Skip to main content

Advertisement

Log in

Common extracellular matrix regulation of myeloid cell activity in the bone marrow and tumor microenvironments

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The complex interaction between cells undergoing transformation and the various stromal and immunological cell components of the tumor microenvironment (TME) crucially influences cancer progression and diversification, as well as endowing clinical and prognostic significance. The immunosuppression characterizing the TME depends on the recruitment and activation of different cell types including regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages. Less considered is the non-cellular component of the TME. Here, we focus on the extracellular matrix (ECM) regulatory activities that, within the TME, actively contribute to many aspects of tumor progression, acting on both tumor and immune cells. Particularly, ECM-mediated regulation of tumor-associated immunosuppression occurs through the modulation of myeloid cell expansion, localization, and functional activities. Such regulation is not limited to the TME but occurs also within the bone marrow, wherein matricellular proteins contribute to the maintenance of specialized hematopoietic stem cell niches thereby regulating their homeostasis as well as the generation and expansion of myeloid cells under both physiological and pathological conditions. Highlighting the commonalities among ECM-myeloid cell interactions in bone marrow and TME, in this review we present a picture in which myeloid cells might sense and respond to ECM modifications, providing different ECM-myeloid cell interfaces that may be useful to define prognostic groups and to tailor therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AML:

Acute myeloid leukemia

BM:

Bone marrow

DLBCL:

Diffuse large B cell lymphoma

ECM:

Extracellular matrix

EMT:

Epithelial to mesenchymal transition

HSC:

Hematopoietic stem cell

IFNγ:

Interferon gamma

IL:

Interleukin

LAIR:

Leukocyte-associated Ig-like receptor

LOX:

Lysyl-oxidase

MDS:

Myelodisplastic syndrome

MDSC:

Myeloid-derived suppressor cell

NETs:

Neutrophil extracellular traps

OPN:

Osteopontin

PMN:

Polymorphonuclear

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

TAM:

Tumor-associated macrophage

TME:

Tumor microenvironment

TNF:

Tumor necrosis factor

TSP-1:

Thrombospondin-1

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  2. Acerbi I, Cassereau L, Dean I et al (2015) Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr Biol (Camb) 7:1120–1134. doi:10.1039/c5ib00040h

    Article  CAS  Google Scholar 

  3. Afik R, Zigmond E, Vugman M et al (2016) Tumor macrophages are pivotal constructors of tumor collagenous matrix. J Exp Med 213:2315–2331. doi:10.1084/jem.20151193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sangaletti S, Stoppacciaro A, Guiducci C, Torrisi MR, Colombo MP (2003) Leukocyte, rather than tumor-produced SPARC, determines stroma and collagen type IV deposition in mammary carcinoma. J Exp Med 198:1475–1485. doi:10.1084/jem.20030202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sangaletti S, Di Carlo E, Gariboldi S et al (2008) Macrophage-derived SPARC bridges tumor cell-extracellular matrix interactions toward metastasis. Cancer Res 68:9050–9059. doi:10.1158/0008-5472.CAN-08-1327

    Article  CAS  PubMed  Google Scholar 

  6. Pickup MW, Mouw JK, Weaver VM (2014) The extracellular matrix modulates the hallmarks of cancer. EMBO Rep 15:1243–1253. doi:10.15252/embr.201439246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Levental KR, Yu HM, Kass L et al (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906. doi:10.1016/j.cell.2009.10.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bergamaschi A, Tagliabue E, Sørlie T et al (2008) Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome. J Pathol 214:357–367. doi:10.1002/path.2278

    Article  CAS  PubMed  Google Scholar 

  9. Triulzi T, Casalini P, Sandri M et al (2013) Neoplastic and stromal cells contribute to an extracellular matrix gene expression profile defining a breast cancer subtype likely to progress. PLoS One 8:e56761. doi:10.1371/journal.pone.0056761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sangaletti S, Tripodo C, Santangelo A et al (2016) Mesenchymal transition of high-grade breast carcinomas depends on extracellular matrix control of myeloid suppressor cell activity. Cell Rep 17:233–248. doi:10.1016/j.celrep.2016.08.075

    Article  CAS  PubMed  Google Scholar 

  11. Helleman J, Jansen MP, Ruigrok-Ritstier K et al (2008) Association of an extracellular matrix gene cluster with breast cancer prognosis and endocrine therapy response. Clin Cancer Res 14:5555–5564. doi:10.1158/1078-0432.Ccr-08-0555

    Article  CAS  PubMed  Google Scholar 

  12. Guttlein LN, Benedetti LG, Fresno C et al (2017) Predictive outcomes for HER2-enriched cancer using growth and metastasis signatures driven by SPARC. Mol Cancer Res 15:304–316. doi:10.1158/1541-7786.MCR-16-0243-T

    Article  CAS  PubMed  Google Scholar 

  13. Cheon DJ, Tong YG, Sim MS et al (2014) A collagen-remodeling gene signature regulated by TGF-beta signaling is associated with metastasis and poor survival in serous ovarian cancer. Clin Cancer Res 20:711–723. doi:10.1158/1078-0432.Ccr-13-1256

    Article  CAS  PubMed  Google Scholar 

  14. Zhang W, Ota T, Shridhar V, Chien J, Wu BL, Kuang R (2013) Network-based survival analysis reveals subnetwork signatures for predicting outcomes of ovarian cancer treatment. PLoS Comput Biol 9:e1002975. doi:10.1371/journal.pcbi.1002975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Naba A, Clauser KR, Whittaker CA, Carr SA, Tanabe KK, Hynes RO (2014) Extracellular matrix signatures of human primary metastatic colon cancers and their metastases to liver. BMC Cancer 14:518. doi:10.1186/1471-2407-14-518

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lenz G, Wright G, Dave SS et al (2008) Stromal gene signatures in large-B-cell lymphomas. N Engl J Med 359:2313–2323. doi:10.1056/NEJMoa0802885

    Article  CAS  PubMed  Google Scholar 

  17. Jain P, Fayad LE, Rosenwald A, Young KH, O’Brien S (2013) Recent advances in de novo CD5(+) diffuse large B cell lymphoma. Am J Hematol 88:798–802. doi:10.1002/ajh.23467

    Article  PubMed  Google Scholar 

  18. Sangaletti S, Tripodo C, Vitali C et al (2014) Defective stromal remodeling and neutrophil extracellular traps in lymphoid tissues favor the transition from autoimmunity to lymphoma. Cancer Discov 4:110–129. doi:10.1158/2159-8290.Cd-13-0276

    Article  CAS  PubMed  Google Scholar 

  19. Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964. doi:10.1126/science.1129139

    Article  CAS  PubMed  Google Scholar 

  20. Newman AM, Liu CL, Green MR et al (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12:453–457. doi:10.1038/nmeth.3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gentles AJ, Newman AM, Liu CL et al (2015) The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 21:938–945. doi:10.1038/nm.3909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Becht E, Giraldo NA, Lacroix L et al (2016) Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol 17:218. doi:10.1186/s13059-016-1070-5

    Article  PubMed  PubMed Central  Google Scholar 

  23. Salmon H, Franciszkiewicz K, Damotte D et al (2012) Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J Clin Invest 122:899–910. doi:10.1172/Jci45817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu TY, Gabrilovich DI (2012) Molecular pathways: tumor-infiltrating myeloid cells and reactive oxygen species in regulation of tumor microenvironment. Clin Cancer Res 18:4877–4882. doi:10.1158/1078-0432.CCR-11-2939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. De Sanctis F, Sandri S, Ferrarini G et al (2014) The emerging immunological role of post-translational modifications by reactive nitrogen species in cancer microenvironment. Front Immunol 5:69. doi:10.3389/fimmu.2014.00069

    Article  PubMed  PubMed Central  Google Scholar 

  26. Smith CK, Kaplan MJ (2015) The role of neutrophils in the pathogenesis of systemic lupus erythematosus. Curr Opin Rheumatol 27:448–453. doi:10.1097/Bor.0000000000000197

    Article  CAS  PubMed  Google Scholar 

  27. Kaplan G (1983) In vitro differentiation of human monocytes. Monocytes cultured on glass are cytotoxic to tumor cells but monocytes cultured on collagen are not. J Exp Med 157:2061–2072

    Article  CAS  PubMed  Google Scholar 

  28. Lebbink RJ, de Ruiter T, Adelmeijer J et al (2006) Collagens are functional, high affinity ligands for the inhibitory immune receptor LAIR-1. J Exp Med 203:1419–1425. doi:10.1084/jem.20052554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Solito S, Falisi E, Diaz-Montero CM et al (2011) A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood 118:2254–2265. doi:10.1182/blood-2010-12-325753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mantovani A, Cassatella MA, Costantini C, Jaillon S (2011) Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11:519–531. doi:10.1038/nri3024

    Article  CAS  PubMed  Google Scholar 

  31. Marigo I, Bosio E, Solito S et al (2010) Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity 32:790–802. doi:10.1016/j.immuni.2010.05.010

    Article  CAS  PubMed  Google Scholar 

  32. Lyons TR, O’Brien J, Borges VF et al (2011) Postpartum mammary gland involution drives progression of ductal carcinoma in situ through collagen and COX-2. Nat Med 17:1109–1115. doi:10.1038/nm.2416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Esbona K, Inman D, Saha S, Jeffery J, Schedin P, Wilke L, Keely P (2016) COX-2 modulates mammary tumor progression in response to collagen density. Breast Cancer Res 18:35. doi:10.1186/s13058-016-0695-3

    Article  PubMed  PubMed Central  Google Scholar 

  34. Knipper JA, Willenborg S, Brinckmann J et al (2015) Interleukin-4 receptor alpha signaling in myeloid cells controls collagen fibril assembly in skin repair. Immunity 43:803–816. doi:10.1016/j.immuni.2015.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Basu A, Kligman LH, Samulewicz SJ, Howe CC (2001) Impaired wound healing in mice deficient in a matricellular protein SPARC (osteonectin, BM-40). BMC Cell Biol 2:15. doi:10.1186/1471-2121-2-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Murphy-Ullrich JE, Sage EH (2014) Revisiting the matricellular concept. Matrix Biol 37:1–14. doi:10.1016/j.matbio.2014.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ehninger A, Boch T, Medyouf H, Müdder K, Orend G, Trumpp A (2014) Loss of SPARC protects hematopoietic stem cells from chemotherapy toxicity by accelerating their return to quiescence. Blood 123:4054–4063. doi:10.1182/blood-2013-10-533711

    Article  CAS  PubMed  Google Scholar 

  38. Tripodo C, Sangaletti S, Guarnotta C et al (2012) Stromal SPARC contributes to the detrimental fibrotic changes associated with myeloproliferation whereas its deficiency favors myeloid cell expansion. Blood 120:3541–3554. doi:10.1182/blood-2011-12-398537

    Article  CAS  PubMed  Google Scholar 

  39. Sangaletti S, Tripodo C, Portararo P et al (2014) Stromal niche communalities underscore the contribution of the matricellular protein SPARC to B-cell development and lymphoid malignancies. Oncoimmunology 3:e28989. doi:10.4161/onci.28989

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nilsson SK, Johnston HM, Whitty GA et al (2005) Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106:1232–1239. doi:10.1182/blood-2004-11-4422

    Article  CAS  PubMed  Google Scholar 

  41. Giallongo C, La Cava P, Tibullo D et al (2013) SPARC expression in CML is associated to imatinib treatment and to inhibition of leukemia cell proliferation. BMC Cancer 13:60. doi:10.1186/1471-2407-13-60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pellagatti A, Cazzola M, Giagounidis A et al (2007) Expression profiling of CD34+ cells in patients with myelodysplastic syndromes: differences between early and advanced cases and analysis of apoptosis-related genes. Leuk Res 31:S35-S. doi:10.1016/S0145-2126(07)70061-9

    Article  Google Scholar 

  43. Alachkar H, Santhanam R, Maharry K et al (2014) SPARC promotes leukemic cell growth and predicts acute myeloid leukemia outcome. J Clin Invest 124:1512–1524. doi:10.1172/JCI70921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Powell JA, Thomas D, Barry EF et al (2009) Expression profiling of a hemopoietic cell survival transcriptome implicates osteopontin as a functional prognostic factor in AML. Blood 114:4859–4870. doi:10.1182/blood-2009-02-204818

    Article  CAS  PubMed  Google Scholar 

  45. Nakamura-Ishizu A, Okuno Y, Omatsu Y et al (2012) Extracellular matrix protein tenascin-C is required in the bone marrow microenvironment primed for hematopoietic regeneration. Blood 119:5429–5437. doi:10.1182/blood-2011-11-393645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim EK, Jeon I, Seo H et al (2014) Tumor-derived osteopontin suppresses antitumor immunity by promoting extramedullary myelopoiesis. Cancer Res 74:6705–6716. doi:10.1158/0008-5472.CAN-14-1482

    Article  CAS  PubMed  Google Scholar 

  47. Wang Z, Xiong S, Mao Y et al (2016) Periostin promotes immunosuppressive premetastatic niche formation to facilitate breast tumour metastasis. J Pathol 239:484–495. doi:10.1002/path.4747

    Article  CAS  PubMed  Google Scholar 

  48. Malanchi I, Santamaria-Martinez A, Susanto E, Peng H, Lehr HA, Delaloye JF, Huelsken J (2012) Interactions between cancer stem cells and their niche govern metastatic colonization. Cancer Res 72(Suppl):SY28-02. doi:10.1158/1538-7445.Am2012-Sy28-02

  49. Sangaletti S, Tripodo C, Sandri S et al (2014) Osteopontin shapes immunosuppression in the metastatic niche. Cancer Res 74:4706–4719. doi:10.1158/0008-5472.CAN-13-3334

    Article  CAS  PubMed  Google Scholar 

  50. Condamine T, Dominguez GA, Youn JI, et al (2016) Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Science Immunol 1:aaf8943. doi:10.1126/sciimmunol.aaf8943

  51. Catena R, Bhattacharya N, El Rayes T et al (2013) Bone marrow-derived Gr1 + cells can generate a metastasis-resistant microenvironment via induced secretion of thrombospondin-1. Cancer Discov 3:578–589. doi:10.1158/2159-8290.CD-12.0476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario P. Colombo.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Funding

This work was supported by Associazione Italiana per la Ricerca sul Cancro (IG 10137 to Mario P. Colombo, MFAG 12810 to Sabina Sangaletti, IG 17261 to Claudia Chiodoni), and the Italian Ministry of Health (GR-2013-02355637 to Sabina Sangaletti).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangaletti, S., Chiodoni, C., Tripodo, C. et al. Common extracellular matrix regulation of myeloid cell activity in the bone marrow and tumor microenvironments. Cancer Immunol Immunother 66, 1059–1067 (2017). https://doi.org/10.1007/s00262-017-2014-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-017-2014-y

Keywords

Navigation