et al. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science. 2000;289(5482):1202–6.

    CAS  PubMed  Google Scholar 

  253. Duong TD, Erickson CA. MMP‐2 plays an essential role in producing epithelial‐mesenchymal transformations in the avian embryo. Dev Dyn. 2004;229(1):42–53.

    CAS  PubMed  Google Scholar 

  254. Chetty C et al. MMP-2 siRNA induced Fas/CD95-mediated extrinsic II apoptotic pathway in the A549 lung adenocarcinoma cell line. Oncogene. 2007;26(55):7675–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  255. Yang Z, Strickland DK, Bornstein P. Extracellular matrix metalloproteinase 2 levels are regulated by the low density lipoprotein-related scavenger receptor and thrombospondin 2. J Biol Chem. 2001;276(11):8403–8.

    CAS  PubMed  Google Scholar 

  256. López-Otín C, Palavalli LH, Samuels Y. Protective roles of matrix metalloproteinases. Cell Cycle. 2009;8(22):3657–62.

    PubMed Central  PubMed  Google Scholar 

  257. Van Lint P, Libert C. Matrix metalloproteinase-8: cleavage can be decisive. Cytokine Growth Factor Rev. 2006;17(4):217–23.

    PubMed  Google Scholar 

  258. Väyrynen JP et al. Serum MMP‐8 levels increase in colorectal cancer and correlate with disease course and inflammatory properties of primary tumors. Int J Cancer. 2012;131(4):E463–74.

    PubMed  Google Scholar 

  259. Thirkettle S et al. Matrix metalloproteinase 8 (collagenase 2) induces the expression of interleukins 6 and 8 in breast cancer cells. J Biol Chem. 2013;288(23):16282–94.

    PubMed Central  CAS  PubMed  Google Scholar 

  260. Decock J et al. Association of matrix metalloproteinase-8 gene variation with breast cancer prognosis. Cancer Res. 2007;67(21):10214–21.

    CAS  PubMed  Google Scholar 

  261. Stuelten CH et al. Breast cancer cells induce stromal fibroblasts to express MMP-9 via secretion of TNF-α and TGF-β. J Cell Sci. 2005;118(10):2143–53.

    CAS  PubMed  Google Scholar 

  262. Hallett MA et al. Anti-matrix metalloproteinase-9 DNAzyme decreases tumor growth in the MMTV-PyMT mouse model of breast cancer. Breast Cancer Res. 2013;15(1):R12.

    PubMed Central  CAS  PubMed  Google Scholar 

  263. Morini M et al. The α3β1 integrin is associated with mammary carcinoma cell metastasis, invasion, and gelatinase B (MMP‐9) activity. Int J Cancer. 2000;87(3):336–42.

    CAS  PubMed  Google Scholar 

  264. Watanabe H et al. Matrix metalloproteinase-9 (92 kDa gelatinase/type IV collagenase) from U937 monoblastoid cells: correlation with cellular invasion. J Cell Sci. 1993;104(4):991–9.

    CAS  PubMed  Google Scholar 

  265. Coussens LM et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev. 1999;13(11):1382–97.

    PubMed Central  CAS  PubMed  Google Scholar 

  266. Hojilla C, Mohammed F, Khokha R. Matrix metalloproteinases and their tissue inhibitors direct cell fate during cancer development. Br J Cancer. 2003;89(10):1817–21.

    PubMed Central  CAS  PubMed  Google Scholar 

  267. Bhoopathi P et al. Blockade of tumor growth due to matrix metalloproteinase-9 inhibition is mediated by sequential activation of β1-integrin, ERK, and NF-κB. J Biol Chem. 2008;283(3):1545–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  268. Jordà M et al. Upregulation of MMP-9 in MDCK epithelial cell line in response to expression of the Snail transcription factor. J Cell Sci. 2005;118(15):3371–85.

    PubMed  Google Scholar 

  269. Xu D et al. Matrix metalloproteinase-9 regulates tumor cell invasion through cleavage of protease nexin-1. Cancer Res. 2010;70(17):6988–98.

    PubMed Central  CAS  PubMed  Google Scholar 

  270. Tester AM et al. LPS responsiveness and neutrophil chemotaxis in vivo require PMN MMP-8 activity. PLoS One. 2007;2(3):e312.

    PubMed Central  PubMed  Google Scholar 

  271. Kim M-J et al. TNF-α induces expression of urokinase-type plasminogen activator and β-catenin activation through generation of ROS in human breast epithelial cells. Biochem Pharmacol. 2010;80(12):2092–100.

    CAS  PubMed  Google Scholar 

  272. Zhang S et al. Imbalance between expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in invasiveness and metastasis of human gastric carcinoma. World J Gastroenterol: WJG. 2003;9(5):899–904.

    CAS  PubMed  Google Scholar 

  273. Wu ZS et al. Prognostic significance of MMP‐9 and TIMP‐1 serum and tissue expression in breast cancer. Int J Cancer. 2008;122(9):2050–6.

    CAS  PubMed  Google Scholar 

  274. Mroczko B et al. The diagnostic value of matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of matrix metalloproteinases 1 (TIMP-1) determination in the sera of colorectal adenoma and cancer patients. Int J Color Dis. 2010;25(10):1177–84.

    Google Scholar 

  275. Zhang M et al. Expression of tissue levels of matrix metalloproteinases and tissue inhibitors of metalloproteinases in gastric adenocarcinoma. J Surg Oncol. 2011;103(3):243–7.

    CAS  PubMed  Google Scholar 

  276. Freije JM et al. Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas. J Biol Chem. 1994;269(24):16766–73.

    CAS  PubMed  Google Scholar 

  277. Knäuper V et al. Cellular mechanisms for human procollagenase-3 (MMP-13) activation: evidence that MT1-MMP (MMP-14) and gelatinase A (MMP-2) are able to generate active enzyme. J Biol Chem. 1996;271(29):17124–31.

    PubMed  Google Scholar 

  278. Cowell S et al. Induction of matrix metalloproteinase activation cascades based on membrane-type 1 matrix metalloproteinase: associated activation of gelatinase A, gelatinase B and collagenase 3. Biochem J. 1998;331:453–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  279. Johansson N et al. Collagenase‐3 (MMP‐13) is expressed by hypertrophic chondrocytes, periosteal cells, and osteoblasts during human fetal bone development. Dev Dyn. 1997;208(3):387–97.

    CAS  PubMed  Google Scholar 

  280. Ravanti L et al. Expression of human collagenase-3 (MMP-13) by fetal skin fibroblasts is induced by transforming growth factor β via p38 mitogen-activated protein kinase. FASEB J. 2001;15(6):1098–100.

    CAS  PubMed  Google Scholar 

  281. Mitchell PG et al. Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J Clin Invest. 1996;97(3):761.

    PubMed Central  CAS  PubMed  Google Scholar 

  282. McQuibban GA et al. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem. 2001;276(47):43503–8.

    CAS  PubMed  Google Scholar 

  283. Uitto V-J et al. Collagenase-3 (matrix metalloproteinase-13) expression is induced in oral mucosal epithelium during chronic inflammation. Am J Pathol. 1998;152(6):1489.

    PubMed Central  CAS  PubMed  Google Scholar 

  284. Zhang Y et al. Overexpression of tyrosine kinase B protein as a predictor for distant metastases and prognosis in gastric carcinoma. Oncology. 2008;75(1–2):17–26.

    CAS  PubMed  Google Scholar 

  285. Yamada T et al. Overexpression of MMP-13 gene in colorectal cancer with liver metastasis. Anticancer Res. 2010;30(7):2693–9.

    CAS  PubMed  Google Scholar 

  286. Mäkinen LK et al. Prognostic significance of matrix metalloproteinase‐2, ‐8, ‐9, and ‐13 in oral tongue cancer. J Oral Pathol Med. 2012;41(5):394–9.

    PubMed  Google Scholar 

  287. Kominsky SL et al. MMP-13 is over-expressed in renal cell carcinoma bone metastasis and is induced by TGF-β1. Clin Exp Metastasis. 2008;25(8):865–70.

    CAS  PubMed  Google Scholar 

  288. Hsu C-P, Shen G-H, Ko J-L. Matrix metalloproteinase-13 expression is associated with bone marrow microinvolvement and prognosis in non-small cell lung cancer. Lung Cancer. 2006;52(3):349–57.

    PubMed  Google Scholar 

  289. Heikkilä P et al. Bisphosphonates inhibit stromelysin-1 (MMP-3), matrix metalloelastase (MMP-12), collagenase-3 (MMP-13) and enamelysin (MMP-20), but not urokinase-type plasminogen activator, and diminish invasion and migration of human malignant and endothelial cell lines. Anti-Cancer Drugs. 2002;13(3):245–54.

    PubMed  Google Scholar 

  290. Luukkaa M et al. Association between high collagenase‐3 expression levels and poor prognosis in patients with head and neck cancer. Head Neck. 2006;28(3):225–34.

    PubMed  Google Scholar 

  291. Wang J et al. Expression of MMP-13 is associated with invasion and metastasis of papillary thyroid carcinoma. Eur Rev Med Pharmacol Sci. 2013;17(4):427–35.

    PubMed  Google Scholar 

  292. Koshikawa N et al. Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J Cell Biol. 2000;148(3):615–24.

    PubMed Central  CAS  PubMed  Google Scholar 

  293. Koshikawa N et al. Membrane-type matrix metalloproteinase-1 (MT1-MMP) is a processing enzyme for human laminin γ2 chain. J Biol Chem. 2005;280(1):88–93.

    CAS  PubMed  Google Scholar 

  294. Sadowski T et al. Matrix metalloproteinase 19 processes the laminin 5 gamma 2 chain and induces epithelial cell migration. Cell Mol Life Sci CMLS. 2005;62(7–8):870–80.

    CAS  PubMed  Google Scholar 

  295. Mañes S et al. The matrix metalloproteinase-9 regulates the insulin-like growth factor-triggered autocrine response in DU-145 carcinoma cells. J Biol Chem. 1999;274(11):6935–45.

    PubMed  Google Scholar 

  296. Rorive S et al. Matrix metalloproteinase‐9 interplays with the IGFBP2–IGFII complex to promote cell growth and motility in astrocytomas. Glia. 2008;56(15):1679–90.

    PubMed  Google Scholar 

  297. Noë V et al. Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci. 2001;114(1):111–8.

    PubMed  Google Scholar 

  298. Maretzky T et al. ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and β-catenin translocation. Proc Natl Acad Sci U S A. 2005;102(26):9182–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  299. Illman SA et al. Epilysin (MMP-28) induces TGF-β mediated epithelial to mesenchymal transition in lung carcinoma cells. J Cell Sci. 2006;119(18):3856–65.

    CAS  PubMed  Google Scholar 

  300. Koshikawa N et al. Membrane type 1-matrix metalloproteinase cleaves off the NH2-terminal portion of heparin-binding epidermal growth factor and converts it into a heparin-independent growth factor. Cancer Res. 2010;70(14):6093–103.

    CAS  PubMed  Google Scholar 

  301. Loechel F, Wewer UM. Activation of ADAM 12 protease by copper. FEBS Lett. 2001;506(1):65–8.

    CAS  PubMed  Google Scholar 

  302. Birkedal-Hansen H. Proteolytic remodeling of extracellular matrix. Curr Opin Cell Biol. 1995;7(5):728–35.

    CAS  PubMed  Google Scholar 

  303. Hawinkels LJ et al. Matrix metalloproteinase-14 (MT1-MMP)-mediated endoglin shedding inhibits tumor angiogenesis. Cancer Res. 2010;70(10):4141–50.

    CAS  PubMed  Google Scholar 

  304. Pozzi A et al. Elevated matrix metalloprotease and angiostatin levels in integrin α1 knockout mice cause reduced tumor vascularization. Proc Natl Acad Sci U S A. 2000;97(5):2202–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  305. Chang J-H et al. Functional characterization of neostatins, the MMP-derived, enzymatic cleavage products of type XVIII collagen. FEBS Lett. 2005;579(17):3601–6.

    CAS  PubMed  Google Scholar 

  306. Wen W et al. The generation of endostatin is mediated by elastase. Cancer Res. 1999;59(24):6052–6.

    CAS  PubMed  Google Scholar 

  307. Jawad MU et al. Matrix metalloproteinase 1: role in sarcoma biology. PLoS One. 2010;5(12):e14250.

    PubMed Central  PubMed  Google Scholar 

  308. Cho A, Reidy MA. Matrix metalloproteinase-9 is necessary for the regulation of smooth muscle cell replication and migration after arterial injury. Circ Res. 2002;91(9):845–51.

    CAS  PubMed  Google Scholar 

  309. Limb GA et al. Matrix metalloproteinase-1 associates with intracellular organelles and confers resistance to lamin A/C degradation during apoptosis. Am J Pathol. 2005;166(5):1555–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  310. Balbín M et al. Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat Genet. 2003;35(3):252–7.

    PubMed  Google Scholar 

  311. Gutiérrez-Fernández A et al. Matrix metalloproteinase-8 functions as a metastasis suppressor through modulation of tumor cell adhesion and invasion. Cancer Res. 2008;68(8):2755–63.

    PubMed  Google Scholar 

  312. Acuff HB et al. Analysis of host- and tumor-derived proteinases using a custom dual species microarray reveals a protective role for stromal matrix metalloproteinase-12 in non-small cell lung cancer. Cancer Res. 2006;66(16):7968–75.

    CAS  PubMed  Google Scholar 

  313. Houghton AM et al. Macrophage elastase (matrix metalloproteinase-12) suppresses growth of lung metastases. Cancer Res. 2006;66(12):6149–55.

    CAS  PubMed  Google Scholar 

  314. Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev. 2006;25(1):9–34.

    CAS  PubMed  Google Scholar 

  315. Ramnath N, Creaven PJ. Matrix metalloproteinase inhibitors. Curr Oncol Rep. 2004;6(2):96–102.

    PubMed  Google Scholar 

  316. Bourboulia D. and Stetler-Stevenson.W.G. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): positive and negative regulators in tumor cell adhesion. in Seminars in cancer biology. 2010. Elsevier.

  317. Khokha R. Suppression of the tumorigenic and metastatic abilities of murine B16-F10 melanoma cells in vivo by the overexpression of the tissue inhibitor of the metalloproteinases-1. J National Cancer Inst. 1994;86(4):299–304.

    CAS  Google Scholar 

  318. Schrötzlmair F et al. Tissue inhibitor of metalloproteinases‐1‐induced scattered liver metastasis is mediated by host‐derived urokinase‐type plasminogen activator. J Cell Mol Med. 2010;14(12):2760–70.

    PubMed Central  PubMed  Google Scholar 

  319. Bigelow RL et al. TIMP-1 overexpression promotes tumorigenesis of MDA-MB-231 breast cancer cells and alters expression of a subset of cancer promoting genes in vivo distinct from those observed in vitro. Breast Cancer Res Treat. 2009;117(1):31–44.

    CAS  PubMed  Google Scholar 

  320. Guedez L et al. In vitro suppression of programmed cell death of B cells by tissue inhibitor of metalloproteinases-1. J Clin Invest. 1998;102(11):2002.

    PubMed Central  CAS  PubMed  Google Scholar 

  321. Hayakawa T et al. Growth-promoting activity of tissue inhibitor of metalloproteinases-1 (TIMP-1) for a wide range of cells. A possible new growth factor in serum. FEBS Lett. 1992;298(1):29–32.

    CAS  PubMed  Google Scholar 

  322. Jezierska A, Motyl T. Matrix metalloproteinase-2 involvement in breast cancer progression: a mini-review. Med Sci Monit Basic Res. 2009;15(2):RA32–40.

    CAS  Google Scholar 

  323. Caterina JJ et al. Inactivating mutation of the mouse tissue inhibitor of metalloproteinases-2 (Timp-2) gene alters proMMP-2 activation. J Biol Chem. 2000;275(34):26416–22.

    CAS  PubMed  Google Scholar 

  324. Bigg HF et al. Specific, high affinity binding of tissue inhibitor of metalloproteinases-4 (TIMP-4) to the COOH-terminal hemopexin-like domain of human gelatinase A TIMP-4 binds progelatinase A and the COOH-terminal domain in a similar manner to TIMP-2. J Biol Chem. 1997;272(24):15496–500.

    CAS  PubMed  Google Scholar 

  325. Liacini A et al. Induction of matrix metalloproteinase-13 gene expression by TNF-α is mediated by MAP kinases, AP-1, and NF-κB transcription factors in articular chondrocytes. Exp Cell Res. 2003;288(1):208–17.

    CAS  PubMed  Google Scholar 

  326. Rozanov DV et al. The low density lipoprotein receptor-related protein LRP is regulated by membrane type-1 matrix metalloproteinase (MT1-MMP) proteolysis in malignant cells. J Biol Chem. 2004;279(6):4260–8.

    CAS  PubMed  Google Scholar 

  327. Eccles SA et al. Control of lymphatic and hematogenous metastasis of a rat mammary carcinoma by the matrix metalloproteinase inhibitor batimastat (BB-94). Cancer Res. 1996;56(12):2815–22.

    CAS  PubMed  Google Scholar 

  328. Prontera C et al. Inhibition of gelatinase A (MMP‐2) by batimastat and captopril reduces tumor growth and lung metastases in mice bearing Lewis lung carcinoma. Int J Cancer. 1999;81(5):761–6.

    CAS  PubMed  Google Scholar 

  329. Hidalgo M, Eckhardt SG. Development of matrix metalloproteinase inhibitors in cancer therapy. J Natl Cancer Inst. 2001;93(3):178–93.

    CAS  PubMed  Google Scholar 

  330. Scatena R. Prinomastat, a hydroxamate-based matrix metalloproteinase inhibitor. A novel pharmacological approach for tissue remodelling-related diseases. Expert Opin Invest Drugs. 2000;9(9):2159–65.

    CAS  Google Scholar 

  331. Liu J et al. Early combined treatment with carboplatin and the MMP inhibitor, prinomastat, prolongs survival and reduces systemic metastasis in an aggressive orthotopic lung cancer model. Lung Cancer. 2003;42(3):335–44.

    PubMed  Google Scholar 

  332. Hoffman A et al. Carbamoylphosphonate matrix metalloproteinase inhibitors 6: cis-2-aminocyclohexylcarbamoylphosphonic acid, a novel orally active antimetastatic matrix metalloproteinase-2 selective inhibitor—synthesis and pharmacodynamic and pharmacokinetic analysis. J Med Chem. 2008;51(5):1406–14.

    CAS  PubMed  Google Scholar 

  333. Maquoi E et al. Anti-invasive, antitumoral, and antiangiogenic efficacy of a pyrimidine-2,4,6-trione derivative, an orally active and selective matrix metalloproteinases inhibitor. Clin Cancer Res. 2004;10(12):4038–47.

    CAS  PubMed  Google Scholar 

  334. Lubbe WJ et al. Tumor epithelial cell matrix metalloproteinase 9 is a target for antimetastatic therapy in colorectal cancer. Clin Cancer Res. 2006;12(6):1876–82.

    CAS  PubMed  Google Scholar 

  335. Tao P et al. Matrix metalloproteinase 2 inhibition: combined quantum mechanics and molecular mechanics studies of the inhibition mechanism of (4-phenoxyphenylsulfonyl) methylthiirane and its oxirane analogue. Biochemistry. 2009;48(41):9839–47.

    PubMed Central  CAS  PubMed  Google Scholar 

  336. Krüger A et al. Antimetastatic activity of a novel mechanism-based gelatinase inhibitor. Cancer Res. 2005;65(9):3523–6.

    PubMed  Google Scholar 

  337. Bonfil RD et al. Inhibition of human prostate cancer growth, osteolysis and angiogenesis in a bone metastasis model by a novel mechanism‐based selective gelatinase inhibitor. Int J Cancer. 2006;118(11):2721–6.

    CAS  PubMed  Google Scholar 

  338. Devy L et al. Selective inhibition of matrix metalloproteinase-14 blocks tumor growth, invasion, and angiogenesis. Cancer Res. 2009;69(4):1517–26.

    CAS  PubMed  Google Scholar 

  339. Rawlings ND, Barrett AJ. Families of serine peptidases. Methods Enzymol. 1993;244:19–61.

    Google Scholar 

  340. Netzel-Arnett S et al. Membrane anchored serine proteases: a rapidly expanding group of cell surface proteolytic enzymes with potential roles in cancer. Cancer Metastasis Rev. 2003;22(2–3):237–58.

    CAS  PubMed  Google Scholar 

  341. Duffy MJ et al. Urokinase‐plasminogen activator, a marker for aggressive breast carcinomas. Preliminary report. Cancer. 1988;62(3):531–3.

    CAS  PubMed  Google Scholar 

  342. Stepanova V, Tkachuk V. Urokinase as a multidomain protein and polyfunctional cell regulator. Biochemistry (Moscow). 2002;67(1):109–18.

    CAS  Google Scholar 

  343. Thummarati P et al. High level of urokinase plasminogen activator contributes to cholangiocarcinoma invasion and metastasis. World J Gastroenterol: WJG. 2012;18(3):244.

    PubMed Central  CAS  PubMed  Google Scholar 

  344. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    CAS  PubMed  Google Scholar 

  345. Ulisse S et al. The urokinase plasminogen activator system: a target for anti-cancer therapy. Curr Cancer Drug Targets. 2009;9(1):32–71.

    CAS  PubMed  Google Scholar 

  346. Dass K et al. Evolving role of uPA/uPAR system in human cancers. Cancer Treat Rev. 2008;34(2):122–36.

    CAS  PubMed  Google Scholar 

  347. Ossowski L, Aguirre-Ghiso JA. Urokinase receptor and integrin partnership: coordination of signaling for cell adhesion, migration and growth. Curr Opin Cell Biol. 2000;12(5):613–20.

    CAS  PubMed  Google Scholar 

  348. Yu W, Kim J, Ossowski L. Reduction in surface urokinase receptor forces malignant cells into a protracted state of dormancy. J Cell Biol. 1997;137(3):767–77.

    PubMed Central  CAS  PubMed  Google Scholar 

  349. Choong PF, Nadesapillai AP. Urokinase plasminogen activator system: a multifunctional role in tumor progression and metastasis. Clin Orthop Relat Res. 2003;415:S46–58.

    PubMed  Google Scholar 

  350. Binder BR, Mihaly J, Prager GW. uPAR-uPA-PAI-1 interactions and signaling: a vascular biologist’s view. Thromb Haemost-Stuttgart-. 2007;97(3):336.

    CAS  Google Scholar 

  351. Pepper MS. Role of the matrix metalloproteinase and plasminogen activator–plasmin systems in angiogenesis. Arterioscler, Thromb, Vasc Biol. 2001;21(7):1104–17.

    CAS  Google Scholar 

  352. Gondi CS et al. Downregulation of uPAR and uPA activates caspase mediated apoptosis, inhibits the PI3k/AKT pathway. Int J Oncol. 2007;31(1):19.

    PubMed Central  CAS  PubMed  Google Scholar 

  353. Prager GW et al. Urokinase mediates endothelial cell survival via induction of the X-linked inhibitor of apoptosis protein. Blood. 2009;113(6):1383–90.

    CAS  PubMed  Google Scholar 

  354. Shetty S et al. Urokinase induces activation of STAT3 in lung epithelial cells. Am J Physiol-Lung Cell Mol Physiol. 2006;291(4):L772–80.

    CAS  PubMed  Google Scholar 

  355. Malinowsky K et al. uPA and PAI-1-related signaling pathways differ between primary breast cancers and lymph node metastases. Transl Oncol. 2012;5(2):98–IN3.

    PubMed Central  PubMed  Google Scholar 

  356. Ghamande SA et al. A phase 2, randomized, double-blind, placebo-controlled trial of clinical activity and safety of subcutaneous A6 in women with asymptomatic CA125 progression after first-line chemotherapy of epithelial ovarian cancer. Gynecol Oncol. 2008;111(1):89–94.

    CAS  PubMed  Google Scholar 

  357. Ellis V, Dano K. Specific inhibition of the activity of the urokinase receptor-mediated cell-surface plasminogen activation system by suramin. Biochem J. 1993;296(Pt 2):505–10.

    PubMed Central  CAS  PubMed  Google Scholar 

  358. Schmitt M et al. Cancer therapy trials employing level-of-evidence-1 disease forecast cancer biomarkers uPA and its inhibitor PAI-1. Expert Rev Mol Diagn. 2011;11(6):617–34.

    CAS  PubMed  Google Scholar 

  359. Benes P, Vetvicka V, Fusek M. Cathepsin D—many functions of one aspartic protease. Crit Rev Oncol Hematol. 2008;68(1):12–28.

    PubMed Central  PubMed  Google Scholar 

  360. Liaudet-Coopman E et al. Cathepsin D: newly discovered functions of a long-standing aspartic protease in cancer and apoptosis. Cancer Lett. 2006;237(2):167–79.

    CAS  PubMed  Google Scholar 

  361. Masson O et al. Pathophysiological functions of cathepsin D: targeting its catalytic activity versus its protein binding activity? Biochimie. 2010;92(11):1635–43.

    CAS  PubMed  Google Scholar 

  362. Fuseka M, Vetvicka V. Dual role of cathepsin D: ligand and protease. Biomed Papers. 2005;149(1):43–50.

    Google Scholar 

  363. Baechle D et al. Cathepsin D is present in human eccrine sweat and involved in the postsecretory processing of the antimicrobial peptide DCD-1 L. J Biol Chem. 2006;281(9):5406–15.

    CAS  PubMed  Google Scholar 

  364. Nirdé P et al. Heat shock cognate 70 protein secretion as a new growth arrest signal for cancer cells. Oncogene. 2009;29(1):117–27.

    PubMed Central  PubMed  Google Scholar 

  365. Erdmann S et al. Inflammatory cytokines increase extracellular procathepsin D in permanent and primary endothelial cell cultures. Eur J Cell Biol. 2008;87(5):311–23.

    CAS  PubMed  Google Scholar 

  366. Bromme D, Lecaille F. Cathepsin K inhibitors for osteoporosis and potential off-target effects. Expert Opin Investig Drugs. 2009;18(5):585–600.

    PubMed Central  PubMed  Google Scholar 

  367. Clezardin P. Therapeutic targets for bone metastases in breast cancer. Breast Cancer Res. 2011;13(2):207.

    PubMed Central  CAS  PubMed  Google Scholar 

  368. Sudhan DR, Siemann DW. Cathepsin L inhibition by the small molecule KGP94 suppresses tumor microenvironment enhanced metastasis associated cell functions of prostate and breast cancer cells. Clin Exp Metastasis. 2013;30(7):891–902.

    CAS  PubMed  Google Scholar 

  369. Ward C et al. Antibody targeting of cathepsin S inhibits angiogenesis and synergistically enhances anti-VEGF. PLoS One. 2010;5(9):e12543.

    PubMed Central  PubMed  Google Scholar 

  370. Burden RE et al. Inhibition of cathepsin S by Fsn0503 enhances the efficacy of chemotherapy in colorectal carcinomas. Biochimie. 2012;94(2):487–93.

    CAS  PubMed  Google Scholar 

  371. Dabrosin C, Johansson AC, Ollinger K. Decreased secretion of cathepsin D in breast cancer in vivo by tamoxifen: mediated by the mannose-6-phosphate/IGF-II receptor? Breast Cancer Res Treat. 2004;85(3):229–38.

    CAS  PubMed  Google Scholar 

  372. Vasiljeva O et al. Emerging roles of cysteine cathepsins in disease and their potential as drug targets. Curr Pharm Des. 2007;13(4):387–403.

    CAS  PubMed  Google Scholar 

  373. Elie BT et al. Identification and pre-clinical testing of a reversible cathepsin protease inhibitor reveals anti-tumor efficacy in a pancreatic cancer model. Biochimie. 2010;92(11):1618–24.

    CAS  PubMed  Google Scholar 

  374. Turk V, Turk B, Turk D. Lysosomal cysteine proteases: facts and opportunities. EMBO J. 2001;20(17):4629–33.

    PubMed Central  CAS  PubMed  Google Scholar 

  375. Palermo C, Joyce JA. Cysteine cathepsin proteases as pharmacological targets in cancer. Trends Pharmacol Sci. 2008;29(1):22–8.

    CAS  PubMed  Google Scholar 

  376. Mohamed MM, Sloane BF. Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer. 2006;6(10):764–75.

    CAS  PubMed  Google Scholar 

  377. Reiser J, Adair B, Reinheckel T. Specialized roles for cysteine cathepsins in health and disease. J Clin Investig. 2010;120(10):3421–31.

    PubMed Central  CAS  PubMed  Google Scholar 

  378. Kosa’b J. Lysosomal cathepsins: structure, role in antigen processing and presentation, and cancer. Adv Enzyme Regul. 2002;42:285.

    Google Scholar 

  379. Watts C. The endosome–lysosome pathway and information generation in the immune system. Biochimica et Biophysica Acta (BBA)-Proteins and. Proteomics. 2012;1824(1):14–21.

    CAS  Google Scholar 

  380. Rothberg JM et al. Live-cell imaging of tumor proteolysis: impact of cellular and non-cellular microenvironment. Biochimica et Biophysica Acta (BBA)-Proteins and. Proteomics. 2012;1824(1):123–32.

    CAS  Google Scholar 

  381. Dauth S et al. Cathepsin K deficiency in mice induces structural and metabolic changes in the central nervous system that are associated with learning and memory deficits. BMC Neurosci. 2011;12(1):74.

    PubMed Central  CAS  PubMed  Google Scholar 

  382. Jedeszko C, Sloane BF. Cysteine cathepsins in human cancer. Biol Chem. 2004;385(11):1017–27.

    CAS  PubMed  Google Scholar 

  383. Berdowska I. Cysteine proteases as disease markers. Clin Chim Acta. 2004;342(1):41–69.

    CAS  PubMed  Google Scholar 

  384. Arvatz G et al. The heparanase system and tumor metastasis: is heparanase the seed and soil? Cancer Metastasis Rev. 2011;30(2):253–68.

    PubMed  Google Scholar 

  385. Green KA, Lund LR. ECM degrading proteases and tissue remodelling in the mammary gland. Bioessays. 2005;27(9):894–903.

    CAS  PubMed  Google Scholar 

  386. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2008;9(4):239–52.

    PubMed Central  PubMed  Google Scholar 

  387. Reinheckel T et al. Differential impact of cysteine cathepsins on genetic mouse models of de novo carcinogenesis: cathepsin B as emerging therapeutic target. Front Pharmacol. 2012;3:133.

    PubMed Central  PubMed  Google Scholar 

  388. Mitchell BS. The proteasome—an emerging therapeutic target in cancer. N Engl J Med. 2003;348(26):2597–8.

    PubMed  Google Scholar 

  389. Kane RC et al. Velcade®: US FDA approval for the treatment of multiple myeloma progressing on prior therapy. Oncologist. 2003;8(6):508–13.

    PubMed  Google Scholar 

  390. Zavrski I et al. Proteasome: an emerging target for cancer therapy. Anti-Cancer Drugs. 2005;16(5):475–81.

    CAS  PubMed  Google Scholar 

  391. Kane RC et al. Bortezomib for the treatment of mantle cell lymphoma. Clin Cancer Res. 2007;13(18):5291–4.

    CAS  PubMed  Google Scholar 

  392. Chen D et al. Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr Cancer Drug Targets. 2011;11(3):239.

    PubMed Central  CAS  PubMed  Google Scholar 

  393. Berenson JR et al. Phase I/II trial assessing bortezomib and melphalan combination therapy for the treatment of patients with relapsed or refractory multiple myeloma. J Clin Oncol. 2006;24(6):937–44.

    CAS  PubMed  Google Scholar 

  394. Kane RC et al. United States Food and Drug Administration approval summary: bortezomib for the treatment of progressive multiple myeloma after one prior therapy. Clin Cancer Res. 2006;12(10):2955–60.

    CAS  PubMed  Google Scholar 

  395. Liotta LA, Kohn EC. The microenvironment of the tumour–host interface. Nature. 2001;411(6835):375–9.

    CAS  PubMed  Google Scholar 

  396. Hughes-Alford SK, Lauffenburger DA. Quantitative analysis of gradient sensing: towards building predictive models of chemotaxis in cancer. Curr Opin Cell Biol. 2012;24(2):284–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  397. Onuffer JJ, Horuk R. Chemokines, chemokine receptors and small-molecule antagonists: recent developments. Trends Pharmacol Sci. 2002;23(10):459–67.

    CAS  PubMed  Google Scholar 

  398. Ebert LM, Schaerli P, Moser B. Chemokine-mediated control of T cell traffic in lymphoid and peripheral tissues. Mol Immunol. 2005;42(7):799–809.

    CAS  PubMed  Google Scholar 

  399. Kedrin D et al. Cell motility and cytoskeletal regulation in invasion and metastasis. J Mammary Gland Biol Neoplasia. 2007;12(2–3):143–52.

    PubMed  Google Scholar 

  400. Bodnar RJ et al. IP-10 induces dissociation of newly formed blood vessels. J Cell Sci. 2009;122(12):2064–77.

    PubMed Central  CAS  PubMed  Google Scholar 

  401. Wells A et al. Targeting tumor cell motility as a strategy against invasion and metastasis. Trends Pharmacol Sci. 2013;34(5):283–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  402. do Carmo A et al. CXCL12/CXCR4 promotes motility and proliferation of glioma cells. Cancer Biol Ther. 2010;9(1):p. 56–65.

    Google Scholar 

  403. Dai X et al. The CXCL12/CXCR4 autocrine loop increases the metastatic potential of non-small cell lung cancer in vitro. Oncol Lett. 2013;5(1):277–82.

    PubMed Central  CAS  PubMed  Google Scholar 

  404. Zlotnik A. Chemokines and cancer. Int J Cancer. 2006;119(9):2026–9.

    CAS  PubMed  Google Scholar 

  405. Dewan M et al. Stromal cell-derived factor-1 and CXCR4 receptor interaction in tumor growth and metastasis of breast cancer. Biomed Pharmacother. 2006;60(6):273–6.

    CAS  PubMed  Google Scholar 

  406. Kato M et al. Expression pattern of CXC chemokine receptor-4 is correlated with lymph node metastasis in human invasive ductal carcinoma. Breast Cancer Res. 2003;5(5):R144–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  407. Riese DJ, Stern DF. Specificity within the EGF family/ErbB receptor family signaling network. Bioessays. 1998;20(1):41–8.

    PubMed  Google Scholar 

  408. Xue C et al. Epidermal growth factor receptor overexpression results in increased tumor cell motility in vivo coordinately with enhanced intravasation and metastasis. Cancer Res. 2006;66(1):192–7.

    CAS  PubMed  Google Scholar 

  409. Ma PC et al. c-Met: structure, functions and potential for therapeutic inhibition. Cancer Metastasis Rev. 2003;22(4):309–25.

    CAS  PubMed  Google Scholar 

  410. Micke P. Tumour-stroma interaction: cancer-associated fibroblasts as novel targets in anti-cancer therapy? Lung Cancer. 2004;45:S163–75.

    PubMed  Google Scholar 

  411. Qian L-W et al. Co-cultivation of pancreatic cancer cells with orthotopic tumor-derived fibroblasts: fibroblasts stimulate tumor cell invasion via HGF secretion whereas cancer cells exert a minor regulative effect on fibroblasts HGF production. Cancer Lett. 2003;190(1):105–12.

    CAS  PubMed  Google Scholar 

  412. Luker KE, Luker GD. Functions of CXCL12 and CXCR4 in breast cancer. Cancer Lett. 2006;238(1):30–41.

    CAS  PubMed  Google Scholar 

  413. Burger JA, Kipps TJ. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood. 2006;107(5):1761–7.

    CAS  PubMed  Google Scholar 

  414. Takebe N et al. Review of cancer-associated fibroblasts and therapies that interfere with their activity. Tumor Microenvironment Ther. 2013;1:19–36.

    Google Scholar 

  415. Yin HL, Janmey PA. Phosphoinositide regulation of the actin cytoskeleton. Annu Rev Physiol. 2003;65(1):761–89.

    CAS  PubMed  Google Scholar 

  416. Hurley JH. Membrane binding domains. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of. Lipids. 2006;1761(8):805–11.

    CAS  Google Scholar 

  417. Barber MA, Welch HC. PI3K and RAC signalling in leukocyte and cancer cell migration. Bull Cancer. 2006;93(5):10044–52.

    Google Scholar 

  418. Hall A. Rho GTPases and the control of cell behaviour. Biochem Soc Trans. 2005;33:891–5.

    CAS  PubMed  Google Scholar 

  419. Bravo-Cordero JJ et al. A novel spatiotemporal RhoC activation pathway locally regulates cofilin activity at invadopodia. Curr Biol. 2011;21(8):635–44.

    PubMed Central  CAS  PubMed  Google Scholar 

  420. Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell. 2003;112(4):453–65.

    CAS  PubMed  Google Scholar 

  421. Mouneimne G et al. Phospholipase C and cofilin are required for carcinoma cell directionality in response to EGF stimulation. J Cell Biol. 2004;166(5):697–708.

    PubMed Central  CAS  PubMed  Google Scholar 

  422. Wilkinson S, Paterson HF, Marshall CJ. Cdc42–MRCK and Rho–ROCK signalling cooperate in myosin phosphorylation and cell invasion. Nat Cell Biol. 2005;7(3):255–61.

    CAS  PubMed  Google Scholar 

  423. Kopp F et al. Salinomycin treatment reduces metastatic tumor burden by hampering cancer cell migration. Mol Cancer. 2014;13:16.

    PubMed Central  PubMed  Google Scholar 

  424. Kumar P et al. Tetrathiomolybdate inhibits head and neck cancer metastasis by decreasing tumor cell motility, invasiveness and by promoting tumor cell anoikis. Mol Cancer. 2010;9:206.

    PubMed Central  PubMed  Google Scholar 

  425. Palmer TD et al. Integrin-free tetraspanin CD151 can inhibit tumor cell motility upon clustering and is a clinical indicator of prostate cancer progression. Cancer Res. 2014;74(1):173–87.

    PubMed Central  CAS  PubMed  Google Scholar 

  426. Wang S et al. Study on invadopodia formation for lung carcinoma invasion with a microfluidic 3D culture device. PLoS One. 2013;8(2):e56448.

    PubMed Central  CAS  PubMed  Google Scholar 

  427. Wolf K et al. Compensation mechanism in tumor cell migration mesenchymal–amoeboid transition after blocking of pericellular proteolysis. J Cell Biol. 2003;160(2):267–77.

    PubMed Central  CAS  PubMed  Google Scholar 

  428. Thiery JP et al. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90.

    CAS  PubMed  Google Scholar 

  429. Bravo-Cordero JJ, Hodgson L, Condeelis J. Directed cell invasion and migration during metastasis. Curr Opin Cell Biol. 2012;24(2):277–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  430. Wang W et al. Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors. Cancer Res. 2007;67(8):3505–11.

    CAS  PubMed  Google Scholar 

  431. Olson MF, Sahai E. The actin cytoskeleton in cancer cell motility. Clin Exp Metastasis. 2009;26(4):273–87.

    PubMed  Google Scholar 

  432. Vignjevic, D. and Montagnac G. Reorganisation of the dendritic actin network during cancer cell migration and invasion. in Seminars in cancer biology. 2008. Elsevier.

  433. Buccione R, Caldieri G, Ayala I. Invadopodia: specialized tumor cell structures for the focal degradation of the extracellular matrix. Cancer Metastasis Rev. 2009;28(1–2):137–49.

    PubMed  Google Scholar 

  434. Yilmaz M, Christofori G. Mechanisms of motility in metastasizing cells. Mol Cancer Res. 2010;8(5):629–42.

    CAS  PubMed  Google Scholar 

  435. Condeelis J.S. et al. Lamellipodia in invasion. in Seminars in cancer biology. 2001. Elsevier.

  436. Wang W et al. Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling. Cancer Res. 2002;62(21):6278–88.

    CAS  PubMed  Google Scholar 

  437. Vignjevic D et al. Fascin, a novel target of beta-catenin-TCF signaling, is expressed at the invasive front of human colon cancer. Cancer Res. 2007;67(14):6844–53.

    CAS  PubMed  Google Scholar 

  438. Mongiu AK et al. Kinetic-structural analysis of neuronal growth cone veil motility. J Cell Sci. 2007;120(6):1113–25.

    CAS  PubMed  Google Scholar 

  439. Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 2009;28(1–2):15–33.

    PubMed  Google Scholar 

  440. Khoury H et al. Distinct tyrosine autophosphorylation sites mediate induction of epithelial mesenchymal like transition by an activated ErbB-2/Neu receptor. Oncogene. 2001;20(7):788–99.

    CAS  PubMed  Google Scholar 

  441. Saltel F et al. Apatite-mediated actin dynamics in resorbing osteoclasts. Mol Biol Cell. 2004;15(12):5231–41.

    PubMed Central  CAS  PubMed  Google Scholar 

  442. Caldieri G et al. Invadopodia biogenesis is regulated by caveolin‐mediated modulation of membrane cholesterol levels. J Cell Mol Med. 2009;13(8b):1728–40.

    PubMed  Google Scholar 

  443. Kelly T et al. Proteolysis of extracellular matrix by invadopodia facilitates human breast cancer cell invasion and is mediated by matrix metalloproteinases. Clin Exp Metastasis. 1998;16(6):501–12.

    CAS  PubMed  Google Scholar 

  444. Tague SE, Muralidharan V, D’Souza-Schorey C. ADP-ribosylation factor 6 regulates tumor cell invasion through the activation of the MEK/ERK signaling pathway. Proc Natl Acad Sci U S A. 2004;101(26):9671–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  445. Oxmann D et al. Endoglin expression in metastatic breast cancer cells enhances their invasive phenotype. Oncogene. 2008;27(25):3567–75.

    CAS  PubMed  Google Scholar 

  446. Clark ES et al. Cortactin is an essential regulator of matrix metalloproteinase secretion and extracellular matrix degradation in invadopodia. Cancer Res. 2007;67(9):4227–35.

    CAS  PubMed  Google Scholar 

  447. Artym VV et al. Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function. Cancer Res. 2006;66(6):3034–43.

    CAS  PubMed  Google Scholar 

  448. Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med. 2006;12(8):895–904.

    CAS  PubMed  Google Scholar 

  449. Zervantonakis IK et al. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc Natl Acad Sci U S A. 2012;109(34):13515–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  450. Quigley JP, Armstrong PB. Tumor cell intravasation Alu-cidated: the chick embryo opens the window. Cell. 1998;94(3):281–4.

    CAS  PubMed  Google Scholar 

  451. Wirtz D. Particle-tracking microrheology of living cells: principles and applications. Annu Rev Biophys. 2009;38:301–26.

    CAS  PubMed  Google Scholar 

  452. Yeung T et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Mot Cytoskeleton. 2005;60(1):24–34.

    Google Scholar 

  453. Baker EL, Bonnecaze RT, Zaman MH. Extracellular matrix stiffness and architecture govern intracellular rheology in cancer. Biophys J. 2009;97(4):1013–21.

    PubMed Central  CAS  PubMed  Google Scholar 

  454. Baker EL et al. Cancer cell stiffness: integrated roles of three-dimensional matrix stiffness and transforming potential. Biophys J. 2010;99(7):2048–57.

    PubMed Central  CAS  PubMed  Google Scholar 

  455. Lee JS et al. Ballistic intracellular nanorheology reveals ROCK-hard cytoplasmic stiffening response to fluid flow. J Cell Sci. 2006;119(9):1760–8.

    CAS  PubMed  Google Scholar 

  456. Cross SE et al. Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol. 2007;2(12):780–3.

    CAS  PubMed  Google Scholar 

  457. Swartz MA, Fleury ME. Interstitial flow and its effects in soft tissues. Annu Rev Biomed Eng. 2007;9:229–56.

    CAS  PubMed  Google Scholar 

  458. Mycielska ME, Djamgoz MB. Cellular mechanisms of direct-current electric field effects: galvanotaxis and metastatic disease. J Cell Sci. 2004;117(9):1631–9.

    CAS  PubMed  Google Scholar 

  459. Wirtz D, Konstantopoulos K, Searson PC. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer. 2011;11(7):512–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  460. Roussos ET et al. Mena invasive (MenaINV) promotes multicellular streaming motility and transendothelial migration in a mouse model of breast cancer. J Cell Sci. 2011;124(13):2120–31.

    PubMed Central  CAS  PubMed  Google Scholar 

  461. Calvo F, Sahai E. Cell communication networks in cancer invasion. Curr Opin Cell Biol. 2011;23(5):621–9.

    CAS  PubMed  Google Scholar 

  462. Giampieri S et al. Localized and reversible TGFβ signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol. 2009;11(11):1287–96.

    PubMed Central  CAS  PubMed  Google Scholar 

  463. Zijlstra A et al. The inhibition of tumor cell intravasation and subsequent metastasis via regulation of in vivo tumor cell motility by the tetraspanin CD151. Cancer Cell. 2008;13(3):221–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  464. Wyckoff JB et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res. 2007;67(6):2649–56.

    CAS  PubMed  Google Scholar 

  465. Bekes EM et al. Tumor-recruited neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately the levels of tumor angiogenesis and efficiency of malignant cell intravasation. Am J Pathol. 2011;179(3):1455–70.

    PubMed Central  CAS  PubMed  Google Scholar 

  466. Weis S et al. Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J Cell Biol. 2004;167(2):223–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  467. Bockhorn M, Jain RK, Munn LL. Active versus passive mechanisms in metastasis: do cancer cells crawl into vessels, or are they pushed? Lancet Oncol. 2007;8(5):444–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  468. Wong SY, Hynes RO. Lymphatic or hematogenous dissemination: how does a metastatic tumor cell decide? Cell Cycle (Georgetown, Tex). 2006;5(8):812.

    CAS  Google Scholar 

  469. Bockhorn M et al. Differential gene expression in metastasizing cells shed from kidney tumors. Cancer Res. 2004;64(7):2469–73.

    CAS  PubMed  Google Scholar 

  470. Blood CH, Zetter BR. Tumor interactions with the vasculature: angiogenesis and tumor metastasis. Biochimica et Biophysica Acta (BBA)-Reviews on. Cancer. 1990;1032(1):89–118.

    CAS  Google Scholar 

  471. Nash G et al. Platelets and cancer. Lancet Oncol. 2002;3(7):425–30.

    CAS  PubMed  Google Scholar 

  472. Pollard JW. Trophic macrophages in development and disease. Nat Rev Immunol. 2009;9(4):259–70.

    PubMed Central  CAS  PubMed  Google Scholar 

  473. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5(12):953–64.

    CAS  PubMed  Google Scholar 

  474. Qian B-Z, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141(1):39–51.

    CAS  PubMed  Google Scholar 

  475. Nathan C. Metchnikoff’s legacy in 2008. Nat Immunol. 2008;9(7):695–8.

    CAS  PubMed  Google Scholar 

  476. Hao N-B et al. Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol. 2012;2012:11.

    Google Scholar 

  477. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Investig. 2012;122(3):787–95.

    PubMed Central  CAS  PubMed  Google Scholar 

  478. Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124(2):263–6.

    CAS  PubMed  Google Scholar 

  479. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–99.

    PubMed Central  CAS  PubMed  Google Scholar 

  480. Goswami S et al. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res. 2005;65(12):5278–83.

    CAS  PubMed  Google Scholar 

  481. Wyckoff J et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 2004;64(19):7022–9.

    CAS  PubMed  Google Scholar 

  482. Laufs S, Schumacher J, Allgayer H. Urokinase-receptor (u-PAR): an essential player in multiple games of cancer: a review on its role in tumor progression, invasion, metastasis, proliferation/dormancy, clinical outcome and minimal residual disease. Cell Cycle (Georgetown, Tex). 2006;5(16):1760–71.

    CAS  Google Scholar 

  483. Kitamura T et al. SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion. Nat Genet. 2007;39(4):467–75.

    CAS  PubMed  Google Scholar 

  484. van Kempen LC, de Visser KE, Coussens LM. Inflammation, proteases and cancer. Eur J Cancer. 2006;42(6):728–34.

    PubMed  Google Scholar 

  485. Cheng K, Xie G, Raufman J-P. Matrix metalloproteinase-7-catalyzed release of HB-EGF mediates deoxycholyltaurine-induced proliferation of a human colon cancer cell line. Biochem Pharmacol. 2007;73(7):1001–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  486. Lin EY, Pollard JW. Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res. 2007;67(11):5064–6.

    CAS  PubMed  Google Scholar 

  487. Tsutsui S et al. Macrophage infiltration and its prognostic implications in breast cancer: the relationship with VEGF expression and microvessel density. Oncol Rep. 2005;14(2):425–31.

    CAS  PubMed  Google Scholar 

  488. Bolat F et al. Microvessel density, VEGF expression, and tumor-associated macrophages in breast tumors: correlations with prognostic parameters. Vascular. 2006;14:15.

    Google Scholar 

  489. Oosterling SJ et al. Macrophages direct tumour histology and clinical outcome in a colon cancer model. J Pathol. 2005;207(2):147–55.

    PubMed  Google Scholar 

  490. DeNardo DG, Johansson M, Coussens LM. Immune cells as mediators of solid tumor metastasis. Cancer Metastasis Rev. 2008;27(1):11–8.

    CAS  PubMed  Google Scholar 

  491. Wang W et al. Tumor cells caught in the act of invading: their strategy for enhanced cell motility. Trends Cell Biol. 2005;15(3):138–45.

    CAS  PubMed  Google Scholar 

  492. Condeelis J, Singer RH, Segall JE. The great escape: when cancer cells hijack the genes for chemotaxis and motility. Annu Rev Cell Dev Biol. 2005;21:695–718.

    CAS  PubMed  Google Scholar 

  493. Yamaguchi H, Pixley F, Condeelis J. Invadopodia and podosomes in tumor invasion. Eur J Cell Biol. 2006;85(3):213–8.

    CAS  PubMed  Google Scholar 

  494. Leek RD, Harris AL. Tumor-associated macrophages in breast cancer. J Mammary Gland Biol Neoplasia. 2002;7(2):177–89.

    PubMed  Google Scholar 

  495. Ries, C.H., et al., Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell, 2014

  496. Ries CH et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell. 2014;25(6):846–59.

    CAS  PubMed  Google Scholar 

  497. Pyonteck SM et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 2013;19(10):1264–72.

    CAS  PubMed  Google Scholar 

  498. Nathan C. Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol. 2006;6(3):173–82.

    CAS  PubMed  Google Scholar 

  499. Phillipson M, Kubes P. The neutrophil in vascular inflammation. Nat Med. 2011;17(11):1381–90.

    CAS  PubMed  Google Scholar 

  500. Huh SJ et al. Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Res. 2010;70(14):6071–82.

    PubMed Central  CAS  PubMed  Google Scholar 

  501. Cools-Lartigue J et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Investig. 2013;123(8):3446–58.

    PubMed Central  CAS  Google Scholar 

  502. Teramukai S et al. Pretreatment neutrophil count as an independent prognostic factor in advanced non-small-cell lung cancer: an analysis of Japan Multinational Trial Organisation LC00-03. Eur J Cancer. 2009;45(11):1950–8.

    PubMed  Google Scholar 

  503. McDonald B et al. Systemic inflammation increases cancer cell adhesion to hepatic sinusoids by neutrophil mediated mechanisms. Int J Cancer. 2009;125(6):1298–305.

    CAS  PubMed  Google Scholar 

  504. Spicer JD et al. Neutrophils promote liver metastasis via Mac-1-mediated interactions with circulating tumor cells. Cancer Res. 2012;72(16):3919–27.

    CAS  PubMed  Google Scholar 

  505. Auguste P et al. The host inflammatory response promotes liver metastasis by increasing tumor cell arrest and extravasation. Am J Pathol. 2007;170(5):1781–92.

    PubMed Central  PubMed  Google Scholar 

  506. Liang S et al. Effects of the tumor-leukocyte microenvironment on melanoma–neutrophil adhesion to the endothelium in a shear flow. Cell Mol Biol. 2008;1(2–3):189–200.

    Google Scholar 

  507. Nozawa H, Chiu C, Hanahan D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci U S A. 2006;103(33):12493–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  508. Lynn KD, Roland CL, Brekken RA. VEGF and pleiotrophin modulate the immune profile of breast cancer. Cancers. 2010;2(2):970–88.

    PubMed Central  CAS  PubMed  Google Scholar 

  509. Lee AM et al. Modeling and simulation of procoagulant circulating tumor cells in flow. Front Oncol. 2012;2:184.

    CAS  Google Scholar 

  510. Mantovani A et al. Cancer-related inflammation. Nature. 2008;454(7203):436–44.

    CAS  PubMed  Google Scholar 

  511. Sethi G, Sung B, Aggarwal BB. TNF: a master switch for inflammation to cancer. Front Biosci. 2008;13(2):5094–107.

    CAS  PubMed  Google Scholar 

  512. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  513. Kumar D et al. Synthesis and evaluation of anticancer benzoxazoles and benzimidazoles related to UK-1. Bioorg Med Chem. 2002;10(12):3997–4004.

    CAS  PubMed  Google Scholar 

  514. Combe B. Thalidomide: new indications? Joint Bone Spine. 2001;68(6):582–7.

    CAS  PubMed  Google Scholar 

  515. D’Amato RJ et al. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A. 1994;91(9):4082–5.

    PubMed Central  PubMed  Google Scholar 

  516. Keifer JA et al. Inhibition of NF-kappa B activity by thalidomide through suppression of IkappaB kinase activity. J Biol Chem. 2001;276(25):22382–7.

    CAS  PubMed  Google Scholar 

  517. Laber DA et al. A phase I study of thalidomide, capecitabine and temozolomide in advanced cancer. Cancer Biol Ther. 2007;6(6):840–5.

    CAS  PubMed  Google Scholar 

  518. Zidi I et al. TNF-alpha and its inhibitors in cancer. Med Oncol. 2010;27(2):185–98.

    CAS  PubMed  Google Scholar 

  519. Zavadil J, Böttinger EP. TGF-β and epithelial-to-mesenchymal transitions. Oncogene. 2005;24(37):5764–74.

    CAS  PubMed  Google Scholar 

  520. Giampieri S, Pinner S, Sahai E. Intravital imaging illuminates transforming growth factor β signaling switches during metastasis. Cancer Res. 2010;70(9):3435–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  521. Yang L et al. Abrogation of TGFβ signaling in mammary carcinomas recruits Gr-1+ CD11b + myeloid cells that promote metastasis. Cancer Cell. 2008;13(1):23–35.

    PubMed Central  CAS  PubMed  Google Scholar 

  522. Tseng D, Vasquez-Medrano DA, Brown JM. Targeting SDF-1/CXCR4 to inhibit tumour vasculature for treatment of glioblastomas. Br J Cancer. 2011;104(12):1805–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  523. Redjal N et al. CXCR4 inhibition synergizes with cytotoxic chemotherapy in gliomas. Clin Cancer Res. 2006;12(22):6765–71.

    CAS  PubMed  Google Scholar 

  524. Fricker SP. Physiology and pharmacology of plerixafor. Transfus Med Hemother. 2013;40(4):237–45.

    PubMed Central  PubMed  Google Scholar 

  525. Zeng Z et al. SDF-1 inhibition using Spiegelmer® Nox-A12 as a novel strategy for targeting AML cells within their BM microenvironment. Blood. 2013;122:2454–2454.

    Google Scholar 

  526. Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147(2):275–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  527. Yu M et al. Circulating tumor cells: approaches to isolation and characterization. J Cell Biol. 2011;192(3):373–82.

    PubMed Central  CAS  PubMed  Google Scholar 

  528. Frisch SM, Ruoslahti E. Integrins and anoikis. Curr Opin Cell Biol. 1997;9(5):701–6.

    CAS  PubMed  Google Scholar 

  529. Guo W, Giancotti FG. Integrin signalling during tumour progression. Nat Rev Mol Cell Biol. 2004;5(10):816–26.

    CAS  PubMed  Google Scholar 

  530. Guadamillas MC, Cerezo A, del Pozo MA. Overcoming anoikis—pathways to anchorage-independent growth in cancer. J Cell Sci. 2011;124(19):3189–97.

    CAS  PubMed  Google Scholar 

  531. Smets FN et al. Loss of cell anchorage triggers apoptosis (anoikis) in primary mouse hepatocytes. Mol Genet Metab. 2002;75(4):344–52.

    CAS  PubMed  Google Scholar 

  532. Tanaka K et al. Neurotrophic receptor, tropomyosin‐related kinase B as an independent prognostic marker in gastric cancer patients. J Surg Oncol. 2009;99(5):307–10.

    CAS  PubMed  Google Scholar 

  533. Douma S et al. Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature. 2004;430(7003):1034–9.

    CAS  PubMed  Google Scholar 

  534. Kenific CM, Thorburn A, Debnath J. Autophagy and metastasis: another double-edged sword. Curr Opin Cell Biol. 2010;22(2):241–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  535. Meng S et al. Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res. 2004;10(24):8152–62.

    PubMed  Google Scholar 

  536. Kochetkova M, Kumar S, McColl SR. Chemokine receptors CXCR4 and CCR7 promote metastasis by preventing anoikis in cancer cells. Cell Death Differ. 2009;16(5):664–73.

    CAS  PubMed  Google Scholar 

  537. Schempp CM et al. V-ATPase inhibition regulates anoikis resistance and metastasis of cancer cells. Mol Cancer Ther. 2014;13(4):926–37.

    CAS  PubMed  Google Scholar 

  538. Klubo-Gwiezdzinska J et al. Metformin inhibits growth and decreases resistance to anoikis in medullary thyroid cancer cells. Endocr Relat Cancer. 2012;19(3):447–56.

    CAS  PubMed  Google Scholar 

  539. Fidler IJ et al. The seed and soil hypothesis: vascularisation and brain metastases. Lancet Oncol. 2002;3(1):53–7.

    CAS  PubMed  Google Scholar 

  540. Korb T et al. Integrity of actin fibers and microtubules influences metastatic tumor cell adhesion. Exp Cell Res. 2004;299(1):236–47.

    CAS  PubMed  Google Scholar 

  541. Avvisato CL et al. Mechanical force modulates global gene expression and β-catenin signaling in colon cancer cells. J Cell Sci. 2007;120(15):2672–82.

    CAS  PubMed  Google Scholar 

  542. Chiu J-J, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91(1):327–87.

    PubMed  Google Scholar 

  543. Barnes JM, Nauseef JT, Henry MD. Resistance to fluid shear stress is a conserved biophysical property of malignant cells. PLoS One. 2012;7(12):e50973.

    PubMed Central  PubMed  Google Scholar 

  544. Swartz MA, Lund AW. Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat Rev Cancer. 2012;12(3):210–9.

    CAS  PubMed  Google Scholar 

  545. Pedersen JA, Boschetti F, Swartz MA. Effects of extracellular fiber architecture on cell membrane shear stress in a 3D fibrous matrix. J Biomech. 2007;40(7):1484–92.

    PubMed  Google Scholar 

  546. Burdick MM et al. Colon carcinoma cell glycolipids, integrins, and other glycoproteins mediate adhesion to HUVECs under flow. Am J Physiol-Cell Physiol. 2003;284(4):C977–87.

    CAS  PubMed  Google Scholar 

  547. Mitchell MJ, King MR. Computational and experimental models of cancer cell response to fluid shear stress. Front Oncol. 2013;3:44.

    PubMed Central  PubMed  Google Scholar 

  548. Smith HA, Kang Y. The metastasis-promoting roles of tumor-associated immune cells. J Mol Med. 2013;91(4):411–29.

    PubMed Central  CAS  PubMed  Google Scholar 

  549. Ruffell B et al. Lymphocytes in cancer development: polarization towards pro-tumor immunity. Cytokine Growth Factor Rev. 2010;21(1):3–10.

    PubMed Central  CAS  PubMed  Google Scholar 

  550. Garcia‐Lora A, Algarra I, Garrido F. MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol. 2003;195(3):346–55.

    PubMed  Google Scholar 

  551. Luo J-L, Kamata H, Karin M. IKK/NF-κB signaling: balancing life and death—a new approach to cancer therapy. J Clin Invest. 2005;115(10):2625–32.

    PubMed Central  CAS  PubMed  Google Scholar 

  552. Kim S et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature. 2009;457(7225):102–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  553. Bonecchi R et al. Chemokines and chemokine receptors: an overview. Front Biosci (Landmark edition). 2008;14:540–51.

    Google Scholar 

  554. Lee BJ et al. Tissue factor is involved in retinoblastoma cell proliferation via both the Akt and extracellular signal-regulated kinase pathways. Oncol Rep. 2011;26(3):665.

    CAS  PubMed  Google Scholar 

  555. Liu Y et al. Tissue factor-activated coagulation cascade in the tumor microenvironment is critical for tumor progression and an effective target for therapy. Cancer Res. 2011;71(20):6492–502.

    CAS  PubMed  Google Scholar 

  556. Versteeg HH et al. Tissue factor and cancer metastasis: the role of intracellular and extracellular signaling pathways. Mol Med. 2004;10(1–6):6.

    PubMed Central  CAS  PubMed  Google Scholar 

  557. Tormoen GW et al. Do circulating tumor cells play a role in coagulation and thrombosis? Front Oncol. 2012;2:115.

    PubMed Central  PubMed  Google Scholar 

  558. Welsh J et al. Tissue factor expression determines tumour cell coagulation kinetics. Int J Lab Hematol. 2012;34(4):396–402.

    CAS  PubMed  Google Scholar 

  559. Breij EC et al. An antibody-drug conjugate that targets tissue factor exhibits potent therapeutic activity against a broad range of solid tumors. Cancer Res. 2014;74(4):1214–26.

    CAS  PubMed  Google Scholar 

  560. Belloc C et al. The effect of platelets on invasiveness and protease production of human mammary tumor cells. Int J Cancer. 1995;60(3):413–7.

    CAS  PubMed  Google Scholar 

  561. Erpenbeck L et al. Inhibition of platelet GPIbα and promotion of melanoma metastasis. J Invest Dermatol. 2009;130(2):576–86.

    PubMed  Google Scholar 

  562. Shau H, Roth M, Golub S. Regulation of natural killer function by nonlymphoid cells. Nat Immun. 1992;12(4–5):235–49.

    Google Scholar 

  563. Kopp H-G, Placke T, Salih HR. Platelet-derived transforming growth factor-β down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Res. 2009;69(19):7775–83.

    CAS  PubMed  Google Scholar 

  564. Bambace N, Holmes C. The platelet contribution to cancer progression. J Thromb Haemost. 2011;9(2):237–49.

    CAS  PubMed  Google Scholar 

  565. Placke T et al. Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Res. 2012;72(2):440–8.

    CAS  PubMed  Google Scholar 

  566. Palumbo J.S. Mechanisms linking tumor cell-associated procoagulant function to tumor dissemination. in Seminars in thrombosis and hemostasis. 2008. © Thieme Medical Publishers.

  567. Coupland LA, Chong BH, Parish CR. Platelets and p-selectin control tumor cell metastasis in an organ-specific manner and independently of NK cells. Cancer Res. 2012;72(18):4662–71.

    CAS  PubMed  Google Scholar 

  568. Jurasz P. D. Alonso‐Escolano, and M.W. Radomski, Platelet–cancer interactions: mechanisms and pharmacology of tumour cell‐induced platelet aggregation. Br J Pharmacol. 2004;143(7):819–26.

    PubMed Central  CAS  PubMed  Google Scholar 

  569. Toliopoulos IK et al. Resveratrol diminishes platelet aggregation and increases susceptibility of K562 tumor cells to natural killer cells. Indian J Biochem Biophys. 2013;50(1):14–8.

    CAS  PubMed  Google Scholar 

  570. Amirkhosravi A et al. Inhibition of tumor cell-induced platelet aggregation and lung metastasis by the oral GpIIb/IIIa antagonist XV454. Thromb Haemost. 2003;90(3):549–54.

    CAS  PubMed  Google Scholar 

  571. Stoletov K et al. Visualizing extravasation dynamics of metastatic tumor cells. J Cell Sci. 2010;123(13):2332–41.

    PubMed Central  CAS  PubMed  Google Scholar 

  572. Strell C, Entschladen F. Extravasation of leukocytes in comparison to tumor cells. Cell Commun Signal. 2008;6(10):5.

    Google Scholar 

  573. Schlüter K et al. Organ-specific metastatic tumor cell adhesion and extravasation of colon carcinoma cells with different metastatic potential. Am J Pathol. 2006;169(3):1064–73.

    PubMed Central  PubMed  Google Scholar 

  574. Jeon JS et al. In vitro model of tumor cell extravasation. PLoS One. 2013;8(2):e56910.

    PubMed Central  CAS  PubMed  Google Scholar 

  575. Weis SM, Cheresh DA. Pathophysiological consequences of VEGF-induced vascular permeability. Nature. 2005;437(7058):497–504.

    CAS  PubMed  Google Scholar 

  576. Colmone A et al. Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science. 2008;322(5909):1861–5.

    CAS  PubMed  Google Scholar 

  577. Kienast Y et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat Med. 2010;16(1):116–22.

    CAS  PubMed  Google Scholar 

  578. Heyder C et al. Visualization of tumor cell extravasation. Contrib Microbiol. 2006;13:200–8.

    PubMed  Google Scholar 

  579. Kim J-E et al. RGD peptides released from βig-h3, a TGF-β-induced cell-adhesive molecule, mediate apoptosis. Oncogene. 2003;22(13):2045–53.

    CAS  PubMed  Google Scholar 

  580. Padua D et al. TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 2008;133(1):66–77.

    PubMed Central  CAS  PubMed  Google Scholar 

  581. Lu X, Kang Y. Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clin Cancer Res. 2010;16(24):5928–35.

    PubMed Central  CAS  PubMed  Google Scholar 

  582. Fidler IJ, Poste G. The “seed and soil” hypothesis revisited. Lancet Oncol. 2008;9(8):808.

    PubMed  Google Scholar 

  583. Fidler IJ et al. The brain microenvironment and cancer metastasis. Mol Cells. 2010;30(2):93–8.

    CAS  PubMed  Google Scholar 

  584. Trinh VA, Hwu W-J. Chemoprevention for brain metastases. Curr Oncol Rep. 2012;14(1):63–9.

    CAS  PubMed  Google Scholar 

  585. Woodhouse EC, Chuaqui RF, Liotta LA. General mechanisms of metastasis. Cancer. 1997;80(S8):1529–37.

    CAS  PubMed  Google Scholar 

  586. Talmadge JE, Fidler IJ. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res. 2010;70(14):5649–69.

    PubMed Central  CAS  PubMed  Google Scholar 

  587. Mathot L, Stenninger J. Behavior of seeds and soil in the mechanism of metastasis: a deeper understanding. Cancer Sci. 2012;103(4):626–31.

    CAS  PubMed  Google Scholar 

  588. Langley RR, Fidler IJ. Tumor cell-organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocr Rev. 2007;28(3):297–321.

    CAS  PubMed  Google Scholar 

  589. Fidler IJ, Kripke ML. Genomic analysis of primary tumors does not address the prevalence of metastatic cells in the population. Nat Genet. 2003;34(1):23–23.

    CAS  PubMed  Google Scholar 

  590. Ruoslahti E. Vascular zip codes in angiogenesis and metastasis. Biochem Soc Trans. 2004;32:397–402.

    CAS  PubMed  Google Scholar 

  591. Müller A et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410(6824):50–6.

    PubMed  Google Scholar 

  592. Uhr JW, Pantel K. Controversies in clinical cancer dormancy. Proc Natl Acad Sci U S A. 2011;108(30):12396–400.

    PubMed Central  CAS  PubMed  Google Scholar 

  593. Naumov GN et al. Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res. 2002;62(7):2162–8.

    CAS  PubMed  Google Scholar 

  594. Gelao L et al. Tumour dormancy and clinical implications in breast cancer. Ecancermedicalscience. 2013;7:320.

    PubMed Central  CAS  PubMed  Google Scholar 

  595. Udagawa T. Tumor dormancy of primary and secondary cancers. Apmis. 2008;116(7‐8):615–28.

    CAS  PubMed  Google Scholar 

  596. Almog N. Molecular mechanisms underlying tumor dormancy. Cancer Lett. 2010;294(2):139–46.

    CAS  PubMed  Google Scholar 

  597. Baeriswyl V. and Christofori G. The angiogenic switch in carcinogenesis. in Seminars in cancer biology. 2009. Elsevier.

  598. Watnick RS et al. RETRACTED: Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell. 2003;3(3):219–31.

    CAS  PubMed  Google Scholar 

  599. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996;86(3):p. 353–364.

    PubMed  Google Scholar 

  600. Hensel JA, Flaig TW, Theodorescu D. Clinical opportunities and challenges in targeting tumour dormancy. Nat Rev Clin Oncol. 2012;10(1):41–51.

    PubMed  Google Scholar 

  601. Barkan D et al. Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res. 2008;68(15):6241–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  602. Bragado P. et al., Microenvironments dictating tumor cell dormancy, in Minimal residual disease and circulating tumor cells in breast cancer. 2012, Springer. p. 25-39.

  603. Aguirre-Ghiso JA et al. Urokinase receptor and fibronectin regulate the ERKMAPK to p38MAPK activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol Biol Cell. 2001;12(4):863–79.

    PubMed Central  CAS  PubMed  Google Scholar 

  604. Allgayer H, Aguirre‐ghiso JA. The urokinase receptor (u‐PAR)—a link between tumor cell dormancy and minimal residual disease in bone marrow? Apmis. 2008;116(7‐8):602–14.

    PubMed Central  CAS  PubMed  Google Scholar 

  605. Kren A et al. Increased tumor cell dissemination and cellular senescence in the absence of β1‐integrin function. EMBO J. 2007;26(12):2832–42.

    PubMed Central  CAS  PubMed  Google Scholar 

  606. Teng MW et al. Immune-mediated dormancy: an equilibrium with cancer. J Leukocyte Biol. 2008;84(4):988–93.

    CAS  PubMed  Google Scholar 

  607. Moserle L, Amadori A, Indraccolo S. The angiogenic switch: implications in the regulation of tumor dormancy. Curr Mol Med. 2009;9(8):935–41.

    CAS  PubMed  Google Scholar 

  608. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329–60.

    CAS  PubMed  Google Scholar 

  609. Chambers AF. Influence of diet on metastasis and tumor dormancy. Clin Exp Metastasis. 2009;26(1):61–6.

    CAS  PubMed  Google Scholar 

  610. Gewirtz DA. Autophagy, senescence and tumor dormancy in cancer therapy. Autophagy. 2009;5(8):1232–4.

    PubMed  Google Scholar 

  611. Troyanovsky B et al. Angiomotin: an angiostatin binding protein that regulates endothelial cell migration and tube formation. J Cell Biol. 2001;152(6):1247–54.

    PubMed Central  CAS  PubMed  Google Scholar 

  612. Zhang X et al. Induction of mitochondrial dysfunction as a strategy for targeting tumour cells in metabolically compromised microenvironments. Nat Commun. 2014;5:3295.

    PubMed Central  PubMed  Google Scholar 

  613. El Touny LH et al. Combined SFK/MEK inhibition prevents metastatic outgrowth of dormant tumor cells. J Clin Invest. 2014;124(1):156–68.

    PubMed Central  PubMed  Google Scholar 

  614. Perren TJ et al. A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med. 2011;365(26):2484–96.

    CAS  PubMed  Google Scholar 

  615. O’Reilly MS et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell. 1994;79(2):315–28.

    PubMed  Google Scholar 

  616. O’Reilly MS et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 1997;88(2):277–85.

    PubMed  Google Scholar 

  617. Folkman J. Antiangiogenesis in cancer therapy—endostatin and its mechanisms of action. Exp Cell Res. 2006;312(5):594–607.

    CAS  PubMed  Google Scholar 

  618. Volpert OV, Lawler J, Bouck NP. A human fibrosarcoma inhibits systemic angiogenesis and the growth of experimental metastases via thrombospondin-1. Proc Natl Acad Sci U S A. 1998;95(11):6343–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  619. Hahnfeldt P et al. Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res. 1999;59(19):4770–5.

    CAS  PubMed  Google Scholar 

  620. Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov. 2007;6(4):273–86.

    CAS  PubMed  Google Scholar 

  621. Folkman J. Angiogenesis inhibitors generated by tumors. Mol Med. 1995;1(2):120–2.

    PubMed Central  CAS  PubMed  Google Scholar 

  622. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1(1):27–31.

    CAS  PubMed  Google Scholar 

  623. Benzekry S, Gandolfi A, Hahnfeldt P. Global dormancy of metastases due to systemic inhibition of angiogenesis. PLoS One. 2014;9(1):e84249.

    PubMed Central  PubMed  Google Scholar 

  624. Livant DL et al. Anti-invasive, antitumorigenic, and antimetastatic activities of the PHSCN sequence in prostate carcinoma. Cancer Res. 2000;60(2):309–20.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Tehran University of Medical Sciences.

Conflicts of interest

The authors report no conflicts of interest. The authors alone are responsible for the content of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mohammad Alizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alizadeh, A.M., Shiri, S. & Farsinejad, S. Metastasis review: from bench to bedside. Tumor Biol. 35, 8483–8523 (2014). https://doi.org/10.1007/s13277-014-2421-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2421-z

Keywords

Navigation