Skip to main content
Log in

Hsa_circ_0054220 Upregulates HMGA1 by the Competitive RNA Pattern to Promote Neural Impairment in MPTP Model of Parkinson’s Disease

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a common neurodegenerative disease. Circular RNAs (circRNAs) have been confirmed to regulate neurodegenerative diseases. This study was aimed to explore hsa_circ_0054220 functions in PD. MPP-stimulated SH-SY5Y cells were established as the PD cell model. PD mouse model was established by MPTP. Gene expression in cells and tissues was tested by RT-qPCR. Cell viability and apoptosis were evaluated through CCK-8 and TUNEL assays. The interactions of RNAs were determined by RNA pull-down assay, RIP assay, and luciferase reporter assay. Circ_0054220 expressed at a high level in MPP-treated SH-SY5Y cells. Circ_0054220 inhibition promoted viability and suppressed apoptosis in MPP-stimulated cells. Furthermore, we found that circ_0054220 can competitively bind to miR-145 and miR-625 to upregulate high mobility group A1 (HMGA1) expression. HMGA1 was positively regulated by circ_0054220 and overexpressed in MPP-treated cells as well as the striatum (STR), substantia nigra pars compacta (SNpc), and serum of MPTP-induced mouse model of PD. HMGA1 overexpression counteracted the function of circ_0054220 silencing on cell apoptosis. Furthermore, HMGA1 inhibition notably alleviated motor dysfunction and increased the quantity of neurons in mice resembling PD. Circ_0054220 upregulates HMGA1 by the competitive endogenous RNAs (ceRNA) pattern to promote neural impairment in PD.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Original data generated in this study are available from the corresponding author on reasonable request.

References

  1. Reich, S. G., & Savitt, J. M. (2019). Parkinson’s Disease. Medical Clinics of North America, 103(2), 337–350.

    Article  PubMed  Google Scholar 

  2. Tolosa, E., et al. (2021). Challenges in the diagnosis of Parkinson’s disease. Lancet Neurology, 20(5), 385–397.

    Article  CAS  PubMed  Google Scholar 

  3. Bloem, B. R., Okun, M. S., & Klein, C. (2021). Parkinson’s Disease. Lancet, 397(10291), 2284–2303.

    Article  CAS  PubMed  Google Scholar 

  4. Erro, R., & Stamelou, M. (2017). The motor syndrome of Parkinson’s Disease. International Review of Neurobiology, 132, 25–32.

    Article  CAS  PubMed  Google Scholar 

  5. Simon, D. K., Tanner, C. M., & Brundin, P. (2020). Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clinics in Geriatric Medicine, 36(1), 1–12.

    Article  PubMed  Google Scholar 

  6. Leggio, L. (2017). microRNAs in Parkinson’s Disease: from pathogenesis to novel diagnostic and therapeutic approaches. International Journal of Molecular Sciences, 18(12), 2698

  7. Vijiaratnam, N., et al. (2021). Progress towards therapies for disease modification in Parkinson’s disease. Lancet Neurology, 20(7), 559–572.

    Article  CAS  PubMed  Google Scholar 

  8. Kuo, M. C., et al. (2021). The role of noncoding RNAs in Parkinson’s disease: Biomarkers and associations with pathogenic pathways. Journal of Biomedical Science, 28(1), 78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pascale, E. (2020). Noncoding RNAs and Midbrain DA Neurons: novel molecular mechanisms and therapeutic targets in health and disease. Biomolecules, 10(9), 1269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu, C. X., & Chen, L. L. (2022). Circular RNAs: Characterization, cellular roles, and applications. Cell, 185(12), 2016–2034.

    Article  CAS  PubMed  Google Scholar 

  11. Mehta, S. L., Dempsey, R. J., & Vemuganti, R. (2020). Role of circular RNAs in brain development and CNS diseases. Progress in Neurobiology, 186, 101746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. You, X., et al. (2015). Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nature Neuroscience, 18(4), 603–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qian, X., et al. (2022). CircRNA_01477 influences axonal growth via regulating miR-3075/FosB/Stat3 axis. Experimental Neurology, 347, 113905.

    Article  CAS  PubMed  Google Scholar 

  14. Curry-Hyde, A., et al. (2020). Analysis of the circular transcriptome in the Synaptosomes of aged mice. Neuroscience, 449, 202–213.

    Article  CAS  PubMed  Google Scholar 

  15. Xu, K., et al. (2020). CircGRIA1 shows an age-related increase in male macaque brain and regulates synaptic plasticity and synaptogenesis. Nature Communications, 11(1), 3594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Doxakis, E. (2022). Insights into the multifaceted role of circular RNAs: Implications for Parkinson’s disease pathogenesis and diagnosis. NPJ Parkinsons Disease, 8(1), 7.

    Article  CAS  Google Scholar 

  17. Knowland, D., et al. (2017). Distinct ventral pallidal neural populations mediate separate symptoms of depression. Cell, 170(2), 284-297e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jia, E. (2020). Transcriptomic profiling of circular RNA in different brain regions of Parkinson’s Disease in a mouse model. International Journal of Molecular Sciences, 21(8), 3006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kristensen, L. S., et al. (2019). The biogenesis, biology and characterization of circular RNAs. Nature Reviews Genetics, 20(11), 675–691.

    Article  CAS  PubMed  Google Scholar 

  20. Song, C., et al. (2022). Circular RNA Cwc27 contributes to Alzheimer’s disease pathogenesis by repressing Pur-α activity. Cell Death and Differentiation, 29(2), 393–406.

    Article  CAS  PubMed  Google Scholar 

  21. Dolinar, A., et al. (2019). Circular RNAs as potential blood biomarkers in amyotrophic lateral sclerosis. Molecular Neurobiology, 56(12), 8052–8062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hansen, T. B., et al. (2013). Natural RNA circles function as efficient microRNA sponges. Nature, 495(7441), 384–388.

    Article  CAS  PubMed  Google Scholar 

  23. Chen, L. L. (2020). The expanding regulatory mechanisms and cellular functions of circular RNAs. Nature Reviews Molecular Cell Biology, 21(8), 475–490.

    Article  CAS  PubMed  Google Scholar 

  24. Qi, X., et al. (2015). ceRNA in cancer: Possible functions and clinical implications. Journal of Medical Genetics, 52(10), 710–718.

    Article  PubMed  Google Scholar 

  25. Wang, W. (2021). circSAMD4A participates in the apoptosis and autophagy of dopaminergic neurons via the miR–29c–3p–mediated AMPK/mTOR pathway in Parkinson’s disease. Molecular Medicine Reports, 24(1), 1–10.

    Article  Google Scholar 

  26. Liu, Q., et al. (2022). circ-Pank1 promotes dopaminergic neuron neurodegeneration through modulating miR-7a-5p/α-syn pathway in Parkinson’s disease. Cell Death and Disease, 13(5), 477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, M., & Bian, Z. (2021). The emerging role of circular RNAs in Alzheimer’s Disease and Parkinson’s Disease. Frontiers in Aging Neuroscience, 13, 691512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, H. (2022). The role of non-coding RNAs in the pathogenesis of Parkinson’s Disease: Recent advancement. Pharmaceuticals (Basel), 15(7), 811.

    Article  CAS  PubMed  Google Scholar 

  29. Jackson-Lewis, V., & Przedborski, S. (2007). Protocol for the MPTP mouse model of Parkinson’s disease. Nature Protocols, 2(1), 141–151.

    Article  CAS  PubMed  Google Scholar 

  30. Mustapha, M., & Mat Taib, C. N. (2021). MPTP-induced mouse model of Parkinson’s disease: A promising direction of therapeutic strategies. Bosnian Journal of Basic Medical Sciences / Udruženje Basičnih Mediciniskih Znanosti = Association of Basic Medical Sciences, 21(4), 422–433.

    CAS  Google Scholar 

  31. Li, H., et al. (2015). Anti-apoptotic effect of modified Chunsimyeolda-tang, a traditional korean herbal formula, on MPTP-induced neuronal cell death in a Parkinson’s disease mouse model. Journal of Ethnopharmacology, 176, 336–344.

    Article  PubMed  Google Scholar 

  32. Lee, S. (2021). Anti-inflammatory effects of the novel barbiturate derivative MHY2699 in an MPTP-induced mouse model of Parkinson’s Disease. Antioxidants (Basel), 10(11), 1855.

    Article  CAS  PubMed  Google Scholar 

  33. Zhou, W. Y., et al. (2020). Circular RNA: Metabolism, functions and interactions with proteins. Molecular Cancer, 19(1), 172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moreno-García, L. (2020). Competing endogenous RNA networks as biomarkers in neurodegenerative diseases. International Journal of Molecular Sciences, 21(24), 9582.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Akhter, R. (2018). Circular RNA and Alzheimer’s Disease. Advances in Experimental Medicine and Biology, 1087, 239–243.

    Article  CAS  PubMed  Google Scholar 

  36. Kong, F., et al. (2021). RNA-sequencing of peripheral blood circular RNAs in Parkinson disease. Medicine (Baltimore), 100(23), e25888.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, H., Wang, C., & Zhang, X. (2022). Circular RNA hsa_circ_0004381 promotes neuronal Injury in Parkinson’s Disease cell model by miR-185-5p/RAC1 axis. Neurotoxicity Research, 40(4), 1007–1019.

    Article  CAS  PubMed  Google Scholar 

  38. Cao, X., et al. (2022). Circular RNA circ_0070441 regulates MPP(+)-triggered neurotoxic effect in SH-SY5Y cells via miR-626/IRS2 axis. Metabolic Brain Disease, 37(2), 513–524.

    Article  CAS  PubMed  Google Scholar 

  39. Liu, B., Li, J., & Cairns, M. J. (2014). Identifying miRNAs, targets and functions. Briefings in Bioinformatics, 15(1), 1–19.

    Article  PubMed  Google Scholar 

  40. Mohr, A. M., & Mott, J. L. (2015). Overview of microRNA biology. Seminars in Liver Disease, 35(1), 3–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.

    Article  CAS  PubMed  Google Scholar 

  42. Smillie, C. L., Sirey, T., & Ponting, C. P. (2018). Complexities of post-transcriptional regulation and the modeling of ceRNA crosstalk. Critical Reviews in Biochemistry and Molecular Biology, 53(3), 231–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cheng, Q., et al. (2022). CircSV2b participates in oxidative stress regulation through mir-5107-5p-Foxk1-Akt1 axis in Parkinson’s disease. Redox Biology, 56, 102430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sheu-Gruttadauria, J., et al. (2019). Structural basis for target-directed MicroRNA degradation. Molecular Cell, 75(6), 1243-1255e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, X., et al. (2020). AGO2 and its partners: A silencing complex, a chromatin modulator, and new features. Critical Reviews in Biochemistry and Molecular Biology, 55(1), 33–53.

    Article  CAS  PubMed  Google Scholar 

  46. Yan, W., et al. (2016). BMP2 promotes the differentiation of neural stem cells into dopaminergic neurons in vitro via mir-145-mediated upregulation of Nurr1 expression. American Journal of Translational Research, 8(9), 3689–3699.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Xie, X., et al. (2017). miR-145-5p/Nurr1/TNF-α signaling-induced microglia activation regulates neuron injury of acute cerebral ischemic/reperfusion in rats. Frontiers in Molecular Neuroscience, 10, 383.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ding, X. M., et al. (2019). Long non-coding RNA-p21 regulates MPP(+)-induced neuronal injury by targeting miR-625 and derepressing TRPM2 in SH-SY5Y cells. Chemico-Biological Interactions, 307, 73–81.

    Article  CAS  PubMed  Google Scholar 

  49. Reeves, R. (2000). Structure and function of the HMGI(Y) family of architectural transcription factors. Environmental Health Perspectives, 108(Suppl 5), 803–809.

    Article  CAS  PubMed  Google Scholar 

  50. Wang, L., et al. (2022). High mobility Group A1 (HMGA1): Structure, biological function, and therapeutic potential. International Journal of Biological Sciences, 18(11), 4414–4431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, Y., et al. (2019). HMGA1 in cancer: Cancer classification by location. Journal of Cellular and Molecular Medicine, 23(4), 2293–2302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sumter, T. F., et al. (2016). The High Mobility Group A1 (HMGA1) transcriptome in cancer and development. Current Molecular Medicine, 16(4), 353–393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Que, T., et al. (2021). HMGA1 stimulates MYH9-dependent ubiquitination of GSK-3β via PI3K/Akt/c-Jun signaling to promote malignant progression and chemoresistance in gliomas. Cell Death and Disease, 12(12), 1147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Manabe, T., et al. (2003). Induced HMGA1a expression causes aberrant splicing of Presenilin-2 pre-mRNA in sporadic Alzheimer’s disease. Cell Death and Differentiation, 10(6), 698–708.

    Article  CAS  PubMed  Google Scholar 

  55. Li, G., et al. (2020). HMGA1 induction of miR-103/107 forms a negative feedback loop to regulate autophagy in MPTP model of Parkinson’s Disease. Frontiers in Cellular Neuroscience, 14, 620020.

    Article  CAS  PubMed  Google Scholar 

  56. Gordon, R. (2018). Inflammasome inhibition prevents α-synuclein pathology and dopaminergic neurodegeneration in mice. Science Translational Medicine, 10(465), eaah4066.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation was performed by CN. Experiments were performed by QZ, HB, and YL. Data collection and analysis was performed by CZ. The first draft of the manuscript was written by CZ and CN. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chen Nie.

Ethics declarations

Ethics Approval

This study was approved by the ethical committees of The Second Affiliated Hospital of Dalian Medical University.

Conflicting Interests

There are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, C., Zhang, Q., Bao, H. et al. Hsa_circ_0054220 Upregulates HMGA1 by the Competitive RNA Pattern to Promote Neural Impairment in MPTP Model of Parkinson’s Disease. Appl Biochem Biotechnol (2023). https://doi.org/10.1007/s12010-023-04740-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12010-023-04740-2

Keywords

Navigation