Skip to main content
Log in

Using electrically conductive polyaniline/polyvinyl alcohol hydrogel electrodes to perform electrodeposition of polysaccharides

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Here, electrically conductive polyaniline/polyvinyl alcohol (PANI/PVA) hydrogels were prepared. Subsequently, the PANI/PVA hydrogels were used as electrodes to perform electrodeposition of polysaccharides. The experimental results indicate that the resulting PANI/PVA hydrogel is homogeneous and stable. FTIR results suggest the existence of PANI in the hydrogel. XRD analysis suggests an amorphous structure of PANI in the hydrogel. EIS spectrum shows that the PANI/PVA hydrogel is conductive. SEM observation reveals that the PANI/PVA hydrogel presents a porous microstructure. The results from electrodeposition of polysaccharides illustrate that when using the PANI/PVA hydrogels as electrodes, both cathodic electrodeposition of chitosan and anodic electrodeposition of sodium alginate can be achieved, and codeposition of carbon dots (or sodium fluorescein) with polysaccharides can be conducted to obtain nanocomposite films (or fluorescent films). Moreover, the PANI/PVA hydrogel electrodes present good flexibility and formability, which can be conveniently employed to produce electrodeposited polysaccharide films with special shapes and three-dimensional shapes. In this study, for the first time the PANI/PVA hydrogel is utilized as electrode for electrodeposition of polysaccharides. Thus, this study develops a novel flexible electrode based on the electrically conductive hydrogel to perform electrodeposition of polysaccharides, which is promising for applications in functional films and flexible devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang, W, Feng, P, Chen, J, Sun, ZM, Zhao, BX, “Electrically Conductive Hydrogels for Flexible Energy Storage Systems.” Prog. Polym. Sci., 88 220–240. https://doi.org/10.1016/j.progpolymsci.2018.09.001 (2019)

    Article  CAS  Google Scholar 

  2. Apollo, NV, Maturana, MI, Tong, W, Nayagam, DAX, Shivdasani, MN, Foroughi, J, Wallace, GG, Prawer, S, Ibbotson, MR, Garrett, DJ, “Soft, Flexible Freestanding Neural Stimulation and Recording Electrodes Fabricated from Reduced Graphene Oxide.” Adv. Funct. Mater., 25 (23) 3551–3559. https://doi.org/10.1002/adfm.201500110 (2015)

    Article  CAS  Google Scholar 

  3. Qin, M, Yuan, WF, Zhang, XM, Cheng, YZ, Xu, MJ, Wei, Y, Chen, WY, Huang, D, “Preparation of PAA/PAM/MXene/TA Hydrogel with Antioxidant, Healable Ability as Strain Sensor.” Colloids Surf. B, 214 112482. https://doi.org/10.1016/j.colsurfb.2022.112482 (2022)

    Article  CAS  Google Scholar 

  4. Xu, DW, Feng, XJ, Niu, DM, Zhu, XF, Song, Y, “PEDOT: PSS Hydrogel Film for Supercapacitors via AlCl3-Induced Crosslinking and Subsequent Organic Solvent Treatments.” Mater. Today Commun., 24 101090. https://doi.org/10.1016/j.mtcomm.2020.101090 (2020)

    Article  CAS  Google Scholar 

  5. Baker, CO, Huang, XW, Nelson, W, Kaner, RB, “Polyaniline Nanofibers: Broadening Applications for Conducting Polymers.” Chem. Soc. Rev., 46 (5) 1510–1525. https://doi.org/10.1039/c6cs00555a (2017)

    Article  CAS  Google Scholar 

  6. Wang, YM, “Preparation and Application of Polyaniline Nanofibers: An Overview.” Polym. Int., 67 (6) 650–669. https://doi.org/10.1002/pi.5562 (2018)

    Article  CAS  Google Scholar 

  7. Sajjad, S, Fariba, G, “In Situ Oxidative Polymerization of Aniline in the Presence of Manganese Dioxide and Preparation of Polyaniline/MnO2 Nanocomposite.” J. Nanostruct. Chem., 3 65. https://doi.org/10.1186/2193-8865-3-65 (2013)

    Article  Google Scholar 

  8. Sajjad, S, “Synthesis and Characterization of New Biocompatible Copolymer: Chitosan-Graft-Polyaniline.” Int. Nano Lett., 4 99. https://doi.org/10.1007/s40089-014-0099-2 (2014)

    Article  CAS  Google Scholar 

  9. Sun, XY, Wang, HX, Ding, Y, Yao, YQ, Liu, YQ, Tang, J, “Fe3+-Coordination Mediated Synergistic Dual-Network Conductive Hydrogel as a Sensitive and Highly-Stretchable Strain Sensor with Adjustable Mechanical Properties.” J. Mater. Chem. B, 10 (9) 1442–1452. https://doi.org/10.1039/d1tb02199k (2022)

    Article  CAS  Google Scholar 

  10. Huang, HB, Yao, JL, Li, L, Zhu, F, Liu, ZT, Zeng, XP, Yu, XH, Huang, ZL, “Reinforced Polyaniline/Polyvinyl Alcohol Conducting Hydrogel from a Freezing-Thawing Method as Self-Supported Electrode for Supercapacitors.” J. Mater. Sci., 51 (18) 8728–8736. https://doi.org/10.1007/s10853-016-0137-8 (2016)

    Article  CAS  Google Scholar 

  11. Tang, CY, Thomas, B, Ramirez-Hernandez, M, Mikmekova, EM, Asefa, T, “Metal-Functionalized Hydrogels as Efficient Oxygen Evolution Electrocatalysts.” ACS Appl. Mater. Interfaces, 14 (18) 20919–20929. https://doi.org/10.1021/acsami.2c01667 (2022)

    Article  CAS  Google Scholar 

  12. Wu, H, Yu, GH, Pan, LJ, Liu, N, McDowell, MT, Bao, ZN, Cui, Y, “Stable Li-ion Battery Anodes by In-Situ Polymerization of Conducting Hydrogel to Conformally Coat Silicon Nanoparticles.” Nat. Commun., 4 1943. https://doi.org/10.1038/ncomms2941 (2012)

    Article  CAS  Google Scholar 

  13. Postolovic, K, Ljujic, B, Kovacevic, MM, Dordevic, S, Nikolic, S, Zivanovic, S, Stanic, Z, “Optimization, Characterization, and Evaluation of Carrageenan/Alginate/Poloxamer/Curcumin Hydrogel Film as a Functional Wound Dressing Material.” Mater. Today Commun., 31 103528. https://doi.org/10.1016/j.mtcomm.2022.103528 (2022)

    Article  CAS  Google Scholar 

  14. Vaz, JM, Taketa, TB, Hernandez-Montelongo, J, Fiuza, LMCG, Rodrigues, C, Beppu, MM, Vieira, RS, “Antibacterial Noncytotoxic Chitosan Coatings on Polytetrafluoroethylene Films by Plasma Grafting for Medical Device Applications.” J. Coat. Technol. Res., 19 (3) 829–838. https://doi.org/10.1007/s11998-021-00560-3 (2022)

    Article  CAS  Google Scholar 

  15. Francis, AA, Abdel-Gawad, SA, Shoeib, MA, “Toward CNT-Reinforced Chitosan-Based Ceramic Composite Coatings on Biodegradable Magnesium for Surgical Implants.” J. Coat. Technol. Res., 18 (4) 971–988. https://doi.org/10.1007/s11998-021-00468-y (2021)

    Article  CAS  Google Scholar 

  16. Soradech, S, Kengkwasingh, P, Williams, AC, Khutoryanskiy, VV, “Synthesis and Evaluation of Poly(3-hydroxypropyl Ethylene-imine) and Its Blends with Chitosan Forming Novel Elastic Films for Delivery of Haloperidol.” Pharmaceutics, 14 (12) 2671. https://doi.org/10.3390/pharmaceutics14122671 (2022)

    Article  CAS  Google Scholar 

  17. Pandoli, OG, Martins, RS, De Toni, KLG, Paciornik, S, Mauricio, MHP, Lima, RMC, Padilha, NB, Letichevsky, S, Avillez, RR, Rodrigues, EJR, Ghavami, K, “A Regioselective Coating onto Microarray Channels of Bamboo with Chitosan-Based Silver Nanoparticles.” J. Coat. Technol. Res., 16 (4) 999–1011. https://doi.org/10.1007/s11998-018-00175-1 (2019)

    Article  CAS  Google Scholar 

  18. Liu, Y, Kim, E, Ghodssi, R, Rubloff, GW, Culver, JN, Bentley, WE, Payne, GF, “Biofabrication to Build the Biology-Device Interface.” Biofabrication., 2 (2) 022002. https://doi.org/10.1088/1758-5082/2/2/022002 (2010)

    Article  CAS  Google Scholar 

  19. Liu, J, Xia, CJ, Wang, KL, Li, DM, Wang, QH, Zhou, JJ, Tao, Q, Wang, YF, “Preparation of ZnO Quantum Dots and Composite Films Based on Sodium Alginate Electrodeposition and Applications on Detection.” Acta Polym. Sin., 53 (2) 145–152 (2022)

    CAS  Google Scholar 

  20. Bartmanski, M, Pawlowski, L, “Properties of Chitosan/CuNPs Coatings Electrophoretically Deposited on TiO2 Nanotubular Oxide Layer of Ti13Zr13Nb Alloy.” Mater. Lett., 308 130982. https://doi.org/10.1016/j.matlet.2021.130982 (2021)

    Article  CAS  Google Scholar 

  21. Meyer, WL, Liu, Y, Shi, XW, Yang, XH, Bentley, WE, Payne, GF, “Chitosan-Coated Wires: Conferring Electrical Properties to Chitosan Fibers.” Biomacromolecules, 10 (4) 858–864. https://doi.org/10.1021/bm801364h (2009)

    Article  CAS  Google Scholar 

  22. Du, Y, Luo, XL, Xu, JJ, Chen, HY, “A Simple Method to Fabricate a Chitosan-Gold Nanoparticles Film and Its Application in Glucose Biosensor.” Bioelectrochemistry, 70 (2) 342–347. https://doi.org/10.1016/j.bioelechem.2006.05.002 (2007)

    Article  CAS  Google Scholar 

  23. Liu, H, Yang, YF, Cao, KY, Yin, J, Xiong, YF, Shi, CD, Wang, YF, “Electrodeposition of Nitrogen-Doped Carbon Dots/Alginate Nanocomposite Fabricated by Microwave Method.” Acta Polym. Sin., 52 (7) 741–749 (2021)

    CAS  Google Scholar 

  24. Liu, ZY, Takeuchi, M, Nakajima, M, Hasegawa, Y, Huang, Q, Fukuda, T, “Shape-Controlled High Cell-Density Microcapsules by Electrodeposition.” Acta Biomater., 37 93–100. https://doi.org/10.1016/j.actbio.2016.03.045 (2016)

    Article  CAS  Google Scholar 

  25. Pang, X, Zhitomirsky, I, “Electrodeposition of Composite Hydroxyapatite-Chitosan Films.” Mater. Chem. Phys., 94 (2–3) 245–251. https://doi.org/10.1016/j.matchemphys.2005.04.040 (2005)

    Article  CAS  Google Scholar 

  26. Gong, JM, Wang, LY, Zhao, K, Song, DD, “One-Step Fabrication of Chitosan-Hematite Nanotubes Composite Film and Its Biosensing for Hydrogen Peroxide.” Electrochem. Commun., 10 (1) 123–126. https://doi.org/10.1016/j.elecom.2007.10.017 (2008)

    Article  CAS  Google Scholar 

  27. Dai, GL, Wan, WF, Zhao, YL, Wang, ZX, Li, WJ, Shi, P, Shen, YJ, “Controllable 3D Alginate Hydrogel Patterning via Visible-Light Induced Electrodeposition.” Biofabrication, 8 (2) 025004. https://doi.org/10.1088/1758-5090/8/2/025004 (2016)

    Article  CAS  Google Scholar 

  28. Bao, LP, Dai, JY, Yang, L, Ma, JF, Tao, YX, Deng, LH, Kong, Y, “Electrochemical Recognition of Tyrosine Enantiomers Based on Chiral Ligand Exchange with Sodium Alginate as the Chiral Selector.” J. Electrochem. Soc., 162 (7) H486–H491. https://doi.org/10.1149/2.0051508jes (2015)

    Article  CAS  Google Scholar 

  29. Cao, L, Huang, SY, Lai, FL, Fang, ZM, Cui, J, Du, XS, Li, W, Lin, ZD, Zhang, P, Huang, ZR, “Sucrose in Situ Physically Cross-Linked of Polyaniline and Polyvinyl Alcohol to Prepare Three-Dimensional Nanocomposite Hydrogel with Flexibility and High Capacitance.” Ionics, 27 (8) 3431–3441. https://doi.org/10.1007/s11581-021-04010-3 (2021)

    Article  CAS  Google Scholar 

  30. Bekri-Abbes, I, Srasra, E, “Characterization and AC Conductivity of Polyaniline-Montmorillonite Nanocomposites Synthesized by Mechanical/Chemical Reaction.” React. Funct. Polym., 70 (1) 11–18. https://doi.org/10.1016/j.reactfunctpolym.2009.09.008 (2010)

    Article  CAS  Google Scholar 

  31. Goswami, RN, Mourya, P, Behera, B, Khatri, OP, Ray, A, “Graphene-Polyaniline Nanocomposite Based Coatings: Role of Convertible Forms of Polyaniline to Mitigate Steel Corrosion.” Appl. Surf. Sci., 599 153939. https://doi.org/10.1016/j.apsusc.2022.153939 (2022)

    Article  CAS  Google Scholar 

  32. Wang, SX, Tan, ZC, Li, YS, Sun, LX, Zhang, T, “Synthesis, Characterization and Thermal Analysis of Polyaniline/ZrO2 Composites.” Thermochim. Acta, 441 (2) 191–194. https://doi.org/10.1016/j.tca.2005.05.020 (2005)

    Article  CAS  Google Scholar 

  33. Hu, RF, Zheng, JP, “Preparation of High Strain Porous Polyvinyl Alcohol/Polyaniline Composite and Its Applications in All-Solid-State Supercapacitor.” J. Power Sour., 364 200–207. https://doi.org/10.1016/j.jpowsour.2017.08.022 (2017)

    Article  CAS  Google Scholar 

  34. Wu, ZQ, Chen, XD, Zhu, SB, Zhou, ZW, Yao, Y, Quan, W, Liu, B, “Enhanced Sensitivity of Ammonia Sensor Using Graphene/Polyaniline Nanocomposite.” Sens. Act. B, 178 485–493. https://doi.org/10.1016/j.snb.2013.01.014 (2013)

    Article  CAS  Google Scholar 

  35. Li, AX, Zhu, AP, “Preparation of Fe3O4/PANI Nanocomposite and Its Metal Anticorrosive Activity.” Prog. Org. Coat., 161 106477. https://doi.org/10.1016/j.porgcoat.2021.106477 (2021)

    Article  CAS  Google Scholar 

  36. Peng, M, Xiao, GH, Tang, XL, Zhou, Y, “Hydrogen-Bonding Assembly of Rigid-Rod Poly(p-Sulfophenylene Terephthalamide) and Flexible-Chain Poly(Vinyl Alcohol) for Transparent, Strong, and Tough Molecular Composites.” Macromolecules, 47 (23) 8411–8419. https://doi.org/10.1021/ma501590x (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51873167) and the Fundamental Research Funds for the Central Universities (WUT: 2022-CL-A1-04).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: QW, ZX, ZC; Methodology: YW, QW, YY, XZ; Formal analysis and investigation: QW, YY, XZ, TL, JT; Writing–original draft preparation: QW; Writing–review and editing: YW; Supervision: YW.

Corresponding author

Correspondence to Yifeng Wang.

Ethics declarations

Authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Yang, Y., Zhang, X. et al. Using electrically conductive polyaniline/polyvinyl alcohol hydrogel electrodes to perform electrodeposition of polysaccharides. J Coat Technol Res 20, 2081–2089 (2023). https://doi.org/10.1007/s11998-023-00803-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-023-00803-5

Keywords

Navigation