Skip to main content

Polysaccharide-Based Ionic Polymer Metal Composite Actuators

  • Chapter
  • First Online:
Ionic Polymer Metal Composites for Sensors and Actuators

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Cellulose and chitosan are naturally abundant biopolymers which can be used as ion exchange polymers in various applications. Due to their useful characteristics, a lot of research has been done on using these materials as a base for obtaining ionic polymer metal composite actuators. The present chapter discusses numerous ways of combination between polysaccharide and various electrically conductive materials such as carbon nanotubes and graphene in the presence or absence of different ionic liquids, and subsequent use of these materials to improve the actuation performance of the polysaccharide-based actuators. Though a lot of studies have been performed for obtaining optimal compositions and suitable methods in respect of polysaccharide-based ionic polymer metal composite actuators. There is still a niche to find the best composition structure and the most efficient and low-cost method of obtaining actuators in order to meet the needs of various industries. The search continues for actuators with enhanced mechanical, electrical and electroactive performance, with good durability and flexibility in processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh, V., Kumar, P., Sanghi, R.: Use of microwave irradiation in the grafting modification of the polysaccharide—a review. Prog. Polym. Sci. 37, 340–364 (2012). https://doi.org/10.1016/j.progpolymsci.2011.07.005

    Article  CAS  Google Scholar 

  2. Dias, A.M., Cortez, A.R., Barsan, M., Santos, J., Brett, C.M., de Sousa, H.C.: ACS Sustain. Chem. Eng. 1, 1480–1492 (2013). https://doi.org/10.1021/sc4002577

    Article  CAS  Google Scholar 

  3. Chirayil, C.J., Mathew, L., Thomas, S.: Review of recent research in nano cellulose preparation from different lignocellulosic fibres. Rev. Adv. Mater Sci. 37, 20–28 (2014)

    CAS  Google Scholar 

  4. Yi, H., Wu, L.-Q., Bentley, W.E., Ghodssi, R., Rubloff, G.W., Culver, J.N., Payne, G.F.: Biofabrication with Chitosan. Biomacromolecules 6, 2881–2894 (2005). https://doi.org/10.1021/bm050410l

    Article  CAS  Google Scholar 

  5. Li, Y., Li, G., Peng, H., Chen, K.: Facile synthesis of electroactive polypyrroleechitosan composite nanospheres with controllable diameters. Polym. Int. 60(4), 647–651 (2011). https://doi.org/10.1002/pi.2995

    Article  CAS  Google Scholar 

  6. Silva Simone, S., Mano João, F., Reis Rui, L.: Ionic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications. Green Chem. 19, 1208–1220 (2017). https://doi.org/10.1039/C6GC02827F

    Article  CAS  Google Scholar 

  7. Tiyaboonchai, W.: Chitosan nanoparticles: a promising system for drug delivery. Naresuan Univ. J. Sci. Technol. 11(3), 51–66 (2013)

    Google Scholar 

  8. Lu, L., Chen, W.: Biocompatible composite actuator: a supramolecular structure consisting of the biopolymer chitosan, carbon nanotubes, and an ionic liquid. Adv. Mater. 22(33), 3745–3748 (2010). https://doi.org/10.1002/adma.201001134

    Article  CAS  Google Scholar 

  9. He, Q., Yu, M., Yang, X., Kim, K.J., Dai, Z.: An ionic electro-active actuator made with graphene film electrode, chitosan and ionic liquid. Smart Mater. Struct. 24(6), 065026 (9 pp) (2015). https://doi.org/10.1088/0964-1726/24/6/065026

  10. Cai, Z., Kim, J.: Characterization and electromechanical performance of cellulose-chitosan blend electro-active paper. Smart Mater. Struct. 17(3), 035028 (9 pp) (2008). https://doi.org/10.1088/0964-1726/17/3/035028

  11. Shang, J., Shao, Z., Chen, X.: Chitosan-based electroactive hydrogel, Chitosan-based electroactive hydrogel. Polymer 49(25), 5520–5525 (2008). https://doi.org/10.1016/j.polymer.2008.09.067

    Article  CAS  Google Scholar 

  12. Siqueira, J.R., Gasparotto, L.H., Crespilho, F.N., Carvalho, A.J., Zucolotto, V., Oliveira, O.N.: Physicochemical properties and sensing ability of metallophthalocyanines/chitosan nanocomposites. J. Phys. Chem. B 110(45), 22690–22694 (2006). https://doi.org/10.1021/jp0649089

    Article  CAS  Google Scholar 

  13. Jang, S.-D., Kim, J.-H., Zhijiang, C., Kim, J.: The effect of chitosan concentration on the electrical property of chitosan-blended cellulose electroactive paper. Smart Mater. Struct. 18(1), 015003 (5 pp.) (2009). https://doi.org/10.1088/0964-1726/18/1/015003

  14. Jeon, J.H., Cheedarala, R.K., Kee, C.D., Oh, I.K.: Dry-type artificial muscles based on pendent sulfonated chitosan and functionalized graphene oxide for greatly enhanced ionic interactions and mechanical stiffness. Adv. Funct. Mater. 23(48), 6007–6018 (2013). https://doi.org/10.1002/adfm.201203550

    Article  CAS  Google Scholar 

  15. Kim, J., Yun, S.: Discovery of cellulose as a smart material. Macromolecules 39, 4202–4206 (2006). https://doi.org/10.1021/ma060261e

    Article  CAS  Google Scholar 

  16. Sabo, R.C., Elhajjar, R.F., Clemons, C.M., Pillai, K.M.: Characterization and Processing of nanocellulose thermosetting composites. In: Pandey, J., Takagi, H., Nakagaito, A., Kim, H.J. (eds.) Handbook of Polymer Nanocomposites. Processing, Performance and Application, Volume C: Polymer Nanocomposites of Cellulose Nanoparticles, pp. 265–295. Springer, Berlin, Heidelberg (2015). https://doi.org/10.1007/978-3-642-45232-1_64

  17. Farid, M., Zhao, G., Khuong, T.L., Sun, Z.Z., Ur, Rehman N., Rizwan, M.: Biomimetic applications of ionic polymer metal composites (IPMC) actuators-a critical review. J. Biomim. Biomater. Biomed. Eng. 20, 1–10 (2014). https://doi.org/10.4028/www.scientific.net/JBBBE.20.1

    Article  CAS  Google Scholar 

  18. Gross, J.H.: Liquid injection field desorption/ionization-mass spectrometry of ionic liquids. J. Am. Soc. Mass Spectrom. 18(12), 2254–2262 (2007). https://doi.org/10.1016/j.jasms.2007.09.019

    Article  CAS  Google Scholar 

  19. Jastorff, B., Störmann, R., Ranke, J., Mölter, K., Stock, F., Oberheitmann, B., Hoffmann, W., Hoffmann, J., Nüchter, M., Ondruschka, B., Filser, J.: How hazardous are ionic liquids? Structure-activity relationships and biological testing as important elements for sustainability evaluation. Green Chem. 5, 136–142 (2003). https://doi.org/10.1039/B211971d

    Article  CAS  Google Scholar 

  20. Swatloski, R.P., Spear, S.K., Holbrey, J.D., Rogers, R.D.: Dissolution of cellose with ionic liquids. J. Am. Chem. Soc. 124, 4974–4975 (2002). https://doi.org/10.1039/B211971D

    Article  CAS  Google Scholar 

  21. Kim, K.B., Kim, J.: Fabrication and characterization of electro-active cellulose films regenerated by using 1-butyl-3-methylimidazolium chloride ionic liquid. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. 227, 2665–2670 (2013). https://doi.org/10.1177/0954406213478707

    Article  CAS  Google Scholar 

  22. Edgar, K.J., Buchanan, C.M., Debenham, J.S., Rundquist, P.A., Seiler, B.D., Shelton, M.C., Tindall, D.: Advances in cellulose ester performance and application. Prog. Polym. Sci. 26(9), 1605–1688 (2001). https://doi.org/10.1016/S0079-6700(01)00027-2

    Article  CAS  Google Scholar 

  23. Vidal, F., Plesse, C., Teyssié, D., Chevrot, C.: Long-life air working conducting semi-IPN/ionic liquid based actuator. Synth. Met. 142(1), 287–291 (2004). https://doi.org/10.1016/j.synthmet.2003.10.005

    Article  CAS  Google Scholar 

  24. Vidal, F., Plesse, C., Randriamahazaka, H., Teyssie, D., Chevrot, C.: Long-life air working semi-IPN/ionic liquid: new precursor of artificial muscles. Mol. Cryst. Liq. Cryst. 448, 95/[697]–102/[704] (2006). https://doi.org/10.1080/15421400500377453

  25. Ozdemir, O., Karakuzu, R., Sarikanat, M., Seki, Y., Akar, E., Cetin, L., Yilmaz, O.C., Sever, K., Sen, I., Gurses, B.O.: Improvement of the electrochemical performance of carboxymethylcellulose-based actuators by graphene nanoplatelet loading. Cellulose 22, 3251–3260 (2015). https://doi.org/10.1007/s10570-015-0702-3

    Article  Google Scholar 

  26. Murphy, E.B., Wudl, F.: The world of smart healable materials. Prog. Polym. Si 35, 223–251 (2010). https://doi.org/10.1016/j.progpolymsci.2009.10.006

    Article  CAS  Google Scholar 

  27. Qiu, X.Y., Hu, S.W.: “Smart” materials based on cellulose: a review of the preparations, properties, and applications. Materials 6, 738–781 (2013). https://doi.org/10.3390/Ma6030738

    Article  CAS  Google Scholar 

  28. Sen, I., Seki, Y., Sarikanat, M., Cetin, L., Gurses, B.O., Ozdemir, O., Yilmaz, O.C., Sever, K., Akar, E., Mermer, O.: Electroactive behavior of graphene nanoplatelets loaded cellulose composite actuators. Compos. Part B 69, 369–377 (2015). https://doi.org/10.1016/j.compositesb.2014.10.016

  29. Cao, Y., Wu, J., Zhang, J., Li, H.Q., Zhang, Y., He, J.S.: Room temperature ionic liquids (RTILs): a new and versatile platform for cellulose processing and derivatization. Chem. Eng. J. 147, 13–21 (2009). https://doi.org/10.1016/j.cej.2008.11.011

    Article  CAS  Google Scholar 

  30. Zhu, S., Wu, Y., Chen, Q., Yu, Z., Wang, C., Jin, S., Ding, Y., Wu, G.: Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem. 8, 325–327 (2006). https://doi.org/10.1039/B601395C

    Article  CAS  Google Scholar 

  31. Zhang, H., Wu, J., Zhang, J., He, J.: 1-Alkyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatezing solvent for cellulose. Macromolecules 30(20), 8272–8277 (2005). https://doi.org/10.1021/ma0505676

    Article  CAS  Google Scholar 

  32. Akar, E., Seki, Y., Ozdemir, O., Sen, I., Sarikanat, M., Gurses, B.O., Yilmaz, O.C., Cetin, L., Sever, K.: Electromechanical characterization of multilayer graphene-reinforced cellulose composite containing 1-ethyl-3-methylimidazolium diethylphosphonate ionic liquid. Sci. Eng. Compos. Mater. 24(2), 289–295 (2015). https://doi.org/10.1515/secm-2015-0038

    Article  CAS  Google Scholar 

  33. Stankovich, S., Dikin, D.A., Domment, G.H.B., Kohlhaas, K.M., Zimmery, E.J., Stach, E.A., Piner, R.D., Nguyen, S.B.T., Ruoff, R.S.: Graphene-based composite materials. Nature 442, 282–286 (2006)

    Article  CAS  Google Scholar 

  34. Eda, G., Chhowalla, M.: Graphene-based composite thin films for electronics. Nano Lett. 9(2), 814–818 (2009). https://doi.org/10.1021/nl8035367

    Article  CAS  Google Scholar 

  35. Ozdemir, O., Karakuzu, R., Sarikanat, M., Akar, E., Seki, Y., Cetin, L., Sen, I., Gurses, B.O., Yilmaz, O.C., Sever, K., Mermer, O.: Effects of PEG loading on electromechanical behavior of cellulose-based electroactive composite. Cellulose 22, 1873–1881 (2015). https://doi.org/10.1007/s10570-015-0581-7

    Article  CAS  Google Scholar 

  36. Song, W., Yang, L., Sun, Z., Li, F., Du, S.: Study on the actuation enhancement for ionic-induced IL-cellulose based biocompatible composite actuators by glycerol plasticization treatment method. Cellulose 25(5), 2885–2889 (2018). https://doi.org/10.1007/s10570-018-1783-6

    Article  CAS  Google Scholar 

  37. Wang, F., Jeon, J.H., Park, S., Kee, C.D., Kim, S.J., Oh, I.K.: Soft biomolecule actuator based on highly functionalized bacterial cellulose nano-fiber network with carboxylic acid groups. Soft Matter 12, 246–254 (2012). https://doi.org/10.1039/C5SM00707K

    Article  CAS  Google Scholar 

  38. Cheedarala, R.V., Jeon, J.H., Kee, C.D., Oh, I.K.: Bio‐inspired all‐organic soft actuator based on a π–π stacked 3D ionic network membrane and ultra‐fast solution processing. Adv. Funct. Mater. 24, 6005–6015 (2014). https://doi.org/10.1002/adfm.201401136

  39. Greco, F., Zucca, A., Taccola, S., Menciassi, A., Fujie, T., Haniuda, H., Takeoka, S., Dario, P., Mattoli, V.: Ultra-thin conductive free-standing PEDOT/PSS nanofilms. Soft Matter 7, 10642–10650 (2011). https://doi.org/10.1039/C1SM06174G

    Article  CAS  Google Scholar 

  40. Greco, F., Domenici, V., Desii, A., Sinibaldi, E., Zalar, B., Mazzolai, B., Mattoli, V.: Liquid single crystal elastomer/conducting polymer bilayer composite actuator: modelling and experiments. Soft Matter 9, 11405–11416 (2013). https://doi.org/10.1039/C3SM51153G

    Article  CAS  Google Scholar 

  41. Okuzali, H., Tagaki, S., Hishiki, F., Tanigawa, R.: Ionic liquid/polyurethane/PEDOT:PSS composites for electro-active polymer actuators. Sens. Actuators B 194, 59–63 (2014). https://doi.org/10.1016/j.snb.2013.12.059

    Article  CAS  Google Scholar 

  42. Haldorai, Y., Shim, J.J.: Chemo-responsive bilayer actuator film: fabrication, characterization and actuator response. New J. Chem. 38, 2653–2659 (2014). https://doi.org/10.1039/c4nj00014e

  43. Seiffert, S., Oppermann, W., Saalwachter, K.: Hydrogel formation by photocrosslinking of dimethylmaleimide functionalized polyacrylamide polymer 48, 5599–5611 (2007). https://doi.org/10.1016/j.polymer.2007.07.013

    Article  CAS  Google Scholar 

  44. Kim, J., Wang, N., Chen, Y., Lee, S.K., Yun, G.Y.: Electroactive-paper actuator made with cellulose/NaOH/urea and sodium alginate. Cellulose 14, 217–223 (2007). https://doi.org/10.1007/s10570-007-9111-6

    Article  CAS  Google Scholar 

  45. Kim, J., Yun, S., Mahadeva, S.K., Yun, K., Yang, S.Y., Maniruzzaman, M.: Paper actuators made with cellulose and hybrid materials. Sensors 10, 1473–1485 (2010). https://doi.org/10.3390/s100301473

    Article  CAS  Google Scholar 

  46. Mahadeva, S.K., Yi, C., Kim, J.: Effect of room temperature ionic liquids adsorption on electromechanical behaviour of cellulose electro-active paper. Macromol. Res. 17(2), 116–120 (2009)

    Article  CAS  Google Scholar 

  47. Wang, N., Chen, Y., Kim, J.: Electroactive paper actuator made with chitosan-cellulose films: effect of acetic acid. Macromol. Mater. Eng. 292, 748–753 (2007)

    Article  CAS  Google Scholar 

  48. Kim, J., Wang, N., Chen, Y.: Effect of chitosan and ions on actuation behaviour of cellulose-chitosan laminated films as electro-active paper actuators. Cellulose 14, 439–445 (2007)

    Article  CAS  Google Scholar 

  49. Kim, J., Seo, Y.B.: Electro-active paper actuators. Smart Mater. Struct. 11, 355–360 (2002)

    Article  CAS  Google Scholar 

  50. Sun, Z., Zhao, G., Song, W.: A naturally crosslinked chitosan based ionic actuator with cathode deflection phenomenon. Cellulose 24(2), 441–445 (2016). https://doi.org/10.1007/s10570-016-1161-1

    Article  CAS  Google Scholar 

  51. Dos Santos, D.S., Riul, A., Malmegrum, R.R.: A layer-by-layer film of chitosan in a taste sensor application. Macromol. Biosci. 3(10), 591–595 (2003)

    Article  Google Scholar 

  52. Zolfagharian, A., Kouzani, A.Z., Khoo, S.Y., Nasri-Nasrabadi, B., Kaynak, A.: Development and analysis of a 3D printed hydrogel soft actuator. Sens. Actuators A 265, 94–101 (2017). https://doi.org/10.1016/j.sna.2017.08.038

    Article  CAS  Google Scholar 

  53. Shahinpoor, M.: Chitosan/IPMC artificial muscle. Adv. Sci. Technol. 79, 32–40 (2013)

    Article  CAS  Google Scholar 

  54. Muralidharan, M.N., Shinu, K.P., Seema, A.: Optically triggered actuation in chitosan/reduced graphene oxide nanocomposites. Carbohydr. Polym. 144, 115–121 (2016). https://doi.org/10.1016/j.carbpol.2016.02.047

    Article  CAS  Google Scholar 

  55. Lu, L.H., Chen, W.: Large-scale aligned carbon nanotubes from their purified highly concentrated suspension. ACS Nano 4(2), 1042–1048 (2010). https://doi.org/10.1021/nn901326m

    Article  CAS  Google Scholar 

  56. Harrison, B.S., Atala, A.: Carbon nanotube applications for tissue engineering. Biomaterials 28(2), 344–353 (2007). https://doi.org/10.1016/j.biomaterials.2006.07.044

    Article  CAS  Google Scholar 

  57. Li, J., Ma, W., Song, L., Niu, Z., Cai, L., Zeng, Q., Zhang, X., Dong, H., Zhao, D., Zhoud, W., Xie, S.: Superfast-response and ultrahigh-power-density electromechanical actuators based on hierarchal carbon nanotube electrodes and chitosan. Nano Lett. 11, 4636–4641 (2011). https://doi.org/10.1021/n120132m

    Article  CAS  Google Scholar 

  58. Zhao, G., Yang, J., Wang, Y., Zhao, H., Wang, Z.: Preparation and electromechanical properties of the chitosan gel polymer actuator based on heat treating. Sens. Actuators 279, 481–492 (2018). https://doi.org/10.1016/j.sna.2018.06.036

    Article  CAS  Google Scholar 

  59. Zhao, G., Sun, Z., Wang, J., Xu, Y., Li, L., Ge, Y.: Electrochemical properties of a highly biocompatible chitosan polymer actuator based on a different nanocarbon/ionic liquid electrode. Polym. Compos. (2015). https://doi.org/10.1002/pc.23822

  60. Sun, Z., Zhao, G., Song, W.L., Wang, J., Haq, M.U.: Investigation into electromechanical properties of biocompatible chitosan-based ionic actuator. Exp. Mech. 58(1), 99–109 (2017)

    Google Scholar 

  61. Di Martino, A., Sittinger, M., Risbud, M.V.: Chitosan: a versatile biopolymer for orthopedic tissue-engineering. Biomaterials 26(3), 5983–5990 (2005)

    Article  Google Scholar 

  62. Neto, G.T., Dantas, T.N.C., Fonseca, J.L.C.: Permeability studies in chitosan membranes. Effects of crosslinking and poly (ethylene oxide) addition. Carbohyd. Res. 340(17), 2630–2636 (2005)

    Google Scholar 

  63. Altinkaya, E., Seki, Y., Yilmaz, O.C., Cetin, L., Ozdemir, O., Sen, I., Sever, K., Gurses, B.O., Sarikanat, M.: Electromechanical performance of chitosan-based composite electroactive actuators. Compos. Sci. Technol. 129, 108–115 (2016). https://doi.org/10.1016/j.compscitech.2016.04.019

    Article  CAS  Google Scholar 

  64. Yeng, C.M., Husseinsyah, S., Ting, S.S.: Effect of cross-linked agent on tensile properties of chitosan/corn cob biocomposite films. Polym. Plast Technol. 54(3), 270–275

    Google Scholar 

  65. Altinkaya, E., Seki, Y., Cetin, L., Gurses, B.O., Ozdemir, O., Sever, K., Sarikanat, M.: Characterization and analysis of motion mechanism of electroactive chitosan-based actuator. Carbohyd. Polym. 181, 404–411 (2018). https://doi.org/10.1016/j.carbpol.2017.08.113

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Lupa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Popa, A., Filimon, A., Lupa, L. (2019). Polysaccharide-Based Ionic Polymer Metal Composite Actuators. In: Inamuddin, Asiri, A. (eds) Ionic Polymer Metal Composites for Sensors and Actuators. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-13728-1_2

Download citation

Publish with us

Policies and ethics