Skip to main content

Advertisement

Log in

Particulate Matter-Induced Cardiovascular Dysfunction: A Mechanistic Insight

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Air pollution and particulate matter (PM) are significant factors for adverse health effects most prominently cardiovascular disease (CVD). PM is produced from various sources, which include both natural and anthropogenic. It is composed of biological components, organic compounds, minerals, and metals, which are responsible for inducing inflammation and adverse health effects. However, the adverse effects are related to PM size distribution. Finer particles are a significant cause of cardiovascular events. This review discusses the direct and indirect mechanisms of PM-induced CVD like myocardial infarction, the elevation of blood pressure, cardiac arrhythmias, atherosclerosis, and thrombosis. The two potential mechanisms are oxidative stress and systemic inflammation. Prenatal exposure has also been linked with cardiovascular outcomes later in life. Moreover, we also mentioned the epidemiological studies that strongly associate PM with CVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Modified with permission from [34])

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. WHO. (2018). Burden of disease from the joint effects of household and ambient Air pollution for 2016. Geneva: WHO.

    Google Scholar 

  2. Miller, M. R. (2020). Oxidative stress and the cardiovascular effects of air pollution. Free Radical Biology and Medicine, 151, 69–87. https://doi.org/10.1016/j.freeradbiomed.2020.01.004

    Article  CAS  PubMed  Google Scholar 

  3. NO, N. D., SO, S. D., & CO, C. M. Air quality index.

  4. Bryant, D. J., Dixon, W. J., Hopkins, J. R., Dunmore, R. E., Pereira, K. L., Shaw, M., et al. (2020). Strong anthropogenic control of secondary organic aerosol formation from isoprene in Beijing. Atmospheric Chemistry and Physics (Print), 20(12), 7531–7552. https://doi.org/10.5194/acp-20-7531-2020

    Article  CAS  Google Scholar 

  5. Li, N., Georas, S., Alexis, N., Fritz, P., Xia, T., Williams, M. A., et al. (2016). A work group report on ultrafine particles (American Academy of Allergy, Asthma & Immunology): why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects. Journal of Allergy and Clinical Immunology, 138(2), 386–396. https://doi.org/10.1016/j.jaci.2016.02.023

    Article  CAS  Google Scholar 

  6. Erickson, A. C., & Arbour, L. (2014). The shared pathoetiological effects of particulate air pollution and the social environment on fetal-placental development. Journal of Environmental and Public Health, 2014, 1

    Article  Google Scholar 

  7. Di Domenico, M., de Menezes Benevenuto, S. G., Tomasini, P. P., Yariwake, V. Y., de Oliveira Alves, N., Rahmeier, F. L., et al. (2020). Concentrated ambient fine particulate matter (PM2. 5) exposure induce brain damage in pre and postnatal exposed mice. Neurotoxicology, 79, 127–141

    Article  Google Scholar 

  8. Lee, B.-J., Kim, B., & Lee, K. (2014). Air pollution exposure and cardiovascular disease. Toxicological Research, 30(2), 71–75. https://doi.org/10.5487/TR.2014.30.2.071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, Z., Su, H., Ahmed, R. Z., Zheng, Y., & Jin, X. (2020). Critical biomarkers for myocardial damage by fine particulate matter: Focused on PPARα-regulated energy metabolism. Environmental Pollution, 264, 114659. https://doi.org/10.1016/j.envpol.2020.114659

    Article  CAS  PubMed  Google Scholar 

  10. Wang, Y., Kong, L., Wu, T., & Tang, M. (2020). Urban particulate matter disturbs the equilibrium of mitochondrial dynamics and biogenesis in human vascular endothelial cells. Environmental Pollution, 264, 114639

    Article  CAS  Google Scholar 

  11. Zhang, Y., Ding, Z., Xiang, Q., Wang, W., Huang, L., & Mao, F. (2020). Short-term effects of ambient PM1 and PM2.5 air pollution on hospital admission for respiratory diseases: Case-crossover evidence from Shenzhen, China. International Journal of Hygiene and Environmental Health, 224, 113418. https://doi.org/10.1016/j.ijheh.2019.11.001

    Article  CAS  PubMed  Google Scholar 

  12. Amsalu, E., Wang, T., Li, H., Liu, Y., Wang, A., Liu, X., et al. (2019). Acute effects of fine particulate matter (PM2.5) on hospital admissions for cardiovascular disease in Beijing, China: a time-series study. Environmental Health, 18(1), 70. https://doi.org/10.1186/s12940-019-0506-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Folino, F., Buja, G., Zanotto, G., Marras, E., Allocca, G., Vaccari, D., et al. (2017). Association between air pollution and ventricular arrhythmias in high-risk patients (ARIA study): A multicentre longitudinal study. The Lancet Planetary Health, 1(2), e58–e64. https://doi.org/10.1016/S2542-5196(17)30020-7

    Article  PubMed  Google Scholar 

  14. Wu, T., Ma, Y., Wu, X., Bai, M., Peng, Y., Cai, W., et al. (2019). Association between particulate matter air pollution and cardiovascular disease mortality in Lanzhou, China. Environmental Science and Pollution Research, 26(15), 15262–15272. https://doi.org/10.1007/s11356-019-04742-w

    Article  CAS  PubMed  Google Scholar 

  15. Cui, L., Shi, L., Li, D., Li, X., Su, X., Chen, L., et al. (2020). Real-Ambient Particulate Matter Exposure-Induced Cardiotoxicity in C57/B6 Mice. Frontiers in Pharmacology. https://doi.org/10.3389/fphar.2020.00199

    Article  PubMed  PubMed Central  Google Scholar 

  16. Leikauf, G. D., Kim, S.-H., & Jang, A.-S. (2020). Mechanisms of ultrafine particle-induced respiratory health effects. Experimental and Molecular Medicine, 52(3), 329–337. https://doi.org/10.1038/s12276-020-0394-0

    Article  CAS  PubMed  Google Scholar 

  17. Owusu, P. A., & Sarkodie, S. A. (2020). Global estimation of mortality, disability-adjusted life years and welfare cost from exposure to ambient air pollution. Science of The Total Environment, 742, 140636. https://doi.org/10.1016/j.scitotenv.2020.140636

    Article  CAS  Google Scholar 

  18. Hamanaka, R. B., & Mutlu, G. M. (2018). Particulate matter air pollution: Effects on the cardiovascular system. Frontiers in Endocrinology. https://doi.org/10.3389/fendo.2018.00680

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liang, F., Liu, F., Huang, K., Yang, X., Li, J., Xiao, Q., et al. (2020). Long-term exposure to fine particulate matter and cardiovascular disease in China. Journal of the American College of Cardiology, 75(7), 707–717. https://doi.org/10.1016/j.jacc.2019.12.031

    Article  CAS  PubMed  Google Scholar 

  20. Khan, F., Kwapiszewska, K., Zhang, Y., Chen, Y., Lambe, A. T., Kołodziejczyk, A., et al. (2021). Toxicological responses of α-pinene-derived secondary organic aerosol and its molecular tracers in human lung cell lines. Chemical Research in Toxicology. https://doi.org/10.1021/acs.chemrestox.0c00409

    Article  PubMed  PubMed Central  Google Scholar 

  21. Marchini, T., Zirlik, A., & Wolf, D. (2020). Pathogenic role of air pollution particulate matter in cardiometabolic disease: Evidence from mice and humans. Antioxidants & Redox Signaling, 33(4), 263–279

    Article  CAS  Google Scholar 

  22. Grivas, G., Cheristanidis, S., Chaloulakou, A., Koutrakis, P., & Mihalopoulos, N. (2018). Elemental composition and source apportionment of fine and coarse particles at traffic and urban background locations in Athens, Greece. Aerosol and Air Quality Research, 18(7), 1642–1659

    Article  CAS  Google Scholar 

  23. Yin, P., Guo, J., Wang, L., Fan, W., Lu, F., Guo, M., et al. (2020). Higher risk of cardiovascular disease associated with smaller size-fractioned particulate matter. Environmental Science & Technology Letters, 7(2), 95–101. https://doi.org/10.1021/acs.estlett.9b00735

    Article  CAS  Google Scholar 

  24. Huang, K., Liang, F., Yang, X., Liu, F., Li, J., Xiao, Q., et al. (2019). Long term exposure to ambient fine particulate matter and incidence of stroke: prospective cohort study from the China-PAR project. BMJ, 367, 16720

    Google Scholar 

  25. Liang, F., Xiao, Q., Gu, D., Xu, M., Tian, L., Guo, Q., et al. (2018). Satellite-based short-and long-term exposure to PM2.5 and adult mortality in urban Beijing, China. Environmental Pollution, 242, 492–499

    Article  CAS  Google Scholar 

  26. Wu, D., Zhang, H., Wu, Q., Li, F., Wang, Y., & Wang, S. L. (2020). Sestrin 2 protects against LPS-induced acute lung injury by inducing mitophagy in alveolar macrophages. Life Sciences, 267, 118941

    Article  Google Scholar 

  27. Hooper, L. G., Young, M. T., Keller, J. P., Szpiro, A. A., O’Brien, K. M., Sandler, D. P., et al. (2018). Ambient air pollution and chronic bronchitis in a cohort of US women. Environmental Health Perspectives, 126(2), 027005

    Article  Google Scholar 

  28. Guo, C., Zhang, Z., Lau, A. K., Lin, C. Q., Chuang, Y. C., Chan, J., et al. (2018). Effect of long-term exposure to fine particulate matter on lung function decline and risk of chronic obstructive pulmonary disease in Taiwan: A longitudinal, cohort study. The Lancet Planetary Health, 2(3), e114–e125

    Article  Google Scholar 

  29. Yang, W., Zhu, Y., Cheng, W., Sang, H., Xu, H., Yang, H., et al. (2018). Effect of minerals and binders on particulate matter emission from biomass pellets combustion. Applied Energy, 215, 106–115. https://doi.org/10.1016/j.apenergy.2018.01.093

    Article  CAS  Google Scholar 

  30. Jia, J., Cheng, S., Yao, S., Xu, T., Zhang, T., Ma, Y., et al. (2018). Emission characteristics and chemical components of size-segregated particulate matter in iron and steel industry. Atmospheric Environment, 182, 115–127. https://doi.org/10.1016/j.atmosenv.2018.03.051

    Article  CAS  Google Scholar 

  31. Pardo, M., Qiu, X., Zimmermann, R., & Rudich, Y. (2020). Particulate matter toxicity is nrf2 and mitochondria dependent: The roles of metals and polycyclic aromatic hydrocarbons. Chemical Research in Toxicology, 33(5), 1110–1120

    Article  CAS  Google Scholar 

  32. Smith, D. M., Cui, T., Fiddler, M. N., Pokhrel, R. P., Surratt, J. D., & Bililign, S. (2020). Laboratory studies of fresh and aged biomass burning aerosol emitted from east African biomass fuels–Part 2: Chemical properties and characterization. Atmospheric Chemistry and Physics, 20(17), 10169–10191

    Article  CAS  Google Scholar 

  33. Setiawan, B., Kania, N., Nugrahenny, D., Nurdiana, N., & Widodo, M. A. (2014). Subchronic inhalation of particulate matter 10 coal dust induces atherosclerosis in the aorta of diabetic and nondiabetic rats. Biomarkers and Genomic Medicine, 6(2), 67–73. https://doi.org/10.1016/j.bgm.2014.03.002

    Article  CAS  Google Scholar 

  34. Wu, W., Jin, Y., & Carlsten, C. (2018). Inflammatory health effects of indoor and outdoor particulate matter. Journal of Allergy and Clinical Immunology, 141(3), 833–844

    Article  CAS  Google Scholar 

  35. Hou, L., Zhang, J., Zhang, C., Xu, Y., Zhu, X., Yao, C., et al. (2017). The injury of fine particulate matter from cooking oil fumes on umbilical cord blood vessels in vitro. Environmental Toxicology and Pharmacology, 49, 65–73

    Article  CAS  Google Scholar 

  36. Rossner, P., Libalova, H., Cervena, T., Vrbova, K., Elzeinova, F., Milcova, A., et al. (2019). The processes associated with lipid peroxidation in human embryonic lung fibroblasts, treated with polycyclic aromatic hydrocarbons and organic extract from particulate matter. Mutagenesis, 34(2), 153–164

    Article  CAS  Google Scholar 

  37. Zhang, Y., Wang, J., Gong, X., Chen, L., Zhang, B., Wang, Q., et al. (2020). Ambient PM2.5 exposures and systemic biomarkers of lipid peroxidation and total antioxidant capacity in early pregnancy. Environmental Pollution, 266, 115301

    Article  CAS  Google Scholar 

  38. Bhargava, A., Shukla, A., Bunkar, N., Shandilya, R., Lodhi, L., Kumari, R., et al. (2019). Exposure to ultrafine particulate matter induces NF-κβ mediated epigenetic modifications. Environmental Pollution, 252, 39–50

    Article  CAS  Google Scholar 

  39. Lawal, A. O. (2017). Air particulate matter induced oxidative stress and inflammation in cardiovascular disease and atherosclerosis: The role of Nrf2 and AhR-mediated pathways. Toxicology Letters, 270, 88–95

    Article  CAS  Google Scholar 

  40. Fiordelisi, A., Piscitelli, P., Trimarco, B., Coscioni, E., Iaccarino, G., & Sorriento, D. (2017). The mechanisms of air pollution and particulate matter in cardiovascular diseases. Heart Failure Reviews, 22(3), 337–347. https://doi.org/10.1007/s10741-017-9606-7

    Article  CAS  PubMed  Google Scholar 

  41. Du, Y., Xu, X., Chu, M., Guo, Y., & Wang, J. (2016). Air particulate matter and cardiovascular disease: The epidemiological, biomedical and clinical evidence. Journal of Thoracic Disease, 8(1), E8–E19. https://doi.org/10.3978/j.issn.2072-1439.2015.11.37

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang, J., Huang, J., Wang, L., Chen, C., Yang, D., Jin, M., et al. (2017). Urban particulate matter triggers lung inflammation via the ROS-MAPK-NF-κB signaling pathway. Journal of Thoracic Disease, 9(11), 4398–4412. https://doi.org/10.21037/jtd.2017.09.135

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ju, S., Lim, L., Jiao, H.-Y., Choi, S., Jun, J. Y., Ki, Y.-J., et al. (2020). Oxygenated polycyclic aromatic hydrocarbons from ambient particulate matter induce electrophysiological instability in cardiomyocytes. Particle and Fibre Toxicology, 17(1), 25. https://doi.org/10.1186/s12989-020-00351-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, Y., Chu, M., Zhang, J., Duan, J., Hu, D., Zhang, W., et al. (2019). Urine metabolites associated with cardiovascular effects from exposure of size-fractioned particulate matter in a subway environment: A randomized crossover study. Environment International, 130, 104920. https://doi.org/10.1016/j.envint.2019.104920

    Article  CAS  PubMed  Google Scholar 

  45. Xiao, X., Yao, T., Du, S., Wang, J., Yan, P., Lei, Y., et al. (2020). Chronic real-time particulate matter exposure causes rat pulmonary arteriole hyperresponsiveness and remodeling: The role of ETBR-ERK1/2 signaling. Toxicology and Applied Pharmacology, 403, 115154. https://doi.org/10.1016/j.taap.2020.115154

    Article  CAS  PubMed  Google Scholar 

  46. Ho, C.-C., Chen, Y.-C., Yet, S.-F., Weng, C.-Y., Tsai, H.-T., Hsu, J.-F., et al. (2020). Identification of ambient fine particulate matter components related to vascular dysfunction by analyzing spatiotemporal variations. Science of the Total Environment, 719, 137243. https://doi.org/10.1016/j.scitotenv.2020.137243

    Article  CAS  Google Scholar 

  47. Moreno, T., Trechera, P., Querol, X., Lah, R., Johnson, D., Wrana, A., et al. (2019). Trace element fractionation between PM10 and PM2.5 in coal mine dust: Implications for occupational respiratory health. International Journal of Coal Geology, 203, 52–59

    Article  CAS  Google Scholar 

  48. de Groot, L. E., Liu, D., Dierdorp, B. S., Fens, N., van de Pol, M. A., Sterk, P. J., et al. (2020). Ex vivo innate responses to particulate matter from livestock farms in asthma patients and healthy individuals. Environmental Health, 19(1), 1–10

    Article  Google Scholar 

  49. Lai, C.-H., Huang, H.-B., Chang, Y.-C., Su, T.-Y., Wang, Y.-C., Wang, G.-C., et al. (2017). Exposure to fine particulate matter causes oxidative and methylated DNA damage in young adults: A longitudinal study. Science of the Total Environment, 598, 289–296

    Article  CAS  Google Scholar 

  50. Wu, J., Tian, Y., Wu, Y., Wang, Z., Wu, Y., Wu, T., et al. (2021). Seasonal association between ambient fine particulate matter and venous thromboembolism in Beijing, China: A time-series study. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-13035-0

    Article  PubMed  Google Scholar 

  51. Hu, D., Jia, X., Cui, L., Liu, J., Chen, J., Wang, Y., et al. (2021). Exposure to fine particulate matter promotes platelet activation and thrombosis via obesity-related inflammation. Journal of Hazardous Materials, 413, 125341. https://doi.org/10.1016/j.jhazmat.2021.125341

    Article  CAS  PubMed  Google Scholar 

  52. Münzel, T., & Daiber, A. (2019). The air pollution constituent particulate matter (PM2.5) destabilizes coronary artery plaques. European Heart Journal Cardiovascular Imaging, 20(12), 1365–1367. https://doi.org/10.1093/ehjci/jez261

    Article  PubMed  Google Scholar 

  53. Croft, D. P., Cameron, S. J., Morrell, C. N., Lowenstein, C. J., Ling, F., Zareba, W., et al. (2017). Associations between ambient wood smoke and other particulate pollutants and biomarkers of systemic inflammation, coagulation and thrombosis in cardiac patients. Environmental Research, 154, 352–361. https://doi.org/10.1016/j.envres.2017.01.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu, L., Wan, C., Zhang, W., Guan, L., Tian, G., Zhang, F., et al. (2018). MiR-146a regulates PM1-induced inflammation via NF-jB signaling pathway in BEAS-2B cells. Environmental Toxicology, 33, 743–751

    Article  CAS  Google Scholar 

  55. Kumar, S., Joos, G., Boon, L., Tournoy, K., Provoost, S., & Maes, T. (2017). Role of tumor necrosis factor–α and its receptors in diesel exhaust particle-induced pulmonary inflammation. Scientific Reports, 7(1), 1–10

    Article  Google Scholar 

  56. Gawda, A., Majka, G., Nowak, B., Śróttek, M., Walczewska, M., & Marcinkiewicz, J. (2018). Air particulate matter SRM 1648a primes macrophages to hyperinflammatory response after LPS stimulation. Inflammation Research, 67(9), 765–776

    Article  CAS  Google Scholar 

  57. Gałuszka, A., Stec, M., Węglarczyk, K., Kluczewska, A., Siedlar, M., & Baran, J. (2020). Transition metal containing particulate matter promotes Th1 and Th17 inflammatory response by monocyte activation in organic and inorganic compounds dependent manner. International Journal of Environmental Research and Public Health, 17(4), 1227

    Article  Google Scholar 

  58. Dagouassat, M., Lanone, S., & Boczkowski, J. (2012). Interaction of matrix metalloproteinases with pulmonary pollutants. European Respiratory Journal, 39(4), 1021–1032. https://doi.org/10.1183/09031936.00195811

    Article  CAS  Google Scholar 

  59. Silbajoris, R., Osornio-Vargas, A. R., Simmons, S. O., Reed, W., Bromberg, P. A., Dailey, L. A., et al. (2011). Ambient particulate matter induces interleukin-8 expression through an alternative NF-κB (nuclear factor-kappa B) mechanism in human airway epithelial cells. Environmental Health Perspectives, 119(10), 1379–1383. https://doi.org/10.1289/ehp.1103594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Na, H. G., Kim, Y.-D., Choi, Y. S., Bae, C. H., & Song, S.-Y. (2019). Diesel exhaust particles elevate MUC5AC and MUC5B expression via the TLR4-mediated activation of ERK1/2, p38 MAPK, and NF-κB signaling pathways in human airway epithelial cells. Biochemical and Biophysical Research Communications, 512(1), 53–59

    Article  CAS  Google Scholar 

  61. Longhin, E., Holme, J. A., Gualtieri, M., Camatini, M., & Øvrevik, J. (2018). Milan winter fine particulate matter (wPM2.5) induces IL-6 and IL-8 synthesis in human bronchial BEAS-2B cells, but specifically impairs IL-8 release. Toxicology In Vitro, 52, 365–373

    Article  CAS  Google Scholar 

  62. Kim, J. A., Cho, J. H., Park, I.-H., Shin, J.-M., Lee, S.-A., & Lee, H.-M. (2016). Diesel exhaust particles upregulate interleukins IL-6 and IL-8 in nasal fibroblasts. PLoS ONE, 11(6), e0157058–e0157058. https://doi.org/10.1371/journal.pone.0157058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dehcheshmeh, M. G., Ghadiri, A., Rashno, M., Assarehzadegan, M. A., Khodadadi, A., & Goudarzi, G. (2021). Effect of water-soluble PM 10 on the production of TNF-α by human monocytes and induction of apoptosis in A549 human lung epithelial cells. Journal of Environmental Health Science and Engineering. https://doi.org/10.1007/s40201-020-00588-4

    Article  Google Scholar 

  64. Pope, C. A., III., Bhatnagar, A., McCracken, J. P., Abplanalp, W., Conklin, D. J., & O’Toole, T. (2016). Exposure to fine particulate air pollution is associated with endothelial injury and systemic inflammation. Circulation Research, 119(11), 1204–1214

    Article  CAS  Google Scholar 

  65. Nabil-Adam, A., & Shreadah, M. A. (2021). Ameliorative role of Ulva extract against heavy metal mixture—Induced cardiovascular through oxidative/antioxidant pathways and inflammatory biomarkers. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-11994-4

    Article  PubMed  Google Scholar 

  66. Zhang, Q., Niu, Y., Xia, Y., Lei, X., Wang, W., Huo, J., et al. (2020). The acute effects of fine particulate matter constituents on circulating inflammatory biomarkers in healthy adults. Science of the Total Environment, 707, 135989. https://doi.org/10.1016/j.scitotenv.2019.135989

    Article  CAS  Google Scholar 

  67. Tobaldini, E., Bollati, V., Prado, M., Fiorelli, E. M., Pecis, M., Bissolotti, G., et al. (2018). Acute particulate matter affects cardiovascular autonomic modulation and IFN-γ methylation in healthy volunteers. Environmental Research, 161, 97–103

    Article  CAS  Google Scholar 

  68. Tanwar, V., Adelstein, J. M., Grimmer, J. A., Youtz, D. J., Katapadi, A., Sugar, B. P., et al. (2018). Preconception exposure to fine particulate matter leads to cardiac dysfunction in adult male offspring. Journal of the American Heart Association, 7(24), e010797. https://doi.org/10.1161/JAHA.118.010797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liao, Y.-H., Chen, W.-L., Wang, C.-C., & Lai, C.-H. (2020). Associations between personal exposure to metals in fine particulate matter and autonomic nervous system dysfunction among healthy adults. Aerosol and Air Quality Research, 20(8), 1842–1849. https://doi.org/10.4209/aaqr.2020.04.0156

    Article  CAS  Google Scholar 

  70. Ferrari, L., Carugno, M., & Bollati, V. (2019). Particulate matter exposure shapes DNA methylation through the lifespan. Clinical Epigenetics, 11(1), 129. https://doi.org/10.1186/s13148-019-0726-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Baccarelli, A., Rienstra, M., & Benjamin, E. J. (2010). Cardiovascular epigenetics: Basic concepts and results from animal and human studies. Circulation Cardiovascular Genetics, 3(6), 567–573

    Article  CAS  Google Scholar 

  72. Breton, C. V., Gao, L., Yao, J., Siegmund, K. D., Lurmann, F., & Gilliland, F. (2016). Particulate matter, the newborn methylome, and cardio-respiratory health outcomes in childhood. Environmental epigenetics, 2(2), dvw005

    Article  Google Scholar 

  73. Maghbooli, Z., Hossein-Nezhad, A., Ramezani, M., & Moattari, S. (2017). Epigenetic alterations and exposure to air pollutants: Protocol for a birth cohort study to evaluate the association between adverse birth outcomes and global DNA methylation. JMIR Research Protocols, 6(2), e29–e29. https://doi.org/10.2196/resprot.7114

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rosa, M. J., Hair, G. M., Just, A. C., Kloog, I., Svensson, K., Pizano-Zárate, M. L., et al. (2020). Identifying critical windows of prenatal particulate matter (PM2.5) exposure and early childhood blood pressure. Environmental Research, 182, 109073. https://doi.org/10.1016/j.envres.2019.109073

    Article  CAS  PubMed  Google Scholar 

  75. Tse, G. (2016). Mechanisms of cardiac arrhythmias. Journal of Arrhythmia, 32(2), 75–81

    Article  Google Scholar 

  76. Feng, B., Song, X., Dan, M., Yu, J., Wang, Q., Shu, M., et al. (2019). High level of source-specific particulate matter air pollution associated with cardiac arrhythmias. Science of the Total Environment, 657, 1285–1293. https://doi.org/10.1016/j.scitotenv.2018.12.178

    Article  CAS  Google Scholar 

  77. Wang, T., Lang, G. D., Moreno-Vinasco, L., Huang, Y., Goonewardena, S. N., Peng, Y.-J., et al. (2012). Particulate matter induces cardiac arrhythmias via dysregulation of carotid body sensitivity and cardiac sodium channels. American Journal of Respiratory Cell and Molecular Biology, 46(4), 524–531. https://doi.org/10.1165/rcmb.2011-0213OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Farhadi, Z., Abulghasem Gorgi, H., Shabaninejad, H., Aghajani Delavar, M., & Torani, S. (2020). Association between PM2.5 and risk of hospitalization for myocardial infarction: A systematic review and a meta-analysis. BMC Public Health, 20(1), 314. https://doi.org/10.1186/s12889-020-8262-3

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hu, J., Tang, M., Zhang, X., Ma, Y., Li, Y., Chen, R., et al. (2020). Size-fractionated particulate air pollution and myocardial infarction emergency hospitalization in Shanghai, China. Science of the Total Environment, 737, 140100. https://doi.org/10.1016/j.scitotenv.2020.140100

    Article  CAS  Google Scholar 

  80. Zheng, M., Zhang, Y., Feng, W., Chen, Y., Huan, L., Ye, S., et al. (2020). Short-term exposure to ambient air pollution and acute myocardial infarction attack risk. Journal of Public Health, 28(4), 367–374. https://doi.org/10.1007/s10389-019-01033-z

    Article  Google Scholar 

  81. Chen, K., Schneider, A., Cyrys, J., Wolf, K., Meisinger, C., Heier, M., et al. (2020). Hourly exposure to ultrafine particle metrics and the onset of myocardial infarction in Augsburg, Germany. Environmental Health Perspectives, 128(1), 017003. https://doi.org/10.1289/EHP5478

    Article  PubMed Central  Google Scholar 

  82. Kuźma, Ł, Pogorzelski, S., Struniawski, K., Bachórzewska-Gajewska, H., & Dobrzycki, S. (2020). Exposure to air pollution—A trigger for myocardial infarction? A nine-year study in Bialystok—The capital of the Green Lungs of Poland (BIA-ACS registry). International Journal of Hygiene and Environmental Health, 229, 113578. https://doi.org/10.1016/j.ijheh.2020.113578

    Article  CAS  PubMed  Google Scholar 

  83. Marchini, T., Wolf, D., Michel, N. A., Mauler, M., Dufner, B., Hoppe, N., et al. (2016). Acute exposure to air pollution particulate matter aggravates experimental myocardial infarction in mice by potentiating cytokine secretion from lung macrophages. Basic Research in Cardiology, 111(4), 44–44. https://doi.org/10.1007/s00395-016-0562-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kotsis, V., Tsioufis, K., Antza, C., Seravalle, G., Coca, A., Sierra, C., et al. (2018). Obesity and cardiovascular risk: A call for action from the European Society of Hypertension Working Group of Obesity, Diabetes and the High-risk Patient and European Association for the Study of Obesity: part B: Obesity-induced cardiovascular disease, early prevention strategies and future research directions. Journal of Hypertension, 36(7), 1441–1455. https://doi.org/10.1097/hjh.0000000000001731

    Article  CAS  PubMed  Google Scholar 

  85. Guo, Q., Xue, T., Jia, C., Wang, B., Cao, S., Zhao, X., et al. (2020). Association between exposure to fine particulate matter and obesity in children: A national representative cross-sectional study in China. Environment International, 143, 105950. https://doi.org/10.1016/j.envint.2020.105950

    Article  CAS  PubMed  Google Scholar 

  86. Wang, S., Wang, F., Yang, L., Li, Q., Huang, Y., Cheng, Z., et al. (2020). Effects of coal-fired PM2.5 on the expression levels of atherosclerosis-related proteins and the phosphorylation level of MAPK in ApoE−/− mice. BMC Pharmacology and Toxicology, 21(1), 34. https://doi.org/10.1186/s40360-020-00411-8

    Article  CAS  PubMed  Google Scholar 

  87. Pergoli, L., Cantone, L., Favero, C., Angelici, L., Iodice, S., Pinatel, E., et al. (2017). Extracellular vesicle-packaged miRNA release after short-term exposure to particulate matter is associated with increased coagulation. Particle and Fibre Toxicology, 14(1), 32. https://doi.org/10.1186/s12989-017-0214-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Taleb, S. (2016). Inflammation in atherosclerosis. Archives of Cardiovascular Diseases, 109(12), 708–715. https://doi.org/10.1016/j.acvd.2016.04.002

    Article  PubMed  Google Scholar 

  89. Akintoye, E., Shi, L., Obaitan, I., Olusunmade, M., Wang, Y., Newman, J. D., et al. (2016). Association between fine particulate matter exposure and subclinical atherosclerosis: A meta-analysis. European Journal of Preventive Cardiology, 23(6), 602–612. https://doi.org/10.1177/2047487315588758

    Article  PubMed  Google Scholar 

  90. Johnson, M., Brook, J. R., Brook, R. D., Oiamo, T. H., Luginaah, I., Peters, P. A., et al. (2020). Traffic‐related air pollution and carotid plaque burden in a Canadian City with low‐level ambient pollution. Journal of the American Heart Association, 9(7), e013400. https://doi.org/10.1161/JAHA.119.013400

    Article  PubMed  PubMed Central  Google Scholar 

  91. Renzi, M., Stafoggia, M., Michelozzi, P., Davoli, M., Forastiere, F., & Solimini, A. G. (2020). Short-term exposure to PM2.5 and risk of venous thromboembolism: A case-crossover study. Thrombosis Research, 190, 52–57

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We want to thank anonymous reviewers for their suggestions and recommendations in improving the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Noor and Safi conceived the idea, gathered data from literature and written the manuscript.

Corresponding author

Correspondence to Safi Ur Rehman Qamar.

Additional information

Handling Editor: Y. James Kang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ain, N.U., Qamar, S.U.R. Particulate Matter-Induced Cardiovascular Dysfunction: A Mechanistic Insight. Cardiovasc Toxicol 21, 505–516 (2021). https://doi.org/10.1007/s12012-021-09652-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09652-3

Keywords

Navigation