Skip to main content

Advertisement

Log in

The Prognosis of Cancer Depends on the Interplay of Autophagy, Apoptosis, and Anoikis within the Tumor Microenvironment

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Within the tumor microenvironment, the fight between the immune system and cancer influences tumor transformation. Metastasis formation is an important stage in the progression of cancer. This process is aided by cellular detachment and resistance to anoikis, which are achieved by altering intercellular signaling. Autophagy, specifically pro-survival autophagy, aids cancer cells in developing treatment resistance. Numerous studies have shown that autophagy promotes tumor growth and resistance to anoikis. To regulate protective autophagy, cancer-related genes phosphorylate both pro- and anti-apoptotic proteins. Apoptosis, a type of controlled cell death, eliminates damaged or unwanted cells. Anoikis is a type of programmed cell death in which cells lose contact with the extracellular matrix. The dysregulation of these cellular pathways promotes tumor growth and spread. Apoptosis, anoikis, and autophagy interact meticulously and differently depending on the cellular circumstances. For instance, autophagy can protect cancer cells from apoptosis by removing cellular components that are damaged and might otherwise trigger apoptotic pathways. Similarly, anoikis dysregulation can trigger autophagy by causing cellular harm and metabolic stress. In order to prevent or treat metastatic disease, specifically, targeting these cellular mechanisms may present a promising prospect for cancer therapy. This review discourses the state of our understanding of the molecular and cellular mechanisms underlying tumor transformation and the establishment of metastatic tumors. To enhance the prognosis for cancer, we highlight and discuss potential therapeutic approaches that target these processes and genes involved in them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Miller, K. D. et al. (2019). Cancer treatment and survivorship statistics. CA: A Cancer Journal for Clinicians, 69(5 Sep), 363–385. https://doi.org/10.3322/caac.21565.

    Article  PubMed  Google Scholar 

  2. Arneth, B. (2020) Tumor microenvironment, Medicina, 56, 1 Jan., https://doi.org/10.3390/MEDICINA56010015.

  3. Spill, F., Reynolds, D. S., Kamm, R. D., & Zaman, M. H. (2016). Impact of the physical microenvironment on tumor progression and metastasis. Current Opinion in Biotechnology, 40(Aug), 41–48. https://doi.org/10.1016/J.COPBIO.2016.02.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Del Prete, A., Schioppa, T., Tiberio, L., Stabile, H., & Sozzani, S. (2017). Leukocyte trafficking in tumor microenvironment. Current Opinion in Pharmacology, 35(Aug), 40–47. https://doi.org/10.1016/J.COPH.2017.05.004.

    Article  PubMed  Google Scholar 

  5. Baghban, R., et al. (2020). Tumor microenvironment complexity and therapeutic implications at a glance. Cell Communication and Signaling, 18(1 Dec), 59 https://doi.org/10.1186/s12964-020-0530-4.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  7. Denk, D., & Greten, F. R. (2022). Inflammation: the incubator of the tumor microenvironment. Trends in Cancer, 8(11 Nov), 901–914. https://doi.org/10.1016/j.trecan.2022.07.002.

    Article  CAS  PubMed  Google Scholar 

  8. Jahanban-Esfahlan, R., Seidi, K., Manjili, M. H., Jahanban-Esfahlan, A., Javaheri, T., & Zare, P. (2019). Tumor cell dormancy: threat or opportunity in the fight against cancer. Cancers (Basel), 11(8 Aug), 1207 https://doi.org/10.3390/cancers11081207.

    Article  CAS  PubMed  Google Scholar 

  9. Bayne, L. J., et al. (2012). Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell, 21(6), 822–835. https://doi.org/10.1016/j.ccr.2012.04.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ferraresi, A., et al. (2020) How autophagy shapes the tumor microenvironment in ovarian cancer, Frontiers in Oncology, 10, Dec., https://doi.org/10.3389/fonc.2020.599915.

  11. Safa, A. R. (2022). Drug and apoptosis resistance in cancer stem cells (CSCs): a puzzle with many pieces. Cancer Drug Resistance, 5(4), 850–72. https://doi.org/10.20517/cdr.2022.20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nepali, P. R., & Kyprianou, N. (2023) Anoikis in phenotypic reprogramming of the prostate tumor microenvironment, Frontiers in Endocrinology (Lausanne)., 14, Apr., https://doi.org/10.3389/fendo.2023.1160267.

  13. Li, X., He, S., & Ma, B. (2020). Autophagy and autophagy-related proteins in cancer. Molecular Cancer, 19(1 Dec), 12 https://doi.org/10.1186/s12943-020-1138-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Poillet-Perez, L., Sarry, J.-E., & Joffre, C. (2021). Autophagy is a major metabolic regulator involved in cancer therapy resistance. Cell Reports, 36(7), 109528. https://doi.org/10.1016/j.celrep.2021.109528.

    Article  CAS  PubMed  Google Scholar 

  15. Yin, X., Xin, H., Mao, S., Wu, G., & Guo, L. (2019) The role of autophagy in sepsis: protection and injury to organs, Frontiers in Physiology, 10, Aug., https://doi.org/10.3389/fphys.2019.01071.

  16. White, E., & DiPaola, R. S. (2009). The double-edged sword of autophagy modulation in cancer. Clinical Cancer Research, 15(17 Sep), 5308–5316. https://doi.org/10.1158/1078-0432.CCR-07-5023.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liu, M., et al. (2018). Cytoplasmic liver kinase B1 promotes the growth of human lung adenocarcinoma by enhancing autophagy. Cancer Science, 109(10 Oct), 3055–3067. https://doi.org/10.1111/cas.13746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yun, C. W., Lee, S. H. (2018) The roles of autophagy in cancer, International Journal of Molecular Sciences, 19, 11, Nov. MDPI AG. https://doi.org/10.3390/ijms19113466.

  19. Luo, T., et al. (2016). PSMD10/gankyrin induces autophagy to promote tumor progression through cytoplasmic interaction with ATG7 and nuclear transactivation of ATG7 expression. Autophagy, 12(8 Aug), 1355–1371. https://doi.org/10.1080/15548627.2015.1034405.

    Article  CAS  PubMed  Google Scholar 

  20. Walczak, M., & Martens, S. (2013). Dissecting the role of the Atg12–Atg5-Atg16 complex during autophagosome formation. Autophagy, 9(3 Mar), 424–425. https://doi.org/10.4161/auto.22931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Badadani, M. (2012) Autophagy mechanism, regulation, functions, and disorders, International Scholarly Research Network ISRN Cell Biology, 2012, 11, https://doi.org/10.5402/2012/927064.

  22. Lee, Y.-K., & Lee, J.-A. (2016). Role of the mammalian ATG8/LC3 family in autophagy: differential and compensatory roles in the spatiotemporal regulation of autophagy. BMB Reports, 49(8 Aug), 424–430. https://doi.org/10.5483/BMBRep.2016.49.8.081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, D., Fan, W., Lu, Y., Ding, X., Chen, S., & Zhong, Q. (2012). A mammalian autophagosome maturation mechanism mediated by TECPR1 and the Atg12-Atg5 conjugate. Molecular Cell, 45(5), 629–641. https://doi.org/10.1016/j.molcel.2011.12.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rouschop, K. M. A., et al. (2010). The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. Journal of Clinical Investigation, 120(1 Jan), 127–141. https://doi.org/10.1172/JCI40027.

    Article  CAS  PubMed  Google Scholar 

  25. Chen, Q., Kang, J., & Fu, C. (2018). The independence of and associations among apoptosis, autophagy, and necrosis. Signal Transduction and Targeted Therapy, 3(1 Jul), 18 https://doi.org/10.1038/s41392-018-0018-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ayla, S., & Karahüseyinoğlu, S. (2019). Cancer stem cells, their microenvironment and anoikis. Critical Reviews in Oncogenesis, 24(1), 27–34. https://doi.org/10.1615/CritRevOncog.2018029433.

    Article  PubMed  Google Scholar 

  27. Sattari Fard, F., Jalilzadeh, N., Mehdizadeh, A., Sajjadian, F., & Velaei, K. (2023). Understanding and targeting anoikis in metastasis for cancer therapies. Cell Biology International, 47(4 Apr), 683–698. https://doi.org/10.1002/cbin.11970.

    Article  CAS  PubMed  Google Scholar 

  28. Corkery, D. P., et al. (2018). Loss of PRP4K drives anoikis resistance in part by dysregulation of epidermal growth factor receptor endosomal trafficking. Oncogene, 37(2 Jan), 174–184. https://doi.org/10.1038/onc.2017.318.

    Article  CAS  PubMed  Google Scholar 

  29. Schwartz, M. A. (2010). Remembrance of dead cells past: discovering that the extracellular matrix is a cell survival factor. Molecular Biology of the Cell, 21(4 Feb), 499–500. https://doi.org/10.1091/mbc.E09-07-0602. American Society for Cell Biology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim, Y. N., Koo, K. H., Sung, J. Y., Yun, U. J., & Kim, H. (2012) Anoikis resistance: an essential prerequisite for tumor metastasis, International Journal of Cell Biology. https://doi.org/10.1155/2012/306879.

  31. Barriere, G., Fici, P., Gallerani, G., Fabbri, F., & Rigaud, M. (2015) Epithelial Mesenchymal Transition: a double‐edged sword, Clinical and Translational Medicine, 4, 1, Dec. https://doi.org/10.1186/s40169-015-0055-4.

  32. Heerboth, S. et al., (2015) EMT and tumor metastasis, Clinical and Translational Medicine, 4, 1, Dec. https://doi.org/10.1186/s40169-015-0048-3.

  33. RUSSO, M. A., et al. (2013). A small-molecule RGD-integrin antagonist inhibits cell adhesion, cell migration and induces anoikis in glioblastoma cells. International Journal of Oncology, 42(1 Jan), 83–92. https://doi.org/10.3892/ijo.2012.1708.

    Article  CAS  PubMed  Google Scholar 

  34. Zhong, X., & Rescorla, F. J. (2012). Cell surface adhesion molecules and adhesion-initiated signaling: Understanding of anoikis resistance mechanisms and therapeutic opportunities. Cell Signaling, 24(2 Feb), 393–401. https://doi.org/10.1016/j.cellsig.2011.10.005.

    Article  CAS  Google Scholar 

  35. Wang, J., et al. (2022). Anoikis-associated lung cancer metastasis: mechanisms and therapies. Cancers (Basel), 14(19 Sep), 4791 https://doi.org/10.3390/cancers14194791.

    Article  CAS  PubMed  Google Scholar 

  36. Kim, J. Y., et al. (2017). Disulfiram induces anoikis and suppresses lung colonization in triple-negative breast cancer via calpain activation. Cancer Letters, 386(Feb), 151–160. https://doi.org/10.1016/j.canlet.2016.11.022.

    Article  CAS  PubMed  Google Scholar 

  37. Inge, L. J., et al. (2011). Soluble E-cadherin promotes cell survival by activating epidermal growth factor receptor. Experimental Cell Research, 317(6 Apr), 838–848. https://doi.org/10.1016/j.yexcr.2010.12.025.

    Article  CAS  PubMed  Google Scholar 

  38. Zoppi, N., Chiarelli, N., Ritelli, M., & Colombi, M. (2018). Multifaced roles of the αvβ3 integrin in Ehlers–Danlos and arterial tortuosity syndromes’ dermal fibroblasts. International Journal of Molecular Science, 19(4 Mar), 982. https://doi.org/10.3390/ijms19040982.

    Article  CAS  Google Scholar 

  39. Stanislovas, J., & Kermorgant, S.(2022) c-Met-integrin cooperation: Mechanisms, tumorigenic effects, and therapeutic relevance, Frontiers in Cell and Developmental Biology, 10, Oct., https://doi.org/10.3389/fcell.2022.994528.

  40. Boppart, M. D., & Mahmassani, Z. S. (2019). Integrin signaling: linking mechanical stimulation to skeletal muscle hypertrophy. American Journal of Physiology, 317(4 Oct), C629–C641. https://doi.org/10.1152/ajpcell.00009.2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rocchetti, M. T., Bellanti, F., Zadorozhna, M., Fiocco, D., & Mangieri, D. (2023). Multi-faceted role of luteolin in cancer metastasis: EMT, angiogenesis, ECM degradation and apoptosis. International Journal of Molecular Science, 24(10 May), 8824 https://doi.org/10.3390/ijms24108824.

    Article  CAS  Google Scholar 

  42. Deng, Z., Wang, H., Liu, J., Deng, Y., & Zhang, N. (2021). Comprehensive understanding of anchorage-independent survival and its implication in cancer metastasis. Cell Death & Disease, 12(7 Jun), 629 https://doi.org/10.1038/s41419-021-03890-7.

    Article  CAS  Google Scholar 

  43. Khan, S. U., Fatima, K., & Malik, F. (2022). Understanding the cell survival mechanism of anoikis-resistant cancer cells during different steps of metastasis. Clinical & Experimental Metastasis, 39(5 Oct), 715–726. https://doi.org/10.1007/s10585-022-10172-9.

    Article  Google Scholar 

  44. Wong, T. S., Gao, W., & Chan, J. Y. W. (2014) Interactions between E-cadherin and microrna deregulation in head and neck cancers: the potential interplay, BioMed Research International, Hindawi Publishing Corporation, 2014. https://doi.org/10.1155/2014/126038.

  45. Hayashida, T., Jinno, H., Kitagawa, Y., & Kitajima, M. (2011) Cooperation of cancer stem cell properties and epithelial-mesenchymal transition in the establishment of breast cancer metastasis, Journal of Oncology. https://doi.org/10.1155/2011/591427.

  46. Babaei, G., Aziz, S. G.-G., & Jaghi, N. Z. Z. (2021). EMT, cancer stem cells and autophagy; the three main axes of metastasis. Biomedicine & Pharmacotherapy, 133(Jan), 110909 https://doi.org/10.1016/j.biopha.2020.110909.

    Article  CAS  Google Scholar 

  47. Strauss, S. J., Ng, T., Mendoza‐Naranjo, A., Whelan, J., & Sorensen, P. H. B. (2010). Understanding micrometastatic disease and anoikis resistance in ewing family of tumors and osteosarcoma. Oncologist, 15(6 Jun), 627–635. https://doi.org/10.1634/theoncologist.2010-0093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Taddei, M., Giannoni, E., Fiaschi, T., & Chiarugi, P. (2012). Anoikis: an emerging hallmark in health and diseases. The Journal of Pathology, 226(2 Jan), 380–393. https://doi.org/10.1002/path.3000.

    Article  CAS  PubMed  Google Scholar 

  49. Chaurasia, M., Gupta, S., Das, A., Dwarakanath, B. S., Simonsen, A., & Sharma, K. (2019). Radiation induces EIF2AK3/PERK and ERN1/IRE1 mediated pro-survival autophagy. Autophagy, 15(8 Aug), 1391–1406. https://doi.org/10.1080/15548627.2019.1582973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sakamoto, S., & Kyprianou, N. (2010). Targeting anoikis resistance in prostate cancer metastasis. Molecular Aspects of Medicine, 31(2 Apr), 205–214. https://doi.org/10.1016/j.mam.2010.02.001. NIH Public Access.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Joshi, V., Upadhyay, A., Prajapati, V. K., & Mishra, A. (2020). How autophagy can restore proteostasis defects in multiple diseases? Medical Research Reviews, 40(4 Jul), 1385–1439. https://doi.org/10.1002/med.21662.

    Article  CAS  Google Scholar 

  52. Soto-Burgos, J., Zhuang, X., Jiang, L., & Bassham, D. C. (2018). Dynamics of autophagosome formation. Plant Physiology, 176(1 Jan), 219–229. https://doi.org/10.1104/pp.17.01236.

    Article  CAS  PubMed  Google Scholar 

  53. Nguyen, J. A., & Yates, R. M. (2021) Better together: current insights into phagosome-lysosome fusion. Frontiers in Immunology, 12, Feb., https://doi.org/10.3389/fimmu.2021.636078.

  54. Hollenstein, D. M., & Kraft, C. (2020). Autophagosomes are formed at a distinct cellular structure. Current Opinion in Cell Biology, 65(Aug), 50–57. https://doi.org/10.1016/j.ceb.2020.02.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang, Y., et al. (2023). Construction and validation of a prognostic model based on autophagy-related genes for hepatocellular carcinoma in the Asian population. BMC Genomics, 24(1 Jun), 357 https://doi.org/10.1186/s12864-023-09367-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shi, X., Yokom, A. L., Wang, C., Young, L. N., Youle, R. J., & Hurley, J. H. (2020) ULK complex organization in autophagy by a C-shaped FIP200 N-terminal domain dimer, Journal of Cell Biology, 219, 7 Jul., https://doi.org/10.1083/jcb.201911047.

  57. Zhou, Y., Manghwar, H., Hu, W., & Liu, F. (2022). Degradation mechanism of autophagy-related proteins and research progress. International Journal of Molecular Science, 23(13 Jun), 7301 https://doi.org/10.3390/ijms23137301.

    Article  CAS  Google Scholar 

  58. Kaur, S., & Changotra, H. (2020). The beclin 1 interactome: modification and roles in the pathology of autophagy-related disorders. Biochimie, 175(Aug), 34–49. https://doi.org/10.1016/j.biochi.2020.04.025.

    Article  CAS  PubMed  Google Scholar 

  59. Rogov, V., Dötsch, V., Johansen, T., & Kirkin, V. (2014). Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Molecular Cell, 53(2), 167–178. https://doi.org/10.1016/j.molcel.2013.12.014.

    Article  CAS  PubMed  Google Scholar 

  60. Bresciani, A., et al. (2018). Quantifying autophagy using novel LC3B and p62 TR-FRET assays. PLoS One, 13(3 Mar), e0194423 https://doi.org/10.1371/journal.pone.0194423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Finnegan, R. M., Elshazly, A. M., Schoenlein, P. V., & Gewirtz, D. A. (2022). Therapeutic potential for targeting autophagy in ER+ Breast Cancer. Cancers (Basel), 14(17 Sep), 4289. https://doi.org/10.3390/cancers14174289.

    Article  CAS  PubMed  Google Scholar 

  62. Frudd, K., Burgoyne, T., & Burgoyne, J. R. (2018). Oxidation of Atg3 and Atg7 mediates inhibition of autophagy. Nature Communications, 9(1 Jan), 95 https://doi.org/10.1038/s41467-017-02352-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tanida, I. (2011). Autophagy basics. Microbiology Immunology, 55(1 Jan), 1–11. https://doi.org/10.1111/j.1348-0421.2010.00271.x.

    Article  CAS  PubMed  Google Scholar 

  64. Jewell, J. L., & Guan, K.-L. (2013). Nutrient signaling to mTOR and cell growth. Trends in Biochemical Sciences, 38(5 May), 233–242. https://doi.org/10.1016/j.tibs.2013.01.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Inoki, K. (2014). mTOR signaling in autophagy regulation in the kidney. Seminars in Nephrology, 34(1 Jan), 2–8. https://doi.org/10.1016/j.semnephrol.2013.11.002.

    Article  CAS  PubMed  Google Scholar 

  66. Yamamoto, H., Zhang, S., & Mizushima, N. (2023). Autophagy genes in biology and disease. Nature Reviews Genetics, 24(6 Jun), 382–400. https://doi.org/10.1038/s41576-022-00562-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. de Souza, A. S. C., Gonçalves, L. B., Lepique, A. P., & de Araujo-Souza, P. S. (2020) The role of autophagy in tumor immunology—complex mechanisms that may be explored therapeutically. Frontiers in Oncology, 10, Dec., https://doi.org/10.3389/fonc.2020.603661.

  68. Debnath, J., Gammoh, N., & Ryan, K. M. (2023) Autophagy and autophagy-related pathways in cancer, Nature Reviews Molecular Cell Biology, Mar., https://doi.org/10.1038/s41580-023-00585-z.

  69. Laribee, R. N., Boucher, A. B., Madireddy, S., & Pfeffer, L. M. (2023). The STAT3-regulated autophagy pathway in glioblastoma. Pharmaceuticals, 16(5 Apr), 671. https://doi.org/10.3390/ph16050671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang, X., Lee, J., & Xie, C. (2022). Autophagy regulation on cancer stem cell maintenance, metastasis, and therapy resistance. Cancers (Basel), 14(2 Jan), 381 https://doi.org/10.3390/cancers14020381.

    Article  CAS  PubMed  Google Scholar 

  71. Zhang, Y., et al. (2022). Autophagy-related proteins in genome stability: autophagy-dependent and independent actions. International Journal of Biological Sciences, 18(14), 5329–5344. https://doi.org/10.7150/ijbs.76134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ji, S., et al. (2023). Cellular rejuvenation: molecular mechanisms and potential therapeutic interventions for diseases. Signal Transduction and Targeted Therapy, 8(1 Mar), 116 https://doi.org/10.1038/s41392-023-01343-5.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Deretic, V. (2021). Autophagy in inflammation, infection, and immunometabolism. Immunity, 54(3 Mar), 437–453. https://doi.org/10.1016/j.immuni.2021.01.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Matsuzawa-Ishimoto, Y., Hwang, S., & Cadwell, K. (2018). Autophagy and Inflammation. Annual Review of Immunology, 36(1 Apr), 73–101. https://doi.org/10.1146/annurev-immunol-042617-053253.

    Article  CAS  PubMed  Google Scholar 

  75. Deretic, V., & Klionsky, D. J. (2018). Autophagy and inflammation: a special review issue. Autophagy, 14(2 Feb), 179–180. https://doi.org/10.1080/15548627.2017.1412229.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Deretic, V., Saitoh, T., & Akira, S. (2013). Autophagy in infection, inflammation and immunity. Nature Reviews Immunology, 13(10 Oct), 722–737. https://doi.org/10.1038/nri3532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Painter, J. D., Galle-Treger, L., & Akbari, O. (2020) Role of autophagy in lung inflammation, Frontiers in Immunology, 11, Jul., https://doi.org/10.3389/fimmu.2020.01337.

  78. Messer, J. S. (2017). The cellular autophagy/apoptosis checkpoint during inflammation. Cellular and Molecular Life Sciences, 74(7 Apr), 1281–1296. https://doi.org/10.1007/s00018-016-2403-y.

    Article  CAS  PubMed  Google Scholar 

  79. Ryter, S. W., Mizumura, K., & Choi, A. M. K. (2014). The impact of autophagy on cell death modalities. International Journal of Cell Biology, 2014, 1–12. https://doi.org/10.1155/2014/502676.

    Article  CAS  Google Scholar 

  80. Racanelli, A. C., Kikkers, S. A., Choi, A. M. K., & Cloonan, S. M. (2018). Autophagy and inflammation in chronic respiratory disease. Autophagy, 14(2 Feb), 221–232. https://doi.org/10.1080/15548627.2017.1389823.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Raudenska, M., Balvan, J., & Masarik, M. (2021). Crosstalk between autophagy inhibitors and endosome-related secretory pathways: a challenge for autophagy-based treatment of solid cancers. Molecular Cancer, 20(1 Oct), 140 https://doi.org/10.1186/s12943-021-01423-6.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Bhattacharya, A., Prakash, Y. S., & Eissa, N. T. (2014). Secretory function of autophagy in innate immune cells. Cell Microbiology, 16(11 Nov), 1637–1645. https://doi.org/10.1111/cmi.12365.

    Article  CAS  Google Scholar 

  83. Cybulsky, A. V. (2017). Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nature Reviews Nephrology, 13(11 Nov), 681–696. https://doi.org/10.1038/nrneph.2017.129.

    Article  CAS  PubMed  Google Scholar 

  84. Martinez-Outschoorn, U. E., et al. (2011). Cytokine production and inflammation drive autophagy in the tumor microenvironment. Cell Cycle, 10(11 Jun), 1784–1793. https://doi.org/10.4161/cc.10.11.15674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Reina-Campos, M., Moscat, J., & Diaz-Meco, M. (2017). Metabolism shapes the tumor microenvironment. Current Opinion in Cell Biology, 48(Oct), 47–53. https://doi.org/10.1016/j.ceb.2017.05.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Voronov, E. (2013) Unique versus redundant functions of IL-1α and IL-1β in the tumor microenvironment, Frontiers in Immunology, 4, https://doi.org/10.3389/fimmu.2013.00177.

  87. Bustos, S. O., Antunes, F., Rangel, M. C., & Chammas, R. (2020) Emerging autophagy functions shape the tumor microenvironment and play a role in cancer progression - implications for cancer therapy, Frontiers in Oncology, 10, Nov., https://doi.org/10.3389/fonc.2020.606436.

  88. Dostert, C., Grusdat, M., Letellier, E., & Brenner, D. (2019). The TNF family of ligands and receptors: communication modules in the immune system and beyond. Physiological Reviews, 99(1), 115–160. https://doi.org/10.1152/physrev.00045.2017.

    Article  CAS  PubMed  Google Scholar 

  89. Laha, D., Grant, R., Mishra, P., & Nilubol, N. (2021) The role of tumor necrosis factor in manipulating the immunological response of tumor microenvironment, Frontiers in Immunology, 12, Apr., https://doi.org/10.3389/fimmu.2021.656908.

  90. Sil, S., Niu, F., Tom, E., Liao, K., Periyasamy, P., & Buch, S. (2019). Cocaine mediated neuroinflammation: role of dysregulated autophagy in pericytes. Molecular Neurobiology, 56(5 May), 3576–3590. https://doi.org/10.1007/s12035-018-1325-0.

    Article  CAS  PubMed  Google Scholar 

  91. Kuo, W., Chang, J., Chen, C., Tsao, N., & Chang, C. (2022). Autophagy drives plasticity and functional polarization of tumor‐associated macrophages. IUBMB Life, 74(2 Feb), 157–169. https://doi.org/10.1002/iub.2543.

    Article  CAS  PubMed  Google Scholar 

  92. Abbaszadeh, F., Fakhri, S., & Khan, H. (2020). Targeting apoptosis and autophagy following spinal cord injury: therapeutic approaches to polyphenols and candidate phytochemicals. Pharmacology Research, 160(Oct), 105069. https://doi.org/10.1016/j.phrs.2020.105069.

    Article  CAS  Google Scholar 

  93. Hu, F., et al. (2021). IL-6 regulates autophagy and chemotherapy resistance by promoting BECN1 phosphorylation. Nature Communications, 12(1 Jun), 3651 https://doi.org/10.1038/s41467-021-23923-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Thongchot, S., et al. (2021). Cancer-associated fibroblast-derived IL-6 determines unfavorable prognosis in cholangiocarcinoma by affecting autophagy-associated chemoresponse. Cancers (Basel), 13(9 Apr), 2134. https://doi.org/10.3390/cancers13092134.

    Article  CAS  PubMed  Google Scholar 

  95. Browning, L., Patel, M. R., Horvath, E. B., Tawara, K., & Jorcyk, C. L. (2018). IL-6 and ovarian cancer: inflammatory cytokines in promotion of metastasis. Cancer Management and Research, 10(Dec), 6685–6693. https://doi.org/10.2147/CMAR.S179189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Thongchot, S., et al. (2021). Interleukin‑8 released by cancer‑associated fibroblasts attenuates the autophagy and promotes the migration of ovarian cancer cells. International Journal of Oncology, 58(5 Mar), 14. https://doi.org/10.3892/ijo.2021.5194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Angioni, R., Sánchez-Rodríguez, R., Viola, A., & Molon, B. (2021). TGF-β in cancer: metabolic driver of the tolerogenic crosstalk in the tumor microenvironment. Cancers (Basel), 13(3 Jan), 401 https://doi.org/10.3390/cancers13030401.

    Article  CAS  PubMed  Google Scholar 

  98. du Plessis, M., Davis, T., Loos, B., Pretorius, E., de Villiers, W. J. S., & Engelbrecht, A. M. (2021). Molecular regulation of autophagy in a pro-inflammatory tumour microenvironment: new insight into the role of serum amyloid A. Cytokine & Growth Factor Reviews, 59(Jun), 71–83. https://doi.org/10.1016/j.cytogfr.2021.01.007.

    Article  CAS  Google Scholar 

  99. Fuxe, J., & Karlsson, M. C. I. (2012). TGF-β-induced epithelial-mesenchymal transition: a link between cancer and inflammation. Seminars in Cancer Biology, 22(5–6 Oct), 455–461. https://doi.org/10.1016/j.semcancer.2012.05.004.

    Article  CAS  PubMed  Google Scholar 

  100. Wang, J., Li, D., Cang, H., & Guo, B. (2019). Crosstalk between cancer and immune cells: Role of tumor‐associated macrophages in the tumor microenvironment. Cancer Medicine, 8(10 Aug), 4709–4721. https://doi.org/10.1002/cam4.2327.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Wang, W., et al. (2019). Endometrial TGF-β, IL-10, IL-17 and autophagy are dysregulated in women with recurrent implantation failure with chronic endometritis. Reproductive Biology and Endocrinology, 17(1 Dec), 2 https://doi.org/10.1186/s12958-018-0444-9.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Gerada, C., & Ryan, K. M. (2020). Autophagy, the innate immune response and cancer. Molecular Oncology, 14(9 Sep), 1913–1929. https://doi.org/10.1002/1878-0261.12774.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Jiang, T., Chen, X., Ren, X., Yang, J.-M., & Cheng, Y. (2021). Emerging role of autophagy in anti-tumor immunity: implications for the modulation of immunotherapy resistance. Drug Resistance Updates, 56(May), 100752 https://doi.org/10.1016/j.drup.2021.100752.

    Article  CAS  PubMed  Google Scholar 

  104. Bernard, A., Jin, M., Xu, Z., & Klionsky, D. J. (2015). A large-scale analysis of autophagy-related gene expression identifies new regulators of autophagy. Autophagy, 11(11 Nov), 2114–2122. https://doi.org/10.1080/15548627.2015.1099796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kuo, C.-J., Hansen, M., & Troemel, E. (2018). Autophagy and innate immunity: Insights from invertebrate model organisms. Autophagy, 14(2 Feb), 233–242. https://doi.org/10.1080/15548627.2017.1389824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sil, P., Muse, G., & Martinez, J. (2018). A ravenous defense: canonical and non-canonical autophagy in immunity. Current Opinion in Immunology, 50(Feb), 21–31. https://doi.org/10.1016/j.coi.2017.10.004.

    Article  CAS  PubMed  Google Scholar 

  107. Valečka, J., Almeida, C. R., Su, B., Pierre, P., & Gatti, E. (2018). Autophagy and MHC-restricted antigen presentation. Molecular Immunology, 99(Jul), 163–170. https://doi.org/10.1016/j.molimm.2018.05.009.

    Article  CAS  PubMed  Google Scholar 

  108. Van Kaer, L., Parekh, V. V., Postoak, J. L., & Wu, L. (2019). Role of autophagy in MHC class I-restricted antigen presentation. Molecular Immunology, 113(Sep), 2–5. https://doi.org/10.1016/j.molimm.2017.10.021.

    Article  CAS  PubMed  Google Scholar 

  109. Li, M., Tan, J., Miao, Y., Lei, P., & Zhang, Q. (2015). The dual role of autophagy under hypoxia-involvement of interaction between autophagy and apoptosis. Apoptosis, 20(6 Jun), 769–777. https://doi.org/10.1007/s10495-015-1110-8.

    Article  CAS  PubMed  Google Scholar 

  110. Guadamillas, M. C., Cerezo, A., & Del Pozo, M. A. (2011). Overcoming anoikis–pathways to anchorage-independent growth in cancer. Journal of Cell Science, 124(Pt 19 Oct), 3189–3197. https://doi.org/10.1242/jcs.072165.

    Article  CAS  PubMed  Google Scholar 

  111. Adeshakin, F. O., Adeshakin, A. O., Afolabi, L. O., Yan, D., Zhang, G., & Wan, X. (2021) Mechanisms for modulating anoikis resistance in cancer and the relevance of metabolic reprogramming. Frontiers in Oncology, 11, Mar, https://doi.org/10.3389/fonc.2021.626577.

  112. Paoli, P., Giannoni, E., & Chiarugi, P. (2013). Anoikis molecular pathways and its role in cancer progression. Biochimica et Biophysica Acta - Molecular Cell Research, 1833(12 Dec), 3481–3498. https://doi.org/10.1016/j.bbamcr.2013.06.026.

    Article  CAS  Google Scholar 

  113. Malagobadan, S., & Nagoor, H. (2018) Anoikis, https://doi.org/10.1016/B978-0-12-801238-3.65021-3.

  114. Warren, C. F. A., Wong-Brown, M. W., & Bowden, N. A. (2019). BCL-2 family isoforms in apoptosis and cancer. Cell Death & Disease, 10(3 Feb), 177 https://doi.org/10.1038/s41419-019-1407-6.

    Article  Google Scholar 

  115. Tan, K., Goldstein, D., Crowe, P., & Yang, J.-L. (2013). Uncovering a key to the process of metastasis in human cancers: a review of critical regulators of anoikis. Journal of Cancer Research and Clinical Oncology, 139(11 Nov), 1795–1805. https://doi.org/10.1007/s00432-013-1482-5.

    Article  CAS  PubMed  Google Scholar 

  116. Shamas-Din, A., Kale, J., Leber, B., & Andrews, D. W. (2013). Mechanisms of action of Bcl-2 family proteins. Cold Spring Harbor Perspectives in Biology, 5(4 Apr), a008714–a008714. https://doi.org/10.1101/cshperspect.a008714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Shahar, N., & Larisch, S. (2020). Inhibiting the inhibitors: targeting anti-apoptotic proteins in cancer and therapy resistance. Drug Resistance Updates, 52(Sep), 100712 https://doi.org/10.1016/j.drup.2020.100712.

    Article  PubMed  Google Scholar 

  118. Wei, Y. et al. (2020) Targeting Bcl-2 proteins in acute myeloid leukemia. Frontiers in Oncology, 10, Nov. https://doi.org/10.3389/fonc.2020.584974.

  119. Kapoor, I., Bodo, J., Hill, B. T., Hsi, E. D., & Almasan, A. (2020). Targeting BCL-2 in B-cell malignancies and overcoming therapeutic resistance. Cell Death & Disease, 11(11 Nov), 941 https://doi.org/10.1038/s41419-020-03144-y.

    Article  CAS  Google Scholar 

  120. Hafezi, S., & Rahmani, M. (2021). Targeting BCL-2 in cancer: advances, challenges, and perspectives. Cancers (Basel), 13(6 Mar), 1292 https://doi.org/10.3390/cancers13061292.

    Article  CAS  PubMed  Google Scholar 

  121. Knight, T., Luedtke, D., Edwards, H., Taub, J. W., & Ge, Y. (2019). A delicate balance – The BCL-2 family and its role in apoptosis, oncogenesis, and cancer therapeutics. Biochemical Pharmacology, 162(Apr), 250–261. https://doi.org/10.1016/j.bcp.2019.01.015.

    Article  CAS  PubMed  Google Scholar 

  122. Lopez, A., et al. (2022). Co-targeting of BAX and BCL-XL proteins broadly overcomes resistance to apoptosis in cancer. Nature Communications, 13(1 Mar), 1199 https://doi.org/10.1038/s41467-022-28741-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sarosiek, K. A., & Wood, K. C. (2023). Endogenous and imposed determinants of apoptotic vulnerabilities in cancer. Trends in Cancer, 9(2 Feb), 96–110. https://doi.org/10.1016/j.trecan.2022.10.004.

    Article  CAS  PubMed  Google Scholar 

  124. Carneiro, B. A., & El-Deiry, W. S. (2020). Targeting apoptosis in cancer therapy. Nature Reviews Clinical Oncology, 17(7 Jul), 395–417. https://doi.org/10.1038/s41571-020-0341-y.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Zaman, S., Wang, R., & Gandhi, V. (2014). Targeting the apoptosis pathway in hematologic malignancies. Leukemia & Lymphoma, 55(9 Sep), 1980–1992. https://doi.org/10.3109/10428194.2013.855307.

    Article  CAS  Google Scholar 

  126. McIlwain, D. R., Berger, T., & Mak, T. W. (2013). Caspase functions in cell death and disease. Cold Spring Harbor Perspectives in Biology, 5(4 Apr), a008656–a008656. https://doi.org/10.1101/cshperspect.a008656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kim, Y.-N., Koo, K. H., Sung, J. Y., Yun, U.-J., & Kim, H. (2012). Anoikis resistance: an essential prerequisite for tumor metastasis. International Journal of Cell Biology, 2012, 1–11. https://doi.org/10.1155/2012/306879.

    Article  CAS  Google Scholar 

  128. Raeisi, M., Zehtabi, M., Velaei, K., Fayyazpour, P., Aghaei, N., & Mehdizadeh, A. (2022). Anoikis in cancer: the role of lipid signaling. Cell Biology International, 46(11 Nov), 1717–1728. https://doi.org/10.1002/cbin.11896.

    Article  CAS  PubMed  Google Scholar 

  129. Geissler, A., et al. (2013). Apoptosis induced by the fungal pathogen gliotoxin requires a triple phosphorylation of Bim by JNK. Cell Death Differ, 20(10 Oct), 1317–1329. https://doi.org/10.1038/cdd.2013.78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Siddiqui, W. A., Ahad, A., & Ahsan, H. (2015). The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. Archives of Toxicology, 89(3 Mar), 289–317. https://doi.org/10.1007/s00204-014-1448-7.

    Article  CAS  PubMed  Google Scholar 

  131. Cairns, R. A., Harris, I. S., & Mak, T. W. (2011). Regulation of cancer cell metabolism. Nature Reviews Cancer, 11(2 Feb), 85–95. https://doi.org/10.1038/nrc2981. Nature Publishing Group.

    Article  CAS  PubMed  Google Scholar 

  132. Green, D. R. (2022). The mitochondrial pathway of apoptosis Part II: The BCL-2 protein family. Cold Spring Harbor Perspectives in Biology, 14(6 Jun), a041046 https://doi.org/10.1101/cshperspect.a041046.

    Article  CAS  PubMed  Google Scholar 

  133. Popgeorgiev, N., et al. (2020). Ancient and conserved functional interplay between Bcl-2 family proteins in the mitochondrial pathway of apoptosis. Science Advances, 6(Oct), 40. https://doi.org/10.1126/sciadv.abc4149.

    Article  CAS  Google Scholar 

  134. Peyre, L., Meyer, M., Hofman, P., & Roux, J. (2021). TRAIL receptor-induced features of epithelial-to-mesenchymal transition increase tumour phenotypic heterogeneity: potential cell survival mechanisms. British Journal of Cancer, 124(1 Jan), 91–101. https://doi.org/10.1038/s41416-020-01177-w.

    Article  CAS  PubMed  Google Scholar 

  135. Huang, J., Yu, S., Ji, C., & Li, J. (2015). Structural basis of cell apoptosis and necrosis in TNFR signaling. Apoptosis, 20(2 Feb), 210–215. https://doi.org/10.1007/s10495-014-1061-5.

    Article  CAS  PubMed  Google Scholar 

  136. Kantari, C., & Walczak, H. (2011). Caspase-8 and Bid: Caught in the act between death receptors and mitochondria. Biochimica et Biophysica Acta - Molecular Cell Research, 1813(4 Apr), 558–563. https://doi.org/10.1016/j.bbamcr.2011.01.026.

    Article  CAS  Google Scholar 

  137. Ding, L., et al. (2011). Cisplatin restores TRAIL apoptotic pathway in glioblastoma-derived stem cells through up-regulation of DR5 and down-regulation of c-flip. Cancer Investigation, 29(8), 511–520. https://doi.org/10.3109/07357907.2011.605412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ivanisenko, N. V., et al. (2022). Regulation of extrinsic apoptotic signaling by c-FLIP: towards targeting cancer networks. Trends in Cancer, 8(3 Mar), 190–209. https://doi.org/10.1016/j.trecan.2021.12.002.

    Article  CAS  PubMed  Google Scholar 

  139. Bergers, G., & Fendt, S.-M. (2021). The metabolism of cancer cells during metastasis. Nature Reviews Cancer, 21(3 Mar), 162–180. https://doi.org/10.1038/s41568-020-00320-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Janiszewska, M., Primi, M. C., & Izard, T. (2020). Cell adhesion in cancer: beyond the migration of single cells. Journal of Biological Chemistry, 295(8 Feb), 2495–2505. https://doi.org/10.1074/jbc.REV119.007759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kadry, Y. A., & Calderwood, D. A. (2020). Chapter 22: Structural and signaling functions of integrins. Biochimica et Biophysica Acta - Biomembranes, 1862(5 May), 183206 https://doi.org/10.1016/j.bbamem.2020.183206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Pang, X., et al. (2023). Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduction and Targeted Therapy, 8(1 Jan), 1. https://doi.org/10.1038/s41392-022-01259-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Vachon, P. H. (2011) Integrin signaling, cell survival, and anoikis: distinctions, differences, and differentiation. Journal of Signal Transduction, 2011, https://doi.org/10.1155/2011/738137.

  144. Gahmberg, C. G., Fagerholm, S. C., Nurmi, S. M., Chavakis, T., Marchesan, S., & Grönholm, M. (2009). Regulation of integrin activity and signalling. Biochimica et Biophysica Acta - General Subjects, 1790(6), 431–444. https://doi.org/10.1016/j.bbagen.2009.03.007.

    Article  CAS  Google Scholar 

  145. Desgrosellier, J. S., & Cheresh, D. A. (2010). Integrins in cancer: biological implications and therapeutic opportunities. Nature Reviews Cancer, 10(1 Jan), 9–22. https://doi.org/10.1038/nrc2748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Revathidevi, S., & Munirajan, A. K. (2019). Akt in cancer: mediator and more. Seminars in Cancer Biology, 59(Dec), 80–91. https://doi.org/10.1016/j.semcancer.2019.06.002.

    Article  CAS  PubMed  Google Scholar 

  147. Morana, O., Wood, W., & Gregory, C. D. (2022). The apoptosis paradox in cancer. International Journal of Molecular Science, 23(3 Jan), 1328 https://doi.org/10.3390/ijms23031328.

    Article  CAS  Google Scholar 

  148. Kesavardhana, S., Malireddi, R. K. S., & Kanneganti, T.-D. (2020). Caspases in cell death, inflammation, and pyroptosis. Annual Review of Immunology, 38(Apr), 567–595. https://doi.org/10.1146/annurev-immunol-073119-095439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Nirmala, J. G., & Lopus, M. (2020). Cell death mechanisms in eukaryotes. Cell Biology and Toxicology, 36(2), 145–164. https://doi.org/10.1007/s10565-019-09496-2.

    Article  CAS  PubMed  Google Scholar 

  150. Zhou, M., et al. (2015). Atomic structure of the apoptosome: mechanism of cytochrome c - and dATP-mediated activation of Apaf-1. Genes & Development, 29(22 Nov), 2349–2361. https://doi.org/10.1101/gad.272278.115.

    Article  CAS  Google Scholar 

  151. Lossi, L. (2022). The concept of intrinsic versus extrinsic apoptosis. Biochemical Journal, 479(3 Feb), 357–384. https://doi.org/10.1042/BCJ20210854.

    Article  CAS  PubMed  Google Scholar 

  152. Whelan, K. A., et al. (2010). Hypoxia suppression of Bim and Bmf blocks anoikis and luminal clearing during mammary morphogenesis. Molecular Biology of the Cell, 21(22 Nov), 3829–3837. https://doi.org/10.1091/mbc.e10-04-0353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Urade, R. et al. (2023) A fluorene derivative inhibits human hepatocellular carcinoma cells by ROS-mediated apoptosis, anoikis and autophagy. Life Sciences, 121835, Jun., https://doi.org/10.1016/j.lfs.2023.121835.

  154. Zhao, G.-S., et al. (2019). High expression of ID1 facilitates metastasis in human osteosarcoma by regulating the sensitivity of anoikis via PI3K/AKT depended suppression of the intrinsic apoptotic signaling pathway. American Journal of Translational Research, 11(4), 2117–2139. http://www.ncbi.nlm.nih.gov/pubmed/31105823.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Guha, D., et al. (2019). Integrin-EGFR interaction regulates anoikis resistance in colon cancer cells. Apoptosis, 24(11–12 Dec), 958–971. https://doi.org/10.1007/s10495-019-01573-5.

    Article  CAS  PubMed  Google Scholar 

  156. Vlahakis, A., & Debnath, J. (2017). The interconnections between autophagy and integrin-mediated cell adhesion. Journal of Molecular Biology, 429(4 Feb), 515–530. https://doi.org/10.1016/j.jmb.2016.11.027.

    Article  CAS  PubMed  Google Scholar 

  157. Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicologic Pathology, 35(4 Jun), 495–516. https://doi.org/10.1080/01926230701320337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Roy, S. K., Srivastava, R. K., & Shankar, S. (2010). Inhibition of PI3K/AKT and MAPK/ERK pathways causes activation of FOXO transcription factor, leading to cell cycle arrest and apoptosis in pancreatic cancer. Journal of Molecular Signaling, 5(Jul), 10 https://doi.org/10.1186/1750-2187-5-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Fujimoto, N., Gemba, K., & Kishimoto, T. (2011). Clinical significance of serum vascular endothelial growth factor in malignant pleural mesothelioma. Journal of Thoracic Oncology, 6(5 May), 971–972. https://doi.org/10.1097/JTO.0b013e318215a384. Elsevier.

    Article  PubMed  Google Scholar 

  160. Cheng, D., Liang, B., & Kong, H. (2012). Clinical significance of vascular endothelial growth factor and endostatin levels in the differential diagnosis of malignant and benign ascites. Medical Oncology, 29(2 Jun), 1397–1402. https://doi.org/10.1007/s12032-011-9972-2.

    Article  CAS  PubMed  Google Scholar 

  161. Singh, R., Letai, A., & Sarosiek, K. (2019). Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nature Reviews Molecular Cell Biology, 20(3), 175–193. https://doi.org/10.1038/s41580-018-0089-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Agena, R., de Jesús Cortés-Sánchez, A., Hernández-Sánchez, H., & Jaramillo-Flores, M. E. (2023). Pro-apoptotic activity of bioactive compounds from seaweeds: promising sources for developing novel anticancer drugs. Marine Drugs, 21(3 Mar), 182 https://doi.org/10.3390/md21030182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lotti, R., et al. (2010). A previously unreported function of β1B integrin isoform in caspase-8-dependent integrin-mediated keratinocyte death. Journal of Investigative Dermatology, 130(11 Nov), 2569–2577. https://doi.org/10.1038/jid.2010.195.

    Article  CAS  PubMed  Google Scholar 

  164. Lindsey, S., & Langhans, S. A. Epidermal Growth Factor Signaling in Transformed Cells, 2015, 1–41. https://doi.org/10.1016/bs.ircmb.2014.10.001.

  165. Geiger, T. R., & Peeper, D. S. (2007). Critical role for TrkB kinase function in anoikis suppression, tumorigenesis, and metastasis. Cancer Research, 67(13 Jul), 6221–6229. https://doi.org/10.1158/0008-5472.CAN-07-0121.

    Article  CAS  PubMed  Google Scholar 

  166. Yu, X., Liu, L., Cai, B., He, Y., & Wan, X. (2008). Suppression of anoikis by the neurotrophic receptor TrkB in human ovarian cancer. Cancer Science, 99(3 Mar), 543–552. https://doi.org/10.1111/j.1349-7006.2007.00722.x.

    Article  CAS  PubMed  Google Scholar 

  167. Geiger, T. R., & Peeper, D. S. (2005) The neurotrophic receptor TrkB in anoikis resistance and metastasis: a perspective. https://doi.org/10.1158/0008-5472.CAN-05-0709.

  168. Dongre, A., & Weinberg, R. A. (2019). New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nature Reviews Molecular Cell Biology, 20(2 Feb), 69–84. https://doi.org/10.1038/s41580-018-0080-4.

    Article  CAS  PubMed  Google Scholar 

  169. Yang, J., et al. (2020). Guidelines and definitions for research on epithelial–mesenchymal transition. Nature Reviews Molecular Cell Biology, 21(6 Jun), 341–352. https://doi.org/10.1038/s41580-020-0237-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Nieto, M. A. (2013). Epithelial plasticity: a common theme in embryonic and cancer cells. Science (80-), 342(Nov), 6159. https://doi.org/10.1126/science.1234850.

    Article  CAS  Google Scholar 

  171. Aiello, N. M., et al. (2018). EMT subtype influences epithelial plasticity and mode of cell migration. Developmental Cell, 45(6 Jun), 681–695.e4. https://doi.org/10.1016/j.devcel.2018.05.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Nakaya, Y., & Sheng, G. (2013). EMT in developmental morphogenesis. Cancer Letters, 341(1 Nov), 9–15. https://doi.org/10.1016/j.canlet.2013.02.037.

    Article  CAS  PubMed  Google Scholar 

  173. Chen, T., You, Y., Jiang, H., & Wang, Z. Z. (2017). Epithelial-mesenchymal transition (EMT): a biological process in the development, stem cell differentiation, and tumorigenesis. Journal of Cellular Physiology, 232(12 Dec), 3261–3272. https://doi.org/10.1002/jcp.25797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Terry, S., et al. (2017). New insights into the role of EMT in tumor immune escape. Molecular Oncology, 11(7 Jul), 824–846. https://doi.org/10.1002/1878-0261.12093.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Zhong, W., & Sun, T. (2023) Editorial: epithelial-mesenchymal transition (EMT) as a therapeutic target in cancer, Frontiers in Oncology, 13, Jan., https://doi.org/10.3389/fonc.2023.1121416.

  176. Malagoli Tagliazucchi, G., Wiecek, A. J., Withnell, E., & Secrier, M. (2023). Genomic and microenvironmental heterogeneity shaping epithelial-to-mesenchymal trajectories in cancer. Nature Communications, 14(1 Feb), 789 https://doi.org/10.1038/s41467-023-36439-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Chou, M.-Y., & Yang, M.-H. (2021). Interplay of immunometabolism and epithelial–mesenchymal transition in the tumor microenvironment. International Journal of Molecular Science, 22(18 Sep), 9878 https://doi.org/10.3390/ijms22189878.

    Article  CAS  Google Scholar 

  178. Li, D., et al. (2023). Heterogeneity and plasticity of epithelial–mesenchymal transition (EMT) in cancer metastasis: focusing on partial EMT and regulatory mechanisms. Cell Proliferation, 56(Jun), 6 https://doi.org/10.1111/cpr.13423.

    Article  Google Scholar 

  179. Hapke, R. Y., & Haake, S. M. (2020). Hypoxia-induced epithelial to mesenchymal transition in cancer. Cancer Letters, 487(Sep), 10–20. https://doi.org/10.1016/j.canlet.2020.05.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Wang, Y., Shi, J., Chai, K., Ying, X., & Zhou, B. (2013). The role of snail in EMT and tumorigenesis. Current Cancer Drug Targets, 13(9 Dec), 963–972. https://doi.org/10.2174/15680096113136660102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Tiwari, I., Yoon, M.-H., Park, B.-J., & Jang, K. L. (2015). Hepatitis C virus core protein induces epithelial–mesenchymal transition in human hepatocytes by upregulating E12/E47 levels. Cancer Letters, 362(1 Jun), 131–138. https://doi.org/10.1016/j.canlet.2015.03.032.

    Article  CAS  PubMed  Google Scholar 

  182. Smit, M. A., & Peeper, D. S. (2011). Zeb1 is required for TrkB-induced epithelial-mesenchymal transition, anoikis resistance and metastasis. Oncogene, 30(35 Sep), 3735–3744. https://doi.org/10.1038/onc.2011.96.

    Article  CAS  PubMed  Google Scholar 

  183. Kumar, S., et al. (2011). A pathway for the control of anoikis sensitivity by E-Cadherin and epithelial-to-mesenchymal transition. Molecular and Cellular Biology, 31(19 Oct), 4036–4051. https://doi.org/10.1128/mcb.01342-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Salvi, A. M., Bays, J. L., Mackin, S. R., Mege, R.-M., & DeMali, K. A. (2021). Ankyrin G organizes membrane components to promote coupling of cell mechanics and glucose uptake. Nature Cell Biology, 23(5 May), 457–466. https://doi.org/10.1038/s41556-021-00677-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Cadwell, C. M., Su, W., & Kowalczyk, A. P. (2016). Cadherin tales: regulation of cadherin function by endocytic membrane trafficking. Traffic, 17(12 Dec), 1262–1271. https://doi.org/10.1111/tra.12448.

    Article  CAS  PubMed  Google Scholar 

  186. Jenkins, P. M., Vasavda, C., Hostettler, J., Davis, J. Q., Abdi, K., & Bennett, V. (2013). E-cadherin polarity is determined by a multifunction motif mediating lateral membrane retention through Ankyrin-G and apical-lateral transcytosis through clathrin. Journal of Biological Chemistry, 288(20 May), 14018–14031. https://doi.org/10.1074/jbc.M113.454439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Frisch, S. M., Schaller, M., & Cieply, B. (2013). Mechanisms that link the oncogenic epithelial–mesenchymal transition to suppression of anoikis. Journal of Cell Science, 126(1 Jan), 21–29. https://doi.org/10.1242/jcs.120907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Loh, C.-Y., et al. (2019). The E-Cadherin and N-Cadherin switch in epithelial-to-mesenchymal transition: signaling, therapeutic implications, and challenges. Cells, 8(10 Sep), 1118 https://doi.org/10.3390/cells8101118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Aleskandarany, M. A., et al. (2014). Epithelial mesenchymal transition in early invasive breast cancer: an immunohistochemical and reverse phase protein array study. Breast Cancer Research and Treatment, 145(2 Jun), 339–348. https://doi.org/10.1007/s10549-014-2927-5.

    Article  CAS  PubMed  Google Scholar 

  190. Mylavarapu, S. et al., Activation of epithelial-mesenchymal transition and altered β-catenin signaling in a novel Indian colorectal carcinoma cell line. Frontiers in Oncology, 9. 2019. [Online]. Available: https://doi.org/10.3389/fonc.2019.00054.

  191. Simpson, C. D., Anyiwe, K., & Schimmer, A. D. (2008). Anoikis resistance and tumor metastasis. Cancer Letters, 272(2 Dec), 177–185. https://doi.org/10.1016/j.canlet.2008.05.029. Elsevier Ireland Ltd.

    Article  CAS  PubMed  Google Scholar 

  192. Liu, H., Ong, S.-E., Badu-Nkansah, K., Schindler, J., White, F. M., & Hynes, R. O. CUB-domain-containing protein 1 (CDCP1) activates Src to promote melanoma metastasis. Proceedings of the National Academy of Sciences of the United States of America, https://doi.org/10.1073/pnas.1017228108.

  193. Uekita, T., & Sakai, R. (2011). Roles of CUB domain-containing protein 1 signaling in cancer invasion and metastasis. Wiley Online Library, 102(11 Nov), 1943–1948. https://doi.org/10.1111/j.1349-7006.2011.02052.x.

    Article  CAS  Google Scholar 

  194. González-Llorente, L., et al. (2020). Overexpression of mitochondrial if1 prevents metastatic disease of colorectal cancer by enhancing anoikis and tumor infiltration of NK cells. Cancers (Basel), 12(1), 6–8. https://doi.org/10.3390/cancers12010022.

    Article  CAS  Google Scholar 

  195. Oh, Y.-T., & Sun, S.-Y. (2021). Regulation of cancer metastasis by TRAIL/death receptor signaling. Biomolecules, 11(4 Mar), 499. https://doi.org/10.3390/biom11040499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Baulida, J. (2017). Epithelial-to-mesenchymal transition transcription factors in cancer-associated fibroblasts. Molecular Oncology, 11(7 Jul), 847–859. https://doi.org/10.1002/1878-0261.12080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Maurizi, A., Ciocca, M., Giuliani, C., Di Carlo, I., & Teti, A. (2022). Role of neural (N)-cadherin in breast cancer cell stemness and dormancy in the bone microenvironment. Cancers (Basel), 14(5 Mar), 1317 https://doi.org/10.3390/cancers14051317.

    Article  CAS  PubMed  Google Scholar 

  198. van Roy, F. (2014). Beyond E-cadherin: roles of other cadherin superfamily members in cancer. Nature Reviews Cancer, 14(2 Feb), 121–134. https://doi.org/10.1038/nrc3647.

    Article  CAS  PubMed  Google Scholar 

  199. Qi, Z., & Chen, L. Endoplasmic reticulum stress and autophagy, 2019, 167–177. https://doi.org/10.1007/978-981-15-0602-4_8.

  200. Kegelman, T. P., et al. (2017). Inhibition of radiation-induced glioblastoma invasion by genetic and pharmacological targeting of MDA-9/Syntenin. Proceedings of the National Academy of Sciences of the United States of America, 114(2 Jan), 370–375. https://doi.org/10.1073/pnas.1616100114.

    Article  CAS  PubMed  Google Scholar 

  201. Talukdar, S., et al. (2018). MDA-9/Syntenin regulates protective autophagy in anoikis-resistant glioma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 115(22 May), 5768–5773. https://doi.org/10.1073/pnas.1721650115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Chaurasia, M., Bhatt, A. N., Das, A., Dwarakanath, B. S., & Sharma, K. (2016). Radiation-induced autophagy: mechanisms and consequences. Free Radical Research, 50(3 Mar), 273–290. https://doi.org/10.3109/10715762.2015.1129534.

    Article  CAS  PubMed  Google Scholar 

  203. Sun, K., et al. (2013) Paradoxical roles of autophagy in different stages of tumorigenesis: protector for normal or cancer cells, Cell and Bioscience 3, 1. BioMed Central, 35, Sep. https://doi.org/10.1186/2045-3701-3-35.

  204. Yu, Y., et al. (2022). ATF4/CEMIP/PKCα promotes anoikis resistance by enhancing protective autophagy in prostate cancer cells. Cell Death & Disease, 13(1), 46 https://doi.org/10.1038/s41419-021-04494-x.

    Article  CAS  Google Scholar 

  205. Dasgupta, S., et al. (2013). Human Cancer Biology novel role of MDA-9/Syntenin in regulating urothelial cell proliferation by modulating EGFR signaling. Clinical Cancer Research, 19, 17 https://doi.org/10.1158/1078-0432.CCR-13-0585.

    Article  CAS  Google Scholar 

  206. Pradhan, A. K., Maji, S., Das, S. K., Emdad, L., Sarkar, D., & Fisher, P. B. (2020). MDA-9/Syntenin/SDCBP: new insights into a unique multifunctional scaffold protein. Cancer and Metastasis Reviews, 39(3 Sep), 769–781. https://doi.org/10.1007/s10555-020-09886-7.

    Article  CAS  PubMed  Google Scholar 

  207. Talukdar, S. et al. MDA-9/Syntenin regulates protective autophagy in anoikis-resistant glioma stem cells, Proceedings of the National Academy of Sciences of the United States of America, https://doi.org/10.1073/pnas.1721650115.

  208. Mukhopadhyay, S., Mahapatra, K. K., Praharaj, P. P., Patil, S., & Bhutia, S. K. (2022). Recent progress of autophagy signaling in tumor microenvironment and its targeting for possible cancer therapeutics. Seminars in Cancer Biology, 85(Oct), 196–208. https://doi.org/10.1016/j.semcancer.2021.09.003.

    Article  CAS  PubMed  Google Scholar 

  209. Gillson, J., et al. (2022). Autophagy: a key player in pancreatic cancer progression and a potential drug target. Cancers (Basel), 14(14 Jul), 3528. https://doi.org/10.3390/cancers14143528.

    Article  CAS  PubMed  Google Scholar 

  210. Michalkova, R., Mirossay, L., Gazdova, M., Kello, M., & Mojzis, J. (2021). Molecular mechanisms of antiproliferative effects of natural chalcones. Cancers (Basel), 13(11 May), 2730. https://doi.org/10.3390/cancers13112730.

    Article  CAS  PubMed  Google Scholar 

  211. Kageyama, S., et al. (2021). p62/SQSTM1-droplet serves as a platform for autophagosome formation and anti-oxidative stress response. Nature Communications, 12(1 Jan), 16 https://doi.org/10.1038/s41467-020-20185-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Lippai, M., & Lőw, P. (2014). The role of the selective adaptor p62 and ubiquitin-like proteins in autophagy. BioMed Research International, 2014, 1–11. https://doi.org/10.1155/2014/832704.

    Article  Google Scholar 

  213. Noda, N. N., & Inagaki, F. (2015). Mechanisms of autophagy. Annual Review of Biophysics, 44(1 Jun), 101–122. https://doi.org/10.1146/annurev-biophys-060414-034248.

    Article  CAS  PubMed  Google Scholar 

  214. Gross, A. S., & Graef, M. (2020). Mechanisms of autophagy in metabolic stress response. Journal of Molecular Biology, 432(1 Jan), 28–52. https://doi.org/10.1016/j.jmb.2019.09.005.

    Article  CAS  PubMed  Google Scholar 

  215. Mizushima, N. (2020). The ATG conjugation systems in autophagy. Current Opinion in Cell Biology, 63(Apr), 1–10. https://doi.org/10.1016/j.ceb.2019.12.001.

    Article  CAS  PubMed  Google Scholar 

  216. Majeed, S. T., Majeed, R., & Andrabi, K. I. (2022). Expanding the view of the molecular mechanisms of autophagy pathway. Journal of Cellular Physiology, 237(8 Aug), 3257–3277. https://doi.org/10.1002/jcp.30819.

    Article  CAS  PubMed  Google Scholar 

  217. Yu, L., Chen, Y., & Tooze, S. A. (2018). Autophagy pathway: cellular and molecular mechanisms. Autophagy, 14(2 Feb), 207–215. https://doi.org/10.1080/15548627.2017.1378838.

    Article  CAS  PubMed  Google Scholar 

  218. Kirkin, V. (2020). History of the selective autophagy research: how did it begin and where does it stand today? Journal of Molecular Biology, 432(1 Jan), 3–27. https://doi.org/10.1016/j.jmb.2019.05.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Chourasia, A. H., Boland, M. L., & Macleod, K. F. (2015). Mitophagy and cancer. Cancer & Metabolism, 3(Dec), 1. https://doi.org/10.1186/s40170-015-0130-8.

    Article  Google Scholar 

  220. Onishi, M., Yamano, K., Sato, M., Matsuda, N., & Okamoto, K. (2021). Molecular mechanisms and physiological functions of mitophagy. The EMBO Journal, 40(Feb), 3. https://doi.org/10.15252/embj.2020104705.

    Article  CAS  Google Scholar 

  221. Panigrahi, D. P., et al. (2020). The emerging, multifaceted role of mitophagy in cancer and cancer therapeutics. Seminars in Cancer Biology, 66(Nov), 45–58. https://doi.org/10.1016/j.semcancer.2019.07.015.

    Article  CAS  PubMed  Google Scholar 

  222. Poole, L. P., & Macleod, K. F. (2021). Mitophagy in tumorigenesis and metastasis. Cellular and Molecular Life Sciences, 78(8 Apr), 3817–3851. https://doi.org/10.1007/s00018-021-03774-1.

    Article  CAS  PubMed  Google Scholar 

  223. Yang, X., Pan, W., Xu, G., & Chen, L. (2020). Mitophagy: a crucial modulator in the pathogenesis of chronic diseases. Clinica Chimica Acta, 502(Mar), 245–254. https://doi.org/10.1016/j.cca.2019.11.008.

    Article  CAS  Google Scholar 

  224. Zhang, T., Liu, Q., Gao, W., Sehgal, S. A., & Wu, H. (2022). The multifaceted regulation of mitophagy by endogenous metabolites. Autophagy, 18(6 Jun), 1216–1239. https://doi.org/10.1080/15548627.2021.1975914.

    Article  CAS  PubMed  Google Scholar 

  225. Zhang, J., et al. (2021). PINK1/PARK2 dependent mitophagy effectively suppresses NLRP3 inflammasome to alleviate acute pancreatitis. Free Radical Biology and Medicine, 166(Apr), 147–164. https://doi.org/10.1016/j.freeradbiomed.2021.02.019.

    Article  CAS  PubMed  Google Scholar 

  226. Roperto, S., De Falco, F., Perillo, A., Catoi, C., & Roperto, F. (2019). Mitophagy mediated by BNIP3 and BNIP3L/NIX in urothelial cells of the urinary bladder of cattle harbouring bovine papillomavirus infection. Veterinary Microbiology, 236(Sep), 108396 https://doi.org/10.1016/j.vetmic.2019.108396.

    Article  CAS  PubMed  Google Scholar 

  227. Monaci, S., et al. (2021). Hypoxia enhances the expression of RNASET2 in human monocyte-derived dendritic cells: role of PI3K/AKT pathway. International Journal of Molecular Science, 22(14 Jul), 7564 https://doi.org/10.3390/ijms22147564.

    Article  CAS  Google Scholar 

  228. Escamilla-Ramírez, A., et al. (2020). Autophagy as a potential therapy for malignant glioma. Pharmaceuticals, 13(7 Jul), 156 https://doi.org/10.3390/ph13070156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Liu, A., Li, Y., Shen, L., Li, N., Shen, L., & Li, Z. (2022). Pan-cancer analysis of a novel indicator of necroptosis with its application in human cancer. Aging (Albany. NY), 14(18 Sep), 7587–7616. https://doi.org/10.18632/aging.204307.

    Article  PubMed  Google Scholar 

  230. Liu, H., et al. (2022). The role of FUNDC1 in mitophagy, mitochondrial dynamics and human diseases. Biochemical Pharmacology, 197(Mar), 114891. https://doi.org/10.1016/j.bcp.2021.114891.

    Article  CAS  PubMed  Google Scholar 

  231. Yang, A., et al. (2021). Melatonin inhibits triple-negative breast cancer progression through the Lnc049808-FUNDC1 pathway. Cell Death & Disease, 12(8 Jul), 712 https://doi.org/10.1038/s41419-021-04006-x.

    Article  CAS  Google Scholar 

  232. Zhang, W. (2021). The mitophagy receptor FUN14 domain-containing 1 (FUNDC1): a promising biomarker and potential therapeutic target of human diseases. Genes & Disease, 8(5 Sep), 640–654. https://doi.org/10.1016/j.gendis.2020.08.011.

    Article  CAS  Google Scholar 

  233. Kongara, S., & Karantza, V. (2012) The interplay between autophagy and ROS in tumorigenesis, Frontiers in Oncology, 2. [Online]. Available: https://doi.org/10.3389/fonc.2012.00171.

  234. Chaurasia, M., Misra, S., Bhatt, A. N., Das, A., Dwarakanath, B., & Sharma, K. (2015). Metabolic imbalance associated mitophagy in tumor cells: genesis and implications. Journal of Cancer Research Updates, 4(2 Apr), 95–107. https://doi.org/10.6000/1929-2279.2015.04.02.8.

    Article  CAS  Google Scholar 

  235. Gundamaraju, R., et al. (2022). Autophagy and EMT in cancer and metastasis: who controls whom? Biochimica et Biophysica Acta - Molecular Basis of Disease, 1868(9 Sep), 166431. https://doi.org/10.1016/j.bbadis.2022.166431.

    Article  CAS  PubMed  Google Scholar 

  236. Ashkenazi, A., & Salvesen, G. (2014). Regulated cell death: signaling and mechanisms. Annual Review of Cell and Developmental Biology, 30(1 Oct), 337–356. https://doi.org/10.1146/annurev-cellbio-100913-013226.

    Article  CAS  PubMed  Google Scholar 

  237. Yaacoub, K., Pedeux, R., Tarte, K., & Guillaudeux, T. (2016). Role of the tumor microenvironment in regulating apoptosis and cancer progression. Cancer Letters, 378(2 Aug), 150–159. https://doi.org/10.1016/j.canlet.2016.05.012.

    Article  CAS  PubMed  Google Scholar 

  238. Jing, X., et al. (2019). Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Molecular Cancer, 18(1 Dec), 157. https://doi.org/10.1186/s12943-019-1089-9.

    Article  PubMed  PubMed Central  Google Scholar 

  239. Diao, X., Guo, C., & Li, S. (2023). Identification of a novel anoikis‐related gene signature to predict prognosis and tumor microenvironment in lung adenocarcinoma. Thoracic Cancer, 14(3 Jan), 320–330. https://doi.org/10.1111/1759-7714.14766.

    Article  CAS  PubMed  Google Scholar 

  240. Chavez-Dominguez, R., Perez-Medina, M., Lopez-Gonzalez, J. S., Galicia-Velasco, M., & Aguilar-Cazares, D. (2020) The double-edge sword of autophagy in cancer: from tumor suppression to pro-tumor activity. Frontiers in Oncology, 10, Oct., https://doi.org/10.3389/fonc.2020.578418.

  241. La Belle Flynn, A., & Schiemann, W. P. (2019) Autophagy in breast cancer metastatic dormancy: tumor suppressing or tumor promoting functions? Journal of Cancer Metastasis and Treatment, 2019, May, https://doi.org/10.20517/2394-4722.2019.13.

  242. Liao, M., et al. (2022). Targeting regulated cell death (RCD) with small-molecule compounds in triple-negative breast cancer: a revisited perspective from molecular mechanisms to targeted therapies. Journal of Hematology & Oncology, 15(1 Apr), 44. https://doi.org/10.1186/s13045-022-01260-0.

    Article  CAS  Google Scholar 

  243. Xu, H.-D., & Qin, Z.-H. Beclin 1, Bcl-2 and Autophagy, 2019, 109–126. https://doi.org/10.1007/978-981-15-0602-4_5.

  244. Wang, P., et al. (2019). ROS -mediated p53 activation by juglone enhances apoptosis and autophagy in vivo and in vitro. Toxicology and Applied Pharmacology, 379(Sep), 114647. https://doi.org/10.1016/j.taap.2019.114647.

    Article  CAS  PubMed  Google Scholar 

  245. Pisani, C., et al. (2020). Apoptotic and predictive factors by Bax, Caspases 3/9, Bcl-2, p53 and Ki-67 in prostate cancer after 12 Gy single-dose. Science Reports, 10(1), 7050. https://doi.org/10.1038/s41598-020-64062-9.

    Article  CAS  Google Scholar 

  246. Kim, S. M., et al. (2020). Sinensetin induces autophagic cell death through p53-related AMPK/mTOR signaling in hepatocellular carcinoma HepG2 cells. Nutrients, 12(8 Aug), 2462. https://doi.org/10.3390/nu12082462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Lee, Y., & Kwon, Y. H. (2019). Regulation of apoptosis and autophagy by luteolin in human hepatocellular cancer Hep3B cells. Biochemical and Biophysical Research Communications, 517(4 Oct), 617–622. https://doi.org/10.1016/j.bbrc.2019.07.073.

    Article  CAS  PubMed  Google Scholar 

  248. Biray Avci, C., Sezgin, B., Goker Bagca, B., Karci, H. B., & Gode, S. (2020). PI3K/AKT/mTOR pathway and autophagy regulator genes in paranasal squamous cell carcinoma metastasis. Molecular Biology Reports, 47(5 May), 3641–3651. https://doi.org/10.1007/s11033-020-05458-8.

    Article  CAS  PubMed  Google Scholar 

  249. Xu, W., Yu, M., Qin, J., Luo, Y., & Zhong, M. (2020). LACTB regulates PIK3R3 to promote autophagy and inhibit EMT and proliferation through the PI3K/AKT/mTOR signaling pathway in colorectal cancer. Cancer Management and Research, 12(Dec), 5181–5200. https://doi.org/10.2147/CMAR.S250661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Braicu, C., et al. (2022). Natural compounds modulate the crosstalk between apoptosis- and autophagy-regulated signaling pathways: controlling the uncontrolled expansion of tumor cells. Seminars in Cancer Biology, 80(May), 218–236. https://doi.org/10.1016/j.semcancer.2020.05.015.

    Article  CAS  PubMed  Google Scholar 

  251. Zhang, Q., et al. (2020). Berberine represses human gastric cancer cell growth in vitro and in vivo by inducing cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt signaling pathways. Biomedicine & Pharmacotherapy, 128(Aug), 110245 https://doi.org/10.1016/j.biopha.2020.110245.

    Article  CAS  Google Scholar 

  252. Han, Z., et al. (2021). PNO1 regulates autophagy and apoptosis of hepatocellular carcinoma via the MAPK signaling pathway. Cell Death & Disease, 12(6 May), 552 https://doi.org/10.1038/s41419-021-03837-y.

    Article  CAS  Google Scholar 

  253. Nguyen, H.-N., et al. (2014). Engineering ePTEN, an enhanced PTEN with increased tumor suppressor activities. Proceedings of the National Academy of Sciences of the United States of America, 111(Jul), 26 https://doi.org/10.1073/pnas.1409433111.

    Article  CAS  Google Scholar 

  254. Shu, F., et al. (2023). Epigenetic and post-translational modifications in autophagy: biological functions and therapeutic targets. Signal Transductuction and Targeted Therapy, 8(1 Jan), 32 https://doi.org/10.1038/s41392-022-01300-8.

    Article  CAS  Google Scholar 

  255. Rakesh, R., PriyaDharshini, L. C., Sakthivel, K. M., & Rasmi, R. R. (2022). Role and regulation of autophagy in cancer. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1868(7 Jul), 166400 https://doi.org/10.1016/j.bbadis.2022.166400.

    Article  CAS  PubMed  Google Scholar 

  256. Vega-Rubín-de-Celis, S., Kinch, L., & Peña-Llopis, S. (2020). Regulation of Beclin 1-mediated autophagy by oncogenic tyrosine kinases. International Journal of Molecular Science, 21(23 Dec), 9210 https://doi.org/10.3390/ijms21239210.

    Article  CAS  Google Scholar 

  257. Hill, S. M., Wrobel, L., & Rubinsztein, D. C. (2019). Post-translational modifications of Beclin 1 provide multiple strategies for autophagy regulation. Cell Death Differ, 26(4 Apr), 617–629. https://doi.org/10.1038/s41418-018-0254-9.

    Article  CAS  PubMed  Google Scholar 

  258. Marquez, R. T., & Xu, L. Bcl-2:Beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch.

  259. Decuypere, J.-P., Parys, J. B., & Bultynck, G. (2012). Regulation of the autophagic Bcl-2/Beclin 1 Interaction. Cells, 1(3 Jul), 284–312. https://doi.org/10.3390/cells1030284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Das, S., Shukla, N., Singh, S. S., Kushwaha, S., & Shrivastava, R. (2021). Mechanism of interaction between autophagy and apoptosis in cancer. Apoptosis, 26(9–10 Oct), 512–533. https://doi.org/10.1007/s10495-021-01687-9.

    Article  PubMed  Google Scholar 

  261. Li, S., et al. (2019). Shear stress promotes anoikis resistance of cancer cells via caveolin‐1‐dependent extrinsic and intrinsic apoptotic pathways. Journal of Cellular Physiology, 234(4 Apr), 3730–3743. https://doi.org/10.1002/jcp.27149.

    Article  CAS  PubMed  Google Scholar 

  262. Dower, C. M., Wills, C. A., Frisch, S. M., & Wang, H.-G. (2018). Mechanisms and context underlying the role of autophagy in cancer metastasis. Autophagy, 14(7 Jul), 1110–1128. https://doi.org/10.1080/15548627.2018.1450020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Xu, H.-D., et al. (2013). The pro-survival role of autophagy depends on Bcl-2 under nutrition stress conditions. PLoS One, 8(5 May), e63232. https://doi.org/10.1371/journal.pone.0063232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Wang, D., Berglund, A., Kenchappa, R. S., Forsyth, P. A., Mulé, J. J., & Etame, A. B. (2016). BIRC3 is a novel driver of therapeutic resistance in Glioblastoma. Science Reports, 6(1), 21710. https://doi.org/10.1038/srep21710.

    Article  CAS  Google Scholar 

  265. Kim, J., Chee, W.-Y., Yabuta, N., Kajiwara, K., Nada, S., & Okada, M. (2020). Atg5-mediated autophagy controls apoptosis/anoikis via p53/Rb pathway in naked mole-rat fibroblasts. Biochemical and Biophysical Research Communications, 528(1 Jul), 146–153. https://doi.org/10.1016/j.bbrc.2020.05.083.

    Article  CAS  PubMed  Google Scholar 

  266. Yu, H., Lin, L., Zhang, Z., Zhang, H., & Hu, H. (2020). Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduction and Targeted Therapy, 5(1 Sep), 209 https://doi.org/10.1038/s41392-020-00312-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Arneth, B. (2019). Tumor microenvironment. Medicina (B. Aires), 56(1 Dec), 15 https://doi.org/10.3390/medicina56010015.

    Article  Google Scholar 

  268. Jin, M.-Z., & Jin, W.-L. (2020). The updated landscape of tumor microenvironment and drug repurposing. Signal Transduction and Targeted Therapy, 5(1 Aug), 166 https://doi.org/10.1038/s41392-020-00280-x.

    Article  PubMed  PubMed Central  Google Scholar 

  269. Jiang, Y., Wang, C., & Zhou, S. (2020). Targeting tumor microenvironment in ovarian cancer: Premise and promise. Biochimica et Biophysica Acta - Reviews on Cancer, 1873(2 Apr), 188361. https://doi.org/10.1016/j.bbcan.2020.188361.

    Article  CAS  PubMed  Google Scholar 

  270. Tuccitto, A., et al. (2019). Immunosuppressive circuits in tumor microenvironment and their influence on cancer treatment efficacy. Virchows Archiv, 474(4 Apr), 407–420. https://doi.org/10.1007/s00428-018-2477-z.

    Article  CAS  PubMed  Google Scholar 

  271. Yarchoan, M., Hopkins, A., & Jaffee, E. M. (2017). Tumor mutational burden and response rate to PD-1 inhibition. The New England Journal of Medicine, 377(25 Dec), 2500–2501. https://doi.org/10.1056/NEJMc1713444.

    Article  PubMed  PubMed Central  Google Scholar 

  272. Yang, L., Li, A., Lei, Q., & Zhang, Y. (2019). Tumor-intrinsic signaling pathways: key roles in the regulation of the immunosuppressive tumor microenvironment. Journal of Hematology & Oncology, 12(1 Dec), 125 https://doi.org/10.1186/s13045-019-0804-8.

    Article  Google Scholar 

  273. Lu, C., et al. (2019). Current perspectives on the immunosuppressive tumor microenvironment in hepatocellular carcinoma: challenges and opportunities. Molecular Cancer, 18(1 Dec), 130 https://doi.org/10.1186/s12943-019-1047-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Jin, Z., Sun, X., Wang, Y., Zhou, C., Yang, H. & Zhou, S. (2022) Regulation of autophagy fires up the cold tumor microenvironment to improve cancer immunotherapy. Frontiers in Immunology, 13, Oct, https://doi.org/10.3389/fimmu.2022.1018903.

  275. Liu, Y., et al. (2023). Advances in immunotherapy for triple-negative breast cancer. Molecular Cancer, 22(1 Sep), 145. https://doi.org/10.1186/s12943-023-01850-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Zhang, Y., et al. (2022). Eliciting an immunostimulatory tumor microenvironment to enhance the antitumor efficacy by targeted cancer immunotherapy. Advances in Therapy, 5(9 Sep), 2200070. https://doi.org/10.1002/adtp.202200070.

    Article  CAS  Google Scholar 

  277. Yin, S., Jin, W., Qiu, Y., Fu, L., Wang, T., & Yu, H. (2022). Solamargine induces hepatocellular carcinoma cell apoptosis and autophagy via inhibiting LIF/miR-192-5p/CYR61/Akt signaling pathways and eliciting immunostimulatory tumor microenvironment. Journal of Hematology & Oncology, 15(1 Dec), 32 https://doi.org/10.1186/s13045-022-01248-w.

    Article  CAS  Google Scholar 

  278. Koontongkaew, S. (2013). The tumor microenvironment contribution to development, growth, invasion and metastasis of head and neck squamous cell carcinomas. Journal of Cancer, 4(1), 66–83. https://doi.org/10.7150/jca.5112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Sangaletti, S., Chiodoni, C., Tripodo, C., & Colombo, M. P. (2017). Common extracellular matrix regulation of myeloid cell activity in the bone marrow and tumor microenvironments. Cancer Immunology Immunotherapy, 66(8 Aug), 1059–1067. https://doi.org/10.1007/s00262-017-2014-y.

    Article  CAS  PubMed  Google Scholar 

  280. Kamińska, K., et al. (2015). The role of the cell-cell interactions in cancer progression. Journal of Cellular and Molecular Medicine, 19(2 Feb), 283–296. https://doi.org/10.1111/jcmm.12408.

    Article  PubMed  PubMed Central  Google Scholar 

  281. Nishida-Aoki, N., & Gujral, T. S. (2019). Emerging approaches to study cell-cell interactions in tumor microenvironment. Oncotarget, 10(7 Jan), 785–797. https://doi.org/10.18632/oncotarget.26585.

    Article  PubMed  PubMed Central  Google Scholar 

  282. Salazar, N., & Zabel, B. A. (2019) Support of tumor endothelial cells by chemokine receptors. Frontiers in Immunology, 10, Feb., https://doi.org/10.3389/fimmu.2019.00147.

  283. Dudley, A. C. (2012). Tumor endothelial cells. Cold Spring Harbor Perspectives in Medicine, 2(3 Mar), a006536–a006536. https://doi.org/10.1101/cshperspect.a006536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Lee, S. W., Kwak, H. S., Kang, M.-H., Park, Y.-Y., & Jeong, G. S. (2018). Fibroblast-associated tumour microenvironment induces vascular structure-networked tumouroid. Science Reports, 8(1 Feb), 2365 https://doi.org/10.1038/s41598-018-20886-0.

    Article  CAS  Google Scholar 

  285. Kalluri, R. (2016). The biology and function of fibroblasts in cancer. Nature Reviews Cancer, 16(9 Sep), 582–598. https://doi.org/10.1038/nrc.2016.73.

    Article  CAS  PubMed  Google Scholar 

  286. Nurmik, M., Ullmann, P., Rodriguez, F., Haan, S., & Letellier, E. (2020). In search of definitions: cancer‐associated fibroblasts and their markers. International Journal of Cancer, 146(4 Feb), 895–905. https://doi.org/10.1002/ijc.32193.

    Article  CAS  PubMed  Google Scholar 

  287. Nishishita, R. et al. (2018) Expression of cancer-associated fibroblast markers in advanced colorectal cancer. Oncology Letters., Feb., https://doi.org/10.3892/ol.2018.8097.

  288. Gok Yavuz, B., et al. (2019). Cancer associated fibroblasts sculpt tumour microenvironment by recruiting monocytes and inducing immunosuppressive PD-1+ TAMs. Science Reports, 9(1 Feb), 3172 https://doi.org/10.1038/s41598-019-39553-z.

    Article  CAS  Google Scholar 

  289. Wang, F., Sun, W., Zhang, J., & Fan, Y. (2019) Cancer‑associated fibroblast regulation of tumor neo‑angiogenesis as a therapeutic target in cancer (Review), Oncology Letters., Jan., https://doi.org/10.3892/ol.2019.9973.

  290. Chen, D., Zhang, X., Li, Z., & Zhu, B. (2021). Metabolic regulatory crosstalk between tumor microenvironment and tumor-associated macrophages. Theranostics, 11(3), 1016–1030. https://doi.org/10.7150/thno.51777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Noy, R., & Pollard, J. W. (2014). Tumor-associated macrophages: from mechanisms to therapy. Immunity, 41(1 Jul), 49–61. https://doi.org/10.1016/j.immuni.2014.06.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Yunna, C., Mengru, H., Lei, W., & Weidong, C. (2020). Macrophage M1/M2 polarization. European Journal of Pharmacology, 877(Jun), 173090. https://doi.org/10.1016/j.ejphar.2020.173090.

    Article  CAS  PubMed  Google Scholar 

  293. Wang, F., et al. (2018). Interferon gamma induces reversible metabolic reprogramming of M1 macrophages to sustain cell viability and pro-inflammatory activity. EBioMedicine, 30(Apr), 303–316. https://doi.org/10.1016/j.ebiom.2018.02.009.

    Article  PubMed  PubMed Central  Google Scholar 

  294. Wang, X., et al. (2022). Exploration and functionalization of M1-macrophage extracellular vesicles for effective accumulation in glioblastoma and strong synergistic therapeutic effects. Signal Transduction and Targeted Therapy, 7(1 Mar), 74 https://doi.org/10.1038/s41392-022-00894-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Chen, S., et al. (2023). Macrophages in immunoregulation and therapeutics. Signal Transduction and Targeted Therapy, 8(1 May), 207 https://doi.org/10.1038/s41392-023-01452-1.

    Article  PubMed  PubMed Central  Google Scholar 

  296. Karakasheva, T. A., et al. (2018). IL-6 mediates cross-talk between tumor cells and activated fibroblasts in the tumor microenvironment. Cancer Research, 78(17 Sep), 4957–4970. https://doi.org/10.1158/0008-5472.CAN-17-2268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Wei, C., et al. (2019). Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Molecular Cancer, 18(1 Dec), 64 https://doi.org/10.1186/s12943-019-0976-4.

    Article  PubMed  PubMed Central  Google Scholar 

  298. Lin, Y., Xu, J., & Lan, H. (2019). Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. Journal of Hematology & Oncology, 12(1 Dec), 76 https://doi.org/10.1186/s13045-019-0760-3.

    Article  Google Scholar 

  299. Kowal, J., Kornete, M., & Joyce, J. A. (2019). Re-education of macrophages as a therapeutic strategy in cancer. Immunotherapy, 11(8 Jun), 677–689. https://doi.org/10.2217/imt-2018-0156.

    Article  CAS  PubMed  Google Scholar 

  300. Xu, S., et al. (2019). The role of collagen in cancer: from bench to bedside. Journal of Translational Medicine, 17(1 Dec), 309 https://doi.org/10.1186/s12967-019-2058-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Huang, J., et al. (2021). Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduction and Targeted Therapy, 6(1 Apr), 153 https://doi.org/10.1038/s41392-021-00544-0.

    Article  PubMed  PubMed Central  Google Scholar 

  302. Fang, T., et al. (2018). Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nature Communications, 9(1 Jan), 191 https://doi.org/10.1038/s41467-017-02583-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Javadian, M., et al. (2019). The role of microRNAs regulating the expression of matrix metalloproteinases (MMPs) in breast cancer development, progression, and metastasis. Journal of Cellular Physiology, 234(5 May), 5399–5412. https://doi.org/10.1002/jcp.27445.

    Article  CAS  PubMed  Google Scholar 

  304. Zhou, J. et al. (2023) The crosstalk between anoikis and epithelial-mesenchymal transition and their synergistic roles in predicting prognosis in colon adenocarcinoma. Frontiers in Oncology, 13, Jun, https://doi.org/10.3389/fonc.2023.1184215.

  305. Bigagli, E., Cinci, L., D’Ambrosio, M., & Luceri, C. (2019). Transcriptomic characterization, chemosensitivity and regulatory effects of exosomes in spontaneous EMT/MET transitions of breast. Cancer Cells, Cancer Genomics - Proteomics, 16(3 Apr), 163–173. https://doi.org/10.21873/cgp.20122.

    Article  CAS  PubMed  Google Scholar 

  306. Kozlova, N., Grossman, J. E., Iwanicki, M. P., & Muranen, T. (2020). The interplay of the extracellular matrix and stromal cells as a drug target in stroma-rich cancers. Trends in Pharmacological Sciences, 41(3 Mar), 183–198. https://doi.org/10.1016/j.tips.2020.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Puré, E., & Lo, A. (2016). Can targeting stroma pave the way to enhanced antitumor immunity and immunotherapy of solid tumors? Cancer Immunology Research, 4(4 Apr), 269–278. https://doi.org/10.1158/2326-6066.CIR-16-0011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Gao, Z. et al. (2018) Anoikis‑resistant human osteosarcoma cells display significant angiogenesis by activating the Src kinase‑mediated MAPK pathway. Oncology Reports, Oct., https://doi.org/10.3892/or.2018.6827.

  309. Zhu, L., McManus, M. M., & Hughes, D. P. M. (2013) Understanding the Biology of bone sarcoma from early initiating events through late events in metastasis and disease progression. Frontiers in Oncology, 3, https://doi.org/10.3389/fonc.2013.00230.

  310. Chang, C.-C., et al. (2013). CCN2 inhibits lung cancer metastasis through promoting DAPK-dependent anoikis and inducing EGFR degradation. Cell Death Differ, 20(3 Mar), 443–455. https://doi.org/10.1038/cdd.2012.136.

    Article  CAS  PubMed  Google Scholar 

  311. Lee, Y.-C., et al. (2013). Targeting constitutively activated β1 integrins inhibits prostate cancer metastasis. Molecular Cancer Research, 11(4 Apr), 405–417. https://doi.org/10.1158/1541-7786.MCR-12-0551.

    Article  CAS  PubMed  Google Scholar 

  312. Maycotte, P., Jones, K. L., Goodall, M. L., Thorburn, J., & Thorburn, A. (2015). Autophagy supports breast cancer stem cell maintenance by regulating IL6 secretion. Molecular Cancer Research, 13(4), 651–658. https://doi.org/10.1158/1541-7786.MCR-14-0487.

    Article  CAS  PubMed  Google Scholar 

  313. Luo, X., et al. (2021). The functions of autophagy at the tumour‐immune interface. Journal of Cellular and Molecular Medicine, 25(5 Mar), 2333–2341. https://doi.org/10.1111/jcmm.16331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Chang, H., & Zou, Z. (2020). Targeting autophagy to overcome drug resistance: further developments. Journal of Hematology & Oncology, 13(1 Dec), 159. https://doi.org/10.1186/s13045-020-01000-2.

    Article  Google Scholar 

  315. Wei, J., et al. (2016). Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nature Immunology, 17(3 Mar), 277–285. https://doi.org/10.1038/ni.3365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Jena, B. C., Rout, L., Dey, A., & Mandal, M. (2021). Active autophagy in cancer‐associated fibroblasts: Recent advances in understanding the novel mechanism of tumor progression and therapeutic response. Journal of Cellular Physiology, 236(11 Nov), 7887–7902. https://doi.org/10.1002/jcp.30419.

    Article  CAS  PubMed  Google Scholar 

  317. Winkler, J., Abisoye-Ogunniyan, A., Metcalf, K. J., & Werb, Z. (2020). Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nature Communications, 11(1 Oct), 5120. https://doi.org/10.1038/s41467-020-18794-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Ziegler, P. K., et al. (2018). Mitophagy in intestinal epithelial cells triggers adaptive immunity during tumorigenesis. Cell, 174(1 Jun), 88–101.e16. https://doi.org/10.1016/j.cell.2018.05.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Zhang, J., et al. (2019). Autophagy in regulatory T cells: a double-edged sword in disease settings. Molecular Immunology, 109(May), 43–50. https://doi.org/10.1016/j.molimm.2019.02.004.

    Article  CAS  PubMed  Google Scholar 

  320. Jacquin, E., & Apetoh, L. (2018) Cell-intrinsic roles for autophagy in modulating CD4 T cell functions. Frontiers in Immunology, 9, May, https://doi.org/10.3389/fimmu.2018.01023.

  321. Xia, H., Green, D. R., & Zou, W. (2021). Autophagy in tumour immunity and therapy. Nature Reviews Cancer, 21(5 May), 281–297. https://doi.org/10.1038/s41568-021-00344-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Talmadge, J. E., & Gabrilovich, D. I. (2013). History of myeloid-derived suppressor cells. Nature Reviews Cancer, 13(10 Oct), 739–752. https://doi.org/10.1038/nrc3581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Barsoum, I. B., Koti, M., Siemens, D. R., & Graham, C. H. (2014). Mechanisms of hypoxia-mediated immune escape in cancer. Cancer Research, 74(24 Dec), 7185–7190. https://doi.org/10.1158/0008-5472.CAN-14-2598.

    Article  CAS  PubMed  Google Scholar 

  324. Parker, K. H., Horn, L. A., & Ostrand-Rosenberg, S. (2016). High-mobility group box protein 1 promotes the survival of myeloid-derived suppressor cells by inducing autophagy. Journal of Leukocyte Biology, 100(3 Sep), 463–470. https://doi.org/10.1189/jlb.3HI0715-305R.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Kang, R., Livesey, K. M., Zeh, III, H. J., Loze, M. T., & Tang, D. (2010). HMGB1: a novel Beclin 1-binding protein active in autophagy. Autophagy, 6(8 Nov), 1209–1211. https://doi.org/10.4161/auto.6.8.13651.

    Article  CAS  PubMed  Google Scholar 

  326. Münz, C. (2016). Autophagy beyond intracellular MHC class II antigen presentation. Trends in Immunology, 37(11 Nov), 755–763. https://doi.org/10.1016/j.it.2016.08.017.

    Article  CAS  PubMed  Google Scholar 

  327. Jiang, G.-M., et al. (2019). The relationship between autophagy and the immune system and its applications for tumor immunotherapy. Molecular Cancer, 18(1 Dec), 17 https://doi.org/10.1186/s12943-019-0944-z.

    Article  PubMed  PubMed Central  Google Scholar 

  328. Lin, H., et al. (2013). Loss of immunity-supported senescence enhances susceptibility to hepatocellular carcinogenesis and progression in Toll-like receptor 2-deficient mice. Hepatology, 57(1 Jan), 171–182. https://doi.org/10.1002/hep.25991.

    Article  CAS  PubMed  Google Scholar 

  329. Pereira, F. V., et al. (2018). Metformin exerts antitumor activity via induction of multiple death pathways in tumor cells and activation of a protective immune response. Oncotarget, 9(40 May), 25808–25825. https://doi.org/10.18632/oncotarget.25380.

    Article  PubMed  PubMed Central  Google Scholar 

  330. Liu, J., Hong, M., Li, Y., Chen, D., Wu, Y., & Hu, Y. (2022) Programmed cell death tunes tumor immunity. Frontiers in Immunology, 13, Mar, https://doi.org/10.3389/fimmu.2022.847345.

  331. Gregory, C. D., Ford, C. A., & Voss, J. J. L. P. Microenvironmental Effects of Cell Death in Malignant Disease, 2016, 51–88. https://doi.org/10.1007/978-3-319-39406-0_3.

  332. Obeid, E., Nanda, R., Fu, Y.-X., & Olopade, O. I. (2013). The role of tumor-associated macrophages in breast cancer progression. International Journal of Oncology, 43(1 Jul), 5–12. https://doi.org/10.3892/ijo.2013.1938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Ong, S.-M., et al. (2012). Macrophages in human colorectal cancer are pro-inflammatory and prime T cells towards an anti-tumour type-1 inflammatory response. European Journal of Immunology, 42(1 Jan), 89–100. https://doi.org/10.1002/eji.201141825.

    Article  CAS  PubMed  Google Scholar 

  334. Pantano, F., et al. (2013). The role of macrophages polarization in predicting prognosis of radically resected gastric cancer patients. Journal of Cellular and Molecular Medicine, 17(11 Nov), 1415–1421. https://doi.org/10.1111/jcmm.12109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Jung, K. Y., et al. (2015). Cancers with higher density of tumor-associated macrophages were associated with poor survival rates. Journal of Pathology and Translational Medicine, 49(4 Jun), 318–324. https://doi.org/10.4132/jptm.2015.06.01.

    Article  PubMed  PubMed Central  Google Scholar 

  336. Soki, F. N., et al. (2014). Polarization of prostate cancer-associated macrophages is induced by milk fat globule-EGF factor 8 (MFG-E8)-mediated efferocytosis. Journal of Biological Chemistry, 289(35 Aug), 24560–24572. https://doi.org/10.1074/jbc.M114.571620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Ford, C. A., et al. (2015). Oncogenic properties of apoptotic tumor cells in aggressive B cell lymphoma. Current Biology, 25(5 Mar), 577–588. https://doi.org/10.1016/j.cub.2014.12.059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Verma, A., Warner, S. L., Vankayalapati, H., Bearss, D. J., & Sharma, S. (2011). Targeting Axl and Mer kinases in cancer. Molecular Cancer Therapy, 10(10 Oct), 1763–1773. https://doi.org/10.1158/1535-7163.MCT-11-0116.

    Article  CAS  Google Scholar 

  339. Bosurgi, L., et al. (2013). Paradoxical role of the proto-oncogene Axl and Mer receptor tyrosine kinases in colon cancer. Proceedings of the National Academy of Sciences of the United States of America, 110(32 Aug), 13091–13096. https://doi.org/10.1073/pnas.1302507110.

    Article  PubMed  PubMed Central  Google Scholar 

  340. Stanford, J. C., et al. (2014). Efferocytosis produces a prometastatic landscape during postpartum mammary gland involution. Journal of Clinical Investigation, 124(11 Nov), 4737–4752. https://doi.org/10.1172/JCI76375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Sendoel, A., & Hengartner, M. O. (2014). Apoptotic cell death under hypoxia. Physiology, 29(3 May), 168–176. https://doi.org/10.1152/physiol.00016.2013.

    Article  CAS  PubMed  Google Scholar 

  342. Sermeus, A., et al. (2012). Hypoxia-induced modulation of apoptosis and BCL-2 family proteins in different cancer cell types. PLoS One, 7(11 Nov), e47519. https://doi.org/10.1371/journal.pone.0047519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Pimentel, J. M., Zhou, J.-Y., & Wu, G. S. (2023). The role of TRAIL in apoptosis and immunosurveillance in cancer. Cancers (Basel), 15(10 May), 2752. https://doi.org/10.3390/cancers15102752.

    Article  CAS  PubMed  Google Scholar 

  344. Yuan, X., Gajan, A., Chu, Q., Xiong, H., Wu, K., & Wu, G. S. (2018). Developing TRAIL/TRAIL death receptor-based cancer therapies. Cancer and Metastasis Reviews, 37(4 Dec), 733–748. https://doi.org/10.1007/s10555-018-9728-y.

    Article  CAS  PubMed  Google Scholar 

  345. Liguori, M., et al. (2106). Functional TRAIL receptors in monocytes and tumor-associated macrophages: a possible targeting pathway in the tumor microenvironment. Oncotarget, 7(27 Jul), 41662–41676. https://doi.org/10.18632/oncotarget.9340.

    Article  Google Scholar 

  346. de Looff, M., de Jong, S., & Kruyt, F. A. E. (2019) Multiple interactions between cancer cells and the tumor microenvironment modulate TRAIL signaling: implications for TRAIL receptor targeted therapy. Frontiers in Immunology, 10, Jul., https://doi.org/10.3389/fimmu.2019.01530.

  347. van Roosmalen, I. A. M., Quax, W. J., & Kruyt, F. A. E. (2014). Two death-inducing human TRAIL receptors to target in cancer: similar or distinct regulation and function? Biochemical Pharmacology, 91(4 Oct), 447–456. https://doi.org/10.1016/j.bcp.2014.08.010.

    Article  CAS  PubMed  Google Scholar 

  348. Lecoultre, M., Dutoit, V., & Walker, P. R. (2020). Phagocytic function of tumor-associated macrophages as a key determinant of tumor progression control: a review. The Journal of Immunotherapy of Cancer, 8(2 Dec), e001408 https://doi.org/10.1136/jitc-2020-001408.

    Article  Google Scholar 

  349. Schmeisser, K., & Parker, J. A. (2019). Pleiotropic effects of mTOR and autophagy during development and aging. Frontiers in Cell and Developmental Biology, 7, 192 https://doi.org/10.3389/fcell.2019.00192.

    Article  PubMed  PubMed Central  Google Scholar 

  350. Yu, J. S. L., & Cui, W. (2016). Proliferation, survival and metabolism: the role of PI3K/AKT/ mTOR signalling in pluripotency and cell fate determination. Development, 143(17), 3050–3060. https://doi.org/10.1242/dev.137075.

    Article  CAS  PubMed  Google Scholar 

  351. Karimi Roshan, M., Soltani, A., Soleimani, A., Rezaie Kahkhaie, K., Afshari, A. R., & Soukhtanloo, M. (2019). Role of AKT and mTOR signaling pathways in the induction of epithelial-mesenchymal transition (EMT) process. Biochimie, 165(Oct), 229–234. https://doi.org/10.1016/J.BIOCHI.2019.08.003.

    Article  CAS  PubMed  Google Scholar 

  352. Pires, B. R. B., et al. (2017). NF-kappaB is involved in the regulation of EMT genes in breast cancer cells. PLoS One, 12(1 Jan), e0169622. https://doi.org/10.1371/journal.pone.0169622. [Online]. Available.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Verzella, D., et al. (2020). Life, death, and autophagy in cancer: NF-κB turns up everywhere. Cell Death & Disease, 11(3), 210 https://doi.org/10.1038/s41419-020-2399-y.

    Article  Google Scholar 

  354. He, Z. J., Zhu, F. Y., Li, S. S., Zhong, L., Tan, H. Y., & Wang, K. (2017). Inhibiting ROS-NF-κB-dependent autophagy enhanced brazilin-induced apoptosis in head and neck squamous cell carcinoma. Food and Chemical Toxicology, 101(Mar), 55–66. https://doi.org/10.1016/J.FCT.2017.01.002.

    Article  CAS  PubMed  Google Scholar 

  355. Niu, T., Tian, Y., Wang, G., Guo, G., Tong, Y., & Shi, Y. (2020). Inhibition of ROS-NF-κB-dependent autophagy enhances Hypocrellin A united LED red light-induced apoptosis in squamous carcinoma A431 cells. Cell Signaling, 69(May), 109550 https://doi.org/10.1016/J.CELLSIG.2020.109550.

    Article  CAS  Google Scholar 

  356. Han, J. H., et al. (2022). Snail acetylation by autophagy‐derived acetyl‐coenzyme A promotes invasion and metastasis of KRAS ‐ LKB1 co‐mutated lung cancer cells. Cancer Commun, 42(8 Aug), 716–749. https://doi.org/10.1002/cac2.12332.

    Article  Google Scholar 

  357. Zhang, X., Wang, H., Yu, M., Ma, K., & Ning, L. (2022). Inhibition of autophagy by 3-methyladenine promotes migration and invasion of colon cancer cells through epithelial mesenchymal transformation. Translational Cancer Research, 11(8 Aug), 2834–2842. https://doi.org/10.21037/tcr-22-1736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  358. Wang, Y., et al. (2019). Autophagy inhibition specifically promotes epithelial-mesenchymal transition and invasion in RAS-mutated cancer cells. Autophagy, 15(5 May), 886–899. https://doi.org/10.1080/15548627.2019.1569912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Lamark, T., Svenning, S., & Johansen, T. (2017). Regulation of selective autophagy: the p62/SQSTM1 paradigm. Essays in Biochemistry, 61(6 Dec), 609–624. https://doi.org/10.1042/EBC20170035.

    Article  PubMed  Google Scholar 

  360. Li, J., et al. (2013). Autophagy promotes hepatocellular carcinoma cell invasion through activation of epithelial–mesenchymal transition. Carcinogenesis, 34(6 Jun), 1343–1351. https://doi.org/10.1093/carcin/bgt063.

    Article  CAS  PubMed  Google Scholar 

  361. Song, J., et al. (2011). Autophagy in hypoxia protects cancer cells against apoptosis induced by nutrient deprivation through a beclin1-dependent way in hepatocellular carcinoma. Journal of Cellular Biochemistry, 112(11 Nov), 3406–3420. https://doi.org/10.1002/jcb.23274.

    Article  CAS  PubMed  Google Scholar 

  362. Chen, H.-T., et al. (2019). Crosstalk between autophagy and epithelial-mesenchymal transition and its application in cancer therapy. Molecular Cancer, 18(1 Dec), 101 https://doi.org/10.1186/s12943-019-1030-2.

    Article  PubMed  PubMed Central  Google Scholar 

  363. Powan, P., Luanpitpong, S., He, X., Rojanasakul, Y., & Chanvorachote, P. (2017). Detachment-induced E-cadherin expression promotes 3D tumor spheroid formation but inhibits tumor formation and metastasis of lung cancer cells. American Journal of Physiology, 313(5 Nov), C556–C566. https://doi.org/10.1152/ajpcell.00096.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  364. Signore, M., Ricci-Vitiani, L., & De Maria, R. (2013). Targeting apoptosis pathways in cancer stem cells. Cancer Letters, 332(2 May), 374–382. https://doi.org/10.1016/j.canlet.2011.01.013.

    Article  CAS  PubMed  Google Scholar 

  365. Vitale, I., Manic, G., Dandrea, V., & De Maria, R. (2015). Role of autophagy in the maintenance and function of cancer stem cells. The International Journal of Developmental Biology, 59(1-2–3), 95–108. https://doi.org/10.1387/ijdb.150082iv.

    Article  CAS  PubMed  Google Scholar 

  366. Russell, R. C., & Guan, K. (2022). The multifaceted role of autophagy in cancer. EMBO Journal, 41(Jul), 13 https://doi.org/10.15252/embj.2021110031.

    Article  CAS  Google Scholar 

  367. Qiang, L., et al. (2014). Regulation of cell proliferation and migration by p62 through stabilization of Twist1. Proceedings of the National Academy of Sciences of the United States of America, 111(25 Jun), 9241–9246. https://doi.org/10.1073/pnas.1322913111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  368. Tanabe, S., Quader, S., Cabral, H., & Ono, R. (2020) Interplay of EMT and CSC in cancer and the potential therapeutic strategies. Frontiers in Pharmacology, 11, Jun., https://doi.org/10.3389/fphar.2020.00904.

  369. Leng, X., Huang, G., Li, S., Yao, M., Ding, J., & Ma, F. (2021). Correlation of breast cancer microcirculation construction with tumor stem cells (CSCs) and epithelial-mesenchymal transition (EMT) based on contrast-enhanced ultrasound (CEUS). PLoS One, 16(12 Dec), e0261138. https://doi.org/10.1371/journal.pone.0261138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  370. Dong, B., Li, S., Zhu, S., Yi, M., Luo, S., & Wu, K. (2021). MiRNA-mediated EMT and CSCs in cancer chemoresistance. Experimental Hematology & Oncology, 10(1 Dec), 12. https://doi.org/10.1186/s40164-021-00206-5.

    Article  CAS  Google Scholar 

  371. Bertrand, M., et al. (2015). SQSTM1/p62 regulates the expression of junctional proteins through epithelial-mesenchymal transition factors. Cell Cycle, 14(3 Feb), 364–374. https://doi.org/10.4161/15384101.2014.987619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  372. Xu, L.-Z., et al. (2017). p62/SQSTM1 enhances breast cancer stem-like properties by stabilizing MYC mRNA. Oncogene, 36(3 Jan), 304–317. https://doi.org/10.1038/onc.2016.202.

    Article  CAS  PubMed  Google Scholar 

  373. Gong, C., et al. (2013). Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells. Oncogene, 32(18 May), 2261–2272. https://doi.org/10.1038/onc.2012.252.

    Article  CAS  PubMed  Google Scholar 

  374. Aguilar-Gallardo, C., Zamorano, M., Farias, J. G., & Quevedo, K. D. A. (2022). Understanding autophagy role in cancer stem cell development. Molecular Biology Reports, 49(7 Jul), 6741–6751. https://doi.org/10.1007/s11033-022-07299-z.

    Article  CAS  PubMed  Google Scholar 

  375. Nuñez-Olvera, S. I. et al. (2019) Autophagy machinery as a promising therapeutic target in endometrial cancer. Frontiers in Oncology, 9. Frontiers Media S.A., Nov. https://doi.org/10.3389/fonc.2019.01326.

  376. Talesa, V. N., Ferri, I., Bellezza, G., Love, H. D., Sidoni, A., & Antognelli, C. (2017). Glyoxalase 2 is involved in human prostate cancer progression as part of a mechanism driven by PTEN/PI3K/AKT/mTOR signaling with involvement of PKM2 and ERα. Prostate, 77(2 Feb), 196–210. https://doi.org/10.1002/pros.23261.

    Article  CAS  PubMed  Google Scholar 

  377. Slomovitz, B. M., & Coleman, R. L. (2012). The PI3K/AKT/mTOR pathway as a therapeutic target in endometrial. Cancer, AACR, 18(21 Nov), 5856–5864. https://doi.org/10.1158/1078-0432.CCR-12-0662.

    Article  CAS  Google Scholar 

  378. Li, L., & Leung, P. S. (2014). Use of herbal medicines and natural products: an alternative approach to overcoming the apoptotic resistance of pancreatic cancer. The International Journal of Biochemistry & Cell Biology, 53(Aug), 224–236. https://doi.org/10.1016/j.biocel.2014.05.021.

    Article  CAS  Google Scholar 

  379. Zeng, X., Yan, T., Schupp, J. E., Seo, Y., & Kinsella, T. J. (2007). DNA mismatch repair initiates 6-thioguanine–induced autophagy through p53 activation in human tumor cells. Clinical Cancer Research, 13(4 Feb), 1315–1321. https://doi.org/10.1158/1078-0432.CCR-06-1517.

    Article  CAS  PubMed  Google Scholar 

  380. Cherblanc, F. L., Davidson, R. W. M., Di Fruscia, P., Srimongkolpithak, N., & Fuchter, M. J. (2013). Perspectives on natural product epigenetic modulators in chemical biology and medicine. Natural Product Report, 30(5), 605. https://doi.org/10.1039/c3np20097c.

    Article  CAS  Google Scholar 

  381. Kumari, N., Dwarakanath, B. S., Das, A., & Bhatt, A. N. (2016). Role of interleukin-6 in cancer progression and therapeutic resistance. Tumor Biology, 37(9), 11553–11572. https://doi.org/10.1007/s13277-016-5098-7.

    Article  CAS  PubMed  Google Scholar 

  382. Kumari, N., Das, A., & Bhatt, A. N. (2020). Interleukin-6 confers radio-resistance by inducing Akt-mediated glycolysis and reducing mitochondrial damage in cells. Journal of Biochemistry, 167(3 Mar), 303–314. https://doi.org/10.1093/jb/mvz091.

    Article  CAS  PubMed  Google Scholar 

  383. Mylavarapu, S., Das, A., & Roy, M. (2018). Role of BRCA mutations in the modulation of response to platinum therapy. Frontiers in Oncology, 8(Feb), 16 https://doi.org/10.3389/fonc.2018.00016.

    Article  PubMed  PubMed Central  Google Scholar 

  384. Luo, M.-L., Huang, W., Zhu, H.-P., Peng, C., Zhao, Q., & Han, B. (2022). Advances in indole-containing alkaloids as potential anticancer agents by regulating autophagy. Biomedicine & Pharmacotherapy, 149, 112827 https://doi.org/10.1016/j.biopha.2022.112827.

    Article  CAS  Google Scholar 

  385. Wang, J., et al. (2021). Sanguinarine impairs lysosomal function and induces ROS-dependent mitophagy and apoptosis in human hepatocellular carcinoma cells. Archieves of Pharmacal Research, 44(11), 1025–1036. https://doi.org/10.1007/s12272-021-01356-0.

    Article  CAS  Google Scholar 

  386. Zhai, K., Siddiqui, M., Abdellatif, B., Liskova, A., Kubatka, P., & Büsselberg, D. (2021). Natural compounds in glioblastoma therapy: preclinical insights, mechanistic pathways, and outlook. Cancers (Basel), 13, 10 https://doi.org/10.3390/cancers13102317.

    Article  CAS  Google Scholar 

  387. Kumar, S., & Das, A. (2023) A cocktail of natural compounds holds promise for new immunotherapeutic potential in head and neck cancer, Chinese Journal of Integrative Medicine, Apr., https://doi.org/10.1007/s11655-023-3694-0.

  388. Sakamoto, S., Kypriyanau, N. (2021) Aspects of medicine, and undefined 2010, Targeting anoikis resistance in prostate cancer metastasis, Elsevier, Accessed: Apr. 27. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0098299710000026.

  389. Keledjian, K., Garrison, J. B., & Kyprianou, N. (2005). Doxazosin inhibits human vascular endothelial cell adhesion, migration, and invasion. Journal of Cellular Biochemistry, 94(2 Feb), 374–388. https://doi.org/10.1002/jcb.20240.

    Article  CAS  PubMed  Google Scholar 

  390. Banach, A., Jiang, Y.-P., Roth, E., Kuscu, C., Cao, J., & Lin, R. Z. (2019). CEMIP upregulates BiP to promote breast cancer cell survival in hypoxia. Oncotarget, 10(42 Jul), 4307–4320. https://doi.org/10.18632/oncotarget.27036.

    Article  PubMed  PubMed Central  Google Scholar 

  391. Liu, B., et al. (2022). CEMIP promotes extracellular matrix-detached prostate cancer cell survival by inhibiting ferroptosis. Cancer Science, 113(6 Jun), 2056–2070. https://doi.org/10.1111/cas.15356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  392. Souers, A. J., et al. (2013). ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nature Medicine, 19(2), 202–208. https://doi.org/10.1038/nm.3048.

    Article  CAS  PubMed  Google Scholar 

  393. Edlich, F. (2018). BCL-2 proteins and apoptosis: recent insights and unknowns. Biochemical and Biophysical Research Communications, 500(1), 26–34. https://doi.org/10.1016/j.bbrc.2017.06.190.

    Article  CAS  PubMed  Google Scholar 

  394. Yadav, A., Kumar, B., Yu, J.-G., Old, M., Teknos, T. N., & Kumar, P. (2015). Tumor-associated endothelial cells promote tumor metastasis by chaperoning circulating tumor cells and protecting them from anoikis. PLoS One, 10(10 Oct), e0141602 https://doi.org/10.1371/journal.pone.0141602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  395. Saleem, S. (2021). Apoptosis, autophagy, necrosis and their multi galore crosstalk in neurodegeneration. Neuroscience, 469(Aug), 162–174. https://doi.org/10.1016/j.neuroscience.2021.06.023.

    Article  CAS  PubMed  Google Scholar 

  396. Ojha, R., Ishaq, M., & Singh, S. (2015). Caspase-mediated crosstalk between autophagy and apoptosis: mutual adjustment or matter of dominance. Journal of Cancer Research and Therapeutics, 11(3), 514 https://doi.org/10.4103/0973-1482.163695.

    Article  CAS  PubMed  Google Scholar 

  397. Wolf, P., Schoeniger, A., & Edlich, F. (2022). Pro-apoptotic complexes of BAX and BAK on the outer mitochondrial membrane. Biochimica et Biophysica Acta - Molecular Cell Research, 1869(10), 119317 https://doi.org/10.1016/j.bbamcr.2022.119317.

    Article  CAS  PubMed  Google Scholar 

  398. Kale, J., et al. (2018). Phosphorylation switches Bax from promoting to inhibiting apoptosis thereby increasing drug resistance. EMBO Reports, 19(9), e45235 https://doi.org/10.15252/embr.201745235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  399. Dong, W., et al. (2012). IKKα contributes to UVB-induced VEGF expression by regulating AP-1 transactivation. Nucleic Acids Research, 40(7 Apr), 2940–2955. https://doi.org/10.1093/nar/gkr1216.

    Article  CAS  PubMed  Google Scholar 

  400. Xu, X., Zhang, C., Xu, H., Wu, L., Hu, M., & Song, L. (2020) Autophagic feedback-mediated degradation of IKKα requires CHK1/p300/CBP-dependent acetylation of p53. Journal of Cell Science, Jan, https://doi.org/10.1242/jcs.246868.

  401. Tan, Q., et al. (2020). Selective degradation of IKKα by autophagy is essential for arsenite-induced cancer cell apoptosis. Cell Death & Disease, 11(4 Apr), 222 https://doi.org/10.1038/s41419-020-2420-5.

    Article  CAS  Google Scholar 

  402. Yuan, J., et al. (2021). MiRNA-223-3p affects mantle cell lymphoma development by regulating the CHUK/NF-ƘB2 signaling pathway. OncoTargets and Therapy, 14, 1553–1564. https://doi.org/10.2147/OTT.S283486.

    Article  PubMed  PubMed Central  Google Scholar 

  403. Rahal, R., et al. (2014). Pharmacological and genomic profiling identifies NF-κB-targeted treatment strategies for mantle cell lymphoma. Nature Medicine, 20(1 Jan), 87–92. https://doi.org/10.1038/nm.3435.

    Article  CAS  PubMed  Google Scholar 

  404. Cao, Y. (2011) Mechanisms of the apoptosis induced by CD176 antibody in human leukemic cells. International Journal of Oncology, Mar., https://doi.org/10.3892/ijo.2011.992.

  405. Li, X., & Hu, Y. (2021). Attribution of NF-κB Activity to CHUK/IKKα-Involved Carcinogenesis. Cancers (Basel), 13(6 Mar), 1411 https://doi.org/10.3390/cancers13061411.

    Article  CAS  PubMed  Google Scholar 

  406. Chen, N., & Debnath, J. (2013). IκB kinase complex (IKK) triggers detachment-induced autophagy in mammary epithelial cells independently of the PI3K-AKT-MTORC1 pathway. Autophagy, 9(8 Aug), 1214–1227. https://doi.org/10.4161/auto.24870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  407. Gradzka, S., et al. (2018). Inhibitor of apoptosis proteins are required for effective fusion of autophagosomes with lysosomes. Cell Death & Disease, 9(5 May), 529 https://doi.org/10.1038/s41419-018-0508-y.

    Article  CAS  Google Scholar 

  408. Yin, Z., Pascual, C., & Klionsky, D. (2016). Autophagy: machinery and regulation. Microbial Cell, 3(12 Dec), 588–596. https://doi.org/10.15698/mic2016.12.546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  409. Berthelet, J., & Dubrez, L. (2013). Regulation of apoptosis by inhibitors of apoptosis (IAPs). Cells, 2(1 Mar), 163–187. https://doi.org/10.3390/cells2010163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  410. Frazzi, R. (2021). BIRC3 and BIRC5: multi‐faceted inhibitors in cancer. Cell Bioscience, 11(1), 8 https://doi.org/10.1186/s13578-020-00521-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  411. Cetraro, P., Plaza-Diaz, J., Mackenzie, A., & Abadía-Molina, F. (2022). A review of the current impact of inhibitors of apoptosis proteins and their repression in cancer. Cancers (Basel), 14(7), 1–25. https://doi.org/10.3390/cancers14071671.

    Article  CAS  Google Scholar 

  412. Dai, Y., & Grant, S. (2015). BCL2L11/Bim as a dual-agent regulating autophagy and apoptosis in drug resistance. Autophagy, 11(2 Feb), 416–418. https://doi.org/10.1080/15548627.2014.998892.

    Article  PubMed  PubMed Central  Google Scholar 

  413. Delgado, M., & Tesfaigzi, Y. (2014). Is BMF central for anoikis and autophagy? Autophagy, 10(1 Jan), 168–169. https://doi.org/10.4161/auto.26759.

    Article  CAS  PubMed  Google Scholar 

  414. Zhi, Z., et al. (2022). Non-canonical phosphorylation of Bmf by p38 MAPK promotes its apoptotic activity in anoikis. Cell Death and Differentiation, 29(2 Feb), 323–336. https://doi.org/10.1038/s41418-021-00855-3.

    Article  CAS  PubMed  Google Scholar 

  415. Fan, Y.-X. et al. (2018) MicroRNA-125b inhibits cell proliferation and induces cell apoptosis in esophageal squamous cell carcinoma by targeting BMF. Oncology Reports, May, https://doi.org/10.3892/or.2018.6413.

  416. Shalini, S., Dorstyn, L., Dawar, S., & Kumar, S. (2015). Old, new and emerging functions of caspases. Cell Death and Differentiation, 22(4 Apr), 526–539. https://doi.org/10.1038/cdd.2014.216.

    Article  CAS  PubMed  Google Scholar 

  417. Tiwari, M., et al. (2014). A nonapoptotic role for CASP2/caspase 2. Autophagy, 10(6 Jun), 1054–1070. https://doi.org/10.4161/auto.28528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  418. Pagliarini, V., et al. (2012). Proteolysis of Ambra1 during apoptosis has a role in the inhibition of the autophagic pro-survival response. Cell Death and Differentiation, 19(9 Sep), 1495–1504. https://doi.org/10.1038/cdd.2012.27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  419. Betin, V. M. S., & Lane, J. D. (2009). Atg4D at the interface between autophagy and apoptosis. Autophagy, 5(7 Oct), 1057–1059. https://doi.org/10.4161/auto.5.7.9684.

    Article  CAS  PubMed  Google Scholar 

  420. Bouchier-Hayes, L., & Green, D. R. (2012). Caspase-2: the orphan caspase. Cell Death and Differentiation, 19(1 Jan), 51–57. https://doi.org/10.1038/cdd.2011.157.

    Article  CAS  PubMed  Google Scholar 

  421. Mandal, R., Barrón, J. C., Kostova, I., Becker, S., & Strebhardt, K. (2020). Caspase-8: the double-edged sword. Biochimica et Biophysica Acta - Reviews on Cancer, 1873(2 Apr), 188357 https://doi.org/10.1016/j.bbcan.2020.188357.

    Article  CAS  PubMed  Google Scholar 

  422. Kumar, M., Irungbam, K., & Kataria, M. (2018). Depletion of membrane cholesterol compromised caspase-8 imparts in autophagy induction and inhibition of cell migration in cancer cells. Cancer Cell International, 18(1 Dec), 23. https://doi.org/10.1186/s12935-018-0520-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  423. Norman, J. M., Cohen, G. M., & Bampton, E. T. W. (2010). The in vitro cleavage of the hAtg proteins by cell death proteases. Autophagy, 6(8 Nov), 1042–1056. https://doi.org/10.4161/auto.6.8.13337.

    Article  CAS  PubMed  Google Scholar 

  424. Elgendy, M., Sheridan, C., Brumatti, G., & Martin, S. J. (2011). Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. Molecular Cell, 42(1 Apr), 23–35. https://doi.org/10.1016/j.molcel.2011.02.009.

    Article  CAS  PubMed  Google Scholar 

  425. Orrenius, S., Gogvadze, V., & Zhivotovsky, B. (2015). Calcium and mitochondria in the regulation of cell death. Biochemical and Biophysical Research Communications, 460(1), 72–81. https://doi.org/10.1016/j.bbrc.2015.01.137.

    Article  CAS  PubMed  Google Scholar 

  426. Ghaemi, S., Arefian, E., Rezazadeh Valojerdi, R., Soleimani, M., Moradimotlagh, A., & Jamshidi Adegani, F. (2020). Inhibiting the expression of anti-apoptotic genes BCL2L1 and MCL1, and apoptosis induction in glioblastoma cells by microRNA-342. Biomedicine & Pharmacotherapy, 121(Jan), 109641 https://doi.org/10.1016/j.biopha.2019.109641.

    Article  CAS  Google Scholar 

  427. Chunhacha, P., Pongrakhananon, V., Rojanasakul, Y., & Chanvorachote, P. (2012). Caveolin-1 regulates Mcl-1 stability and anoikis in lung carcinoma cells. American Journal of Physiology, 302(9 May), C1284–C1292. https://doi.org/10.1152/ajpcell.00318.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  428. Criollo, A., et al. (2010). The IKK complex contributes to the induction of autophagy. EMBO Journal, 29(3 Feb), 619–631. https://doi.org/10.1038/emboj.2009.364.

    Article  CAS  PubMed  Google Scholar 

  429. Zada, S., et al. (2021). Cross talk between autophagy and oncogenic signaling pathways and implications for cancer therapy. Biochimica et Biophysica Acta - Reviews on Cancer, 1876(1 Aug), 188565 https://doi.org/10.1016/j.bbcan.2021.188565.

    Article  CAS  PubMed  Google Scholar 

  430. Zhang, P., et al. (2016). Tetraiodothyroacetic acid and transthyretin silencing inhibit pro-metastatic effect of L-thyroxin in anoikis-resistant prostate cancer cells through regulation of MAPK/ERK pathway. Experimental Cell Research, 347(2 Oct), 350–359. https://doi.org/10.1016/j.yexcr.2016.08.019.

    Article  CAS  PubMed  Google Scholar 

  431. Dower, C. M., Wills, C. A., Frisch, S. M., & Wang, H. G. (2018). Mechanisms and context underlying the role of autophagy in cancer metastasis. Autophagy, 14(7), 1110–1128. https://doi.org/10.1080/15548627.2018.1450020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  432. Das Gupta, D., et al. (2021). Evaluation of antioxidant, anti-inflammatory and anticancer activities of diosgenin enriched Paris polyphylla rhizome extract of Indian Himalayan landraces. Journal of Ethnopharmacology, 270(Apr), 113842. https://doi.org/10.1016/j.jep.2021.113842.

    Article  CAS  PubMed  Google Scholar 

  433. Redza-Dutordoir, M., & Averill-Bates, D. A. (2016). Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica Acta - Molecular Cell Research, 1863(12 Dec), 2977–2992. https://doi.org/10.1016/j.bbamcr.2016.09.012.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation and analysis were performed by the corresponding author, A.D. The first draft of the manuscript was written by S.G. and P.C. commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Asmita Das.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulia, S., Chandra, P. & Das, A. The Prognosis of Cancer Depends on the Interplay of Autophagy, Apoptosis, and Anoikis within the Tumor Microenvironment. Cell Biochem Biophys 81, 621–658 (2023). https://doi.org/10.1007/s12013-023-01179-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-023-01179-4

Keywords

Navigation