Skip to main content

Circular RNA and Alzheimer’s Disease

  • Chapter
  • First Online:
Circular RNAs

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1087))

Abstract

Circular RNAs (circRNAs) represent a special group of noncoding single-stranded highly stable ribonucleic acid entities abundant in the eukaryotic transcriptome. These circular forms of RNAs are significantly enriched in human brain and retinal tissues. However, the biological evolution and function of these circRNAs are poorly understood. Recent reports showed circRNA to be an important player in the development of neurodegenerative diseases like Alzheimer’s disease. With the progression of age, circRNA level increases in the brain and also in age-associated neurological disorder like Alzheimer’s disease (AD), Parkinson’s disease, inflammatory neuropathy, nervous system neoplasms, and prion diseases. One highly represented circRNA in the human brain and retina is a ciRS-7 (CDR1as) which acts as an endogenous, anticomplementary miRNA inhibitor or “sponge” to quench the normal functioning of miRNA-7. Low CDR1as level can lead to increase in miR-7 expression which downregulates the activity of ubiquitin protein ligase A (UBE2A), an important AD target, functionally involved in clearing toxic amyloid peptides from AD brain. This chapter focuses on the functional relationship of circRNA with AD and interplay of miRNA-mRNA-mediated genetic regulatory networks. Our conceptual understanding also suggests that circRNA can be considered as a potential biomarker and therapeutic target in AD diagnosis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Veno MT, Hansen TB, Veno ST et al (2015) Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol 16:245

    Article  Google Scholar 

  2. You X, Vlatkovic I, Babic A et al (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18(4):603–610

    Article  CAS  Google Scholar 

  3. Rybak-Wolf A, Stottmeister C, Glazar P et al (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58(5):870–885

    Article  CAS  Google Scholar 

  4. Ivanov A, Memczak S, Wyler E et al (2015) Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep 10(2):170–177; Jeck WR, Sorrentino JA, Wang K et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2):141–157

    Article  CAS  Google Scholar 

  5. Burnette JM, Miyamoto-Sato E, Schaub MA et al (2005) Subdivision of large introns in Drosophila by recursive splicing at nonexonic elements. Genetics 170(2):661–674

    Article  CAS  Google Scholar 

  6. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356

    Article  CAS  Google Scholar 

  7. Bertram L, Tanzi RE (2008) Thirty years of Alzheimer’s disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci 9(10):768–778

    Article  CAS  Google Scholar 

  8. Lukiw WJ (2013) Circular RNA (circRNA) in Alzheimer’s disease (AD). Front Genet 4:307

    PubMed  PubMed Central  Google Scholar 

  9. Hansen TB, Jensen TI, Clausen BH et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388

    Article  CAS  Google Scholar 

  10. Cogswell JP, Ward J, Taylor IA et al (2008) Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis 14(1):27–41

    Article  CAS  Google Scholar 

  11. Bingol B, Sheng M (2011) Deconstruction for reconstruction: the role of proteolysis in neural plasticity and disease. Neuron 69(1):22–32

    Article  CAS  Google Scholar 

  12. Lonskaya I, Shekoyan AR, Hebron ML et al (2013) Diminished parkin solubility and co-localization with intraneuronal amyloid-beta are associated with autophagic defects in Alzheimer’s disease. J Alzheimers Dis 33(1):231–247

    Article  CAS  Google Scholar 

  13. Ginsberg SD, Alldred MJ, Che S (2012) Gene expression levels assessed by CA1 pyramidal neuron and regional hippocampal dissections in Alzheimer’s disease. Neurobiol Dis 45(1):99–107

    Article  CAS  Google Scholar 

  14. Shao Y, Chen Y (2016) Roles of circular RNAs in neurologic disease. Front Mol Neurosci 9:25

    Article  Google Scholar 

  15. Junn E, Lee KW, Jeong BS et al (2009) Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci USA 106(31):13052–13057

    Article  CAS  Google Scholar 

  16. Choi DC, Chae YJ, Kabaria S et al (2014) MicroRNA-7 protects against 1-methyl-4-phenylpyridinium-induced cell death by targeting RelA. J Neurosci 34(38):12725–12737

    Article  Google Scholar 

  17. Chen YT, Rettig WJ, Yenamandra AK et al (1990) Cerebellar degeneration-related antigen: a highly conserved neuroectodermal marker mapped to chromosomes X in human and mouse. Proc Natl Acad Sci USA 87(8):3077–3081; Dropcho EJ, Chen YT, Posner JB et al (1987) Cloning of a brain protein identified by autoantibodies from a patient with paraneoplastic cerebellar degeneration. Proc Natl Acad Sci USA 84(13):4552–4556

    Article  CAS  Google Scholar 

  18. Liu Z, Jiang Z, Huang J et al (2014) miR-7 inhibits glioblastoma growth by simultaneously interfering with the PI3K/ATK and Raf/MEK/ERK pathways. Int J Oncol 44(5):1571–1580

    Article  CAS  Google Scholar 

  19. Wang YH, Yu XH, Luo SS et al (2015) Comprehensive circular RNA profiling reveals that circular RNA100783 is involved in chronic CD28-associated CD8(+)T cell ageing. Immun Ageing 12:17

    Article  CAS  Google Scholar 

  20. Fu D, Yu W, Li M et al (2015) MicroRNA-138 regulates the balance of Th1/Th2 via targeting RUNX3 in psoriasis. Immunol Lett 166(1):55–62

    Article  CAS  Google Scholar 

  21. Satoh J, Obayashi S, Misawa T et al (2009) Protein microarray analysis identifies human cellular prion protein interactors. Neuropathol Appl Neurobiol 35(1):16–35; Satoh J, Yamamura T (2004) Gene expression profile following stable expression of the cellular prion protein. Cell Mol Neurobiol 24(6):793–814

    Google Scholar 

  22. Piwecka M, Glazar P, Hernandez-Miranda LR et al (2017) Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357(6357)

    Article  Google Scholar 

  23. Guo JU, Agarwal V, Guo H et al (2014) Expanded identification and characterization of mammalian circular RNAs. Genome Biol 15(7):409

    Article  Google Scholar 

  24. Chen W, Schuman E (2016) Circular RNAs in brain and other tissues: a functional enigma. Trends Neurosci 39(9):597–604

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rumana Akhter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akhter, R. (2018). Circular RNA and Alzheimer’s Disease. In: Xiao, J. (eds) Circular RNAs. Advances in Experimental Medicine and Biology, vol 1087. Springer, Singapore. https://doi.org/10.1007/978-981-13-1426-1_19

Download citation

Publish with us

Policies and ethics