Skip to main content

Advertisement

Log in

Sucrose in situ physically cross-linked of polyaniline and polyvinyl alcohol to prepare three-dimensional nanocomposite hydrogel with flexibility and high capacitance

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Polyaniline (PANI) composite hydrogels with a combination of excellent mechanical and electrochemical properties are promising for the development of flexible wearable devices. Generally, the preparation of a PANI hydrogel requires two steps. Either the polyvinyl acetate (PVA) flexible network is first prepared, followed by the addition of aniline and initiator, or a PANI powder is prepared first and then dispersed in a polyvinyl alcohol solution to form a hydrogel through the freeze-thaw cycle. In this work, we report a simple and effective strategy to synthesize polyaniline nanocomposite hydrogels. A PANI hydrogel electrode with a specific flexibility and excellent electrochemical performance was fabricated in one step by utilizing the hydrogen bonding cross-linking effect between sucrose and PANI and PVA. The three-dimensional network PANI hydrogel capacitor obtained by physical cross-linking exhibited appreciable capacitance performance and excellent rate performance. When the current density was 1 mA/cm2, the specific areal capacitance of the device reached 500.2 mF/cm2. When the current density increased 10-fold, the capacitance retention rate was 55.1%. This research proposes a novel solution for designing and developing energy storage hydrogels with several potential applications such as artificial skin, motion detection, and wearable electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li XL, Hao JN, Liu R, He HN, Wang YM, Liang G, Liu Y, Yuan GH, Guo ZP (2020) Interfacing MXene flakes on fiber fabric as an ultrafast electron transport layer for high performance textile electrodes. Energy Storage Mater 33:62–70. https://doi.org/10.1016/j.ensm.2020.05.004

    Article  Google Scholar 

  2. Yu CQ, An J, Zhou RC, Xu H, Zhou JY, Chen Q, Sun GZ, Huang W (2020) Microstructure design of carbonaceous fibers: a promising strategy toward high-performance weaveable/wearable supercapacitors. Small 16(25):e2000653. https://doi.org/10.1002/smll.202000653

    Article  CAS  PubMed  Google Scholar 

  3. Yu CY, An JN, Chen Q, Zhou JY, Huang W, Kim YJ, Sun G (2020) Recent advances in design of flexible electrodes for miniaturized supercapacitors. Small Methods 4(6):1900824. https://doi.org/10.1002/smtd.201900824

    Article  CAS  Google Scholar 

  4. Zang LM, Liu QF, Qiu JH, Yang C, Wei C, Liu CJ, Lao L (2017) Design and fabrication of an all-solid-state polymer supercapacitor with highly mechanical flexibility based on polypyrrole hydrogel. ACS Appl Mater Interfaces 9(39):33941–33947. https://doi.org/10.1021/acsami.7b10321

    Article  CAS  PubMed  Google Scholar 

  5. Shi Y, Peng L, Yu G (2015) Nanostructured conducting polymer hydrogels for energy storage applications. Nanoscale 7(30):12796–12806. https://doi.org/10.1039/c5nr03403e

    Article  CAS  PubMed  Google Scholar 

  6. Gwon H, Hong J, Kim H, Seo DH, Jeon S, Kang K (2014) Recent progress on flexible lithium rechargeable batteries. Energy Environ Sci 7(2):538–551. https://doi.org/10.1039/c3ee42927j

    Article  CAS  Google Scholar 

  7. Kim CC, Lee HH, Oh KH, Sun JY (2016) Highly stretchable, transparent ionic touch panel. Science 353(6300):682–687. https://doi.org/10.1126/science.aaf8810

    Article  CAS  PubMed  Google Scholar 

  8. Ding Y, Zhang JJ, Chang L, Zhang XQ, Liu HL, Jiang L (2017) Preparation of high-performance ionogels with excellent transparency, good mechanical strength, and high conductivity. Adv Mater 29(47):1704253. https://doi.org/10.1002/adma.201704253

    Article  CAS  Google Scholar 

  9. Liu H, Jiang H, Du F, Zhang D, Li ZJ, Zhou HW (2017) Flexible and degradable paper-based strain sensor with low cost. ACS Sustain Chem Eng 5(11):10538–10543. https://doi.org/10.1021/acssuschemeng.7b02540

    Article  CAS  Google Scholar 

  10. Taylor DL, In Het Panhuis M (2016) Self-healing hydrogels. Adv Mater 28(41):9060–9093. https://doi.org/10.1002/adma.201601613

    Article  CAS  PubMed  Google Scholar 

  11. Seliktar D (2012) Designing cell-compatible hydrogels for biomedical applications. Science 336(6085):1124–1128. https://doi.org/10.1126/science.1214804

    Article  CAS  PubMed  Google Scholar 

  12. Ha W, Yu J, Song XY, Chen J, Shi YP (2014) Tunable temperature-responsive supramolecular hydrogels formed by prodrugs as a codelivery system. ACS Appl Mater Interfaces 6(13):10623–10630. https://doi.org/10.1021/am5022864

    Article  CAS  PubMed  Google Scholar 

  13. Xu YX, Sheng KX, Li C, Shi G (2010) Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process. ACS Nano 4(7):4324–4330. https://doi.org/10.1021/nn101187z

    Article  CAS  PubMed  Google Scholar 

  14. Wang YQ, Shi Y, Pan LJ, Ding Y, Zhao Y, Li Y, Shi Y, Yu GH (2015) Dopant-enabled supramolecular approach for controlled synthesis of nanostructured conductive polymer hydrogels. Nano Lett 15(11):7736–7741. https://doi.org/10.1021/acs.nanolett.5b03891

    Article  CAS  PubMed  Google Scholar 

  15. Pan LJ, Yu GH, Zhai DY, Lee HR, Zhao W, Liu N, Wang H, Tee BC, Shi Y, Cui Y, Bao ZN (2012) Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc Natl Acad Sci U S A 109(24):9287–9292. https://doi.org/10.1073/pnas.1202636109/-/DCSupplemental

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zou YB, Liu R, Zhong WB, Yang WT (2018) Mechanically robust double-crosslinked network functionalized graphene/polyaniline stiff hydrogels for superior performance supercapacitors. J Mater Chem A 6(18):8568–8578. https://doi.org/10.1039/C8TA00860D

    Article  CAS  Google Scholar 

  17. Pyarasani RD, Jayaramudu T, John A (2020) Polyaniline-based conducting hydrogels. J Mater Sci 54(2):974–996. https://doi.org/10.1007/s10853-018-2977-x

    Article  CAS  Google Scholar 

  18. Lin ZD, Guan ZX, Xu BF, Chen C, Guo GH, Zhou JX, Xian JM, Cao L, Li W (2013) Crystallization and melting behavior of polypropylene in β-PP/polyamide 6 blends containing PP-g-MA. J Ind Eng Chem 19(2):692–697. https://doi.org/10.1016/j.jiec.2012.10.004

    Article  CAS  Google Scholar 

  19. Das AK, Paria S, Maitra A, Halder L, Bera A, Bera R, Si SK, De A, Ojha S, Bera S, Karan SK, Khatua BB (2019) Highly rate capable nanoflower-like NiSe and WO3@ PPy composite electrode materials toward high energy density flexible all-solid-state asymmetric supercapacitor. ACS Appl Electron Mater 1(6):977–990. https://doi.org/10.1021/acsaelm.9b00164

    Article  CAS  Google Scholar 

  20. Shim G, Tran MX, Liu GC, Byun D, Lee JK (2021) Flexible, fiber-shaped, quasi-solid-state Zn-polyaniline batteries with methanesulfonic acid-doped aqueous gel electrolyte. Energy Storage Mater 35:739–749. https://doi.org/10.1016/j.ensm.2020.12.009

    Article  Google Scholar 

  21. Zhang W, Feng P, Chen J, Sun ZM, Zhao BX (2019) Electrically conductive hydrogels for flexible energy storage systems. Prog Polym Sci 88:220–240. https://doi.org/10.1016/j.progpolymsci.2018.09.001

    Article  CAS  Google Scholar 

  22. Huang HB, Yao JL, Li L, Zhu F, Liu ZT, Zeng XP, Yu XH, Huang ZL (2016) Reinforced polyaniline/polyvinyl alcohol conducting hydrogel from a freezing–thawing method as self-supported electrode for supercapacitors. J Mater Sci 51(18):8728–8736. https://doi.org/10.1007/s10853-016-0137-8

    Article  CAS  Google Scholar 

  23. Ding HJ, Zhong MJ, Kim YJ, Pholpabu P, Balasubramanian A, Hui CM, He HK, Yang H, Matyjaszewski K, Bettinger CJ (2014) Biologically derived soft conducting hydrogels using heparin-doped polymer networks. ACS Nano 8(5):4348–4357. https://doi.org/10.1021/nn406019m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li S, Tao YL, Maryum P, Wang QP, Zhu JB, Min FF, Cheng H, Zhao S, Wang CJ (2020) Bifunctional polyaniline electroconductive hydrogels with applications in supercapacitor and wearable strain sensors. J Biomater Sci Polym Ed 31(7):938–953. https://doi.org/10.1080/09205063.2020.1731787

    Article  CAS  PubMed  Google Scholar 

  25. Hu CX, Zhang YL, Wang XD, Xing L, Shi LY, Ran R (2018) Stable, strain-sensitive conductive hydrogel with antifreezing capability, remoldability, and reusability. ACS Appl Mater Interfaces 10(50):44000–44010. https://doi.org/10.1021/acsami.8b152879

    Article  CAS  PubMed  Google Scholar 

  26. Shi YH, Zhang Y, Jia L, Zhang Q, Xu XH (2018) Stretchable and self-healing integrated all-gel-state supercapacitors enabled by a notch-insensitive supramolecular hydrogel electrolyte. ACS Appl Mater Interfaces 10(42):36028–36036. https://doi.org/10.1021/acsami.8b13947

    Article  CAS  PubMed  Google Scholar 

  27. Guo Y, Zheng KQ, Wan PB (2018) A flexible stretchable hydrogel electrolyte for healable all-in-one configured supercapacitors. Small 14(14):1704497. https://doi.org/10.1002/smll.201704497

    Article  CAS  Google Scholar 

  28. Hu R, Zheng JP (2017) Preparation of high strain porous polyvinyl alcohol/polyaniline composite and its applications in all-solid-state supercapacitor. J Power Sources 364:200–207. https://doi.org/10.1016/j.jpowsour.2017.08.022

    Article  CAS  Google Scholar 

  29. Zhao J, Li Y, Wang M (2019) Fabrication of robust transparent hydrogel with stretchable, self-healing, easily recyclable and adhesive properties and its application. Mater Res Bull 112:292–296. https://doi.org/10.1016/j.materresbull.2018.12.033

    Article  CAS  Google Scholar 

  30. Qiu H, Qi SH, Wang DH, Wang J, Wu XM (2010) Synthesis of polyaniline nanostructures via soft template of sucrose octaacetate. Synth Met 160(11-12):1179–1183. https://doi.org/10.1016/j.synthmet.2010.03.005

    Article  CAS  Google Scholar 

  31. Qiu H, Qi SH, Wang J, Wang DH, Wu XM (2010) Synthesis of polyaniline nanorods using sucrose stearate as soft template. Mater Lett 64(18):1964–1967. https://doi.org/10.1016/j.matlet.2010.06.038

    Article  CAS  Google Scholar 

  32. Rahy A, Rguig T, Cho SJ, Bunker CE, Yang DJ (2011) Polar solvent soluble and hydrogen absorbing polyaniline nanofibers. Synth Met 161(3-4):280–284. https://doi.org/10.1016/j.synthmet.2010.11.036

    Article  CAS  Google Scholar 

  33. Acar H, Çınar S, Thunga M, Kessler MR, Hashemi N, Montazami R (2014) Study of physically transient insulating materials as a potential platform for transient electronics and bioelectronics. Adv Funct Mater 24(26):4135–4143. https://doi.org/10.1002/adfm.201304186

    Article  CAS  Google Scholar 

  34. Ge DT, Yang LL, Honglawan A, Li J, Yang S (2014) In situ synthesis of hybrid aerogels from single-walled carbon nanotubes and polyaniline nanoribbons as free-standing, flexible energy storage electrodes. Chem Mater 26(4):1678–1685. https://doi.org/10.1021/cm404025g

    Article  CAS  Google Scholar 

  35. Khosrozadeh A, Darabi MA, Wang Q, Xing M (2017) Polyaniline nanoflowers grown on vibration-isolator-mimetic polyurethane nanofibers for flexible supercapacitors with prolonged cycle life. J Mater Chem A 5(17):7933–7943. https://doi.org/10.1039/C7TA00591A

    Article  CAS  Google Scholar 

  36. Peng M, Xiao GH, Tang XL, Zhou Y (2014) Hydrogen-bonding assembly of rigid-rod poly (p-sulfophenylene terephthalamide) and flexible-chain poly (vinyl alcohol) for transparent, strong, and tough molecular composites. Macromolecules 47(23):8411–8419. https://doi.org/10.1021/ma501590x

    Article  CAS  Google Scholar 

  37. Li WW, Gao FX, Wang XQ, Zhang N, Ma MM (2016) Strong and robust polyaniline-based supramolecular hydrogels for flexible supercapacitors. Angew Chem 128(32):9342–9347. https://doi.org/10.1002/ange.201603417

    Article  Google Scholar 

  38. Beamson G, Briggs D (1992) High resolution xps of organic polymers: the scienta esca300 database. J Chem Educ 70(1):A25. https://doi.org/10.1016/0142-9612(94)90060-4

    Article  Google Scholar 

  39. Moussa M, El-Kady MF, Abdel-Azeim S, Kaner RB, Majewski P, Ma J (2018) Compact, flexible conducting polymer/graphene nanocomposites for supercapacitors of high volumetric energy density. Compos Sci Technol 160:50–59. https://doi.org/10.1016/j.compscitech.2018.02.033

    Article  CAS  Google Scholar 

  40. Zou YB, Zhang ZC, Zhong WB, Yang WT (2018) Hydrothermal direct synthesis of polyaniline, graphene/polyaniline and N-doped graphene/polyaniline hydrogels for high performance flexible supercapacitors. J Mater Chem A 6(19):9245–9256. https://doi.org/10.1039/C8TA01366G

    Article  CAS  Google Scholar 

  41. Li PP, Jin ZY, Peng LL, Zhao F, Xiao D, Jin Y, Yu GH (2018) Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels. Adv Mater 30(18):1800124. https://doi.org/10.1002/adma.201800124

    Article  CAS  Google Scholar 

  42. Wang K, Zhang X, Li C, Sun XZ, Meng QH, Ma YW, Wei ZX (2015) Chemically crosslinked hydrogel film leads to integrated flexible supercapacitors with superior performance. Adv Mater 27(45):7451–7457. https://doi.org/10.1002/adma.201503543

    Article  CAS  PubMed  Google Scholar 

  43. Li L, Zhang JB, Peng ZW, Li YL, Gao CT, Ji YS, Ye RQ, Kim ND, Zhong QF, Yang Y, Fei HL, Ruan GD, Tour JM (2016) High-performance pseudocapacitive microsupercapacitors from laser-induced graphene. Adv Mater 28(5):838–845. https://doi.org/10.1002/adma.201503333

    Article  CAS  PubMed  Google Scholar 

  44. Jin C, Wang HT, Liu YN, Kang XH, Liu P, Zhang JN, Jin LN, Bian SW, Zhu Q (2018) High-performance yarn electrode materials enhanced by surface modifications of cotton fibers with graphene sheets and polyaniline nanowire arrays for all-solid-state supercapacitors. Electrochim Acta 270:205–214. https://doi.org/10.1016/j.electacta.2018.03.067

    Article  CAS  Google Scholar 

  45. Yang J, Yu XQ, Sun XB, Kang Q, Zhu L, Qin G, Zhou A, Sun G, Chen Q (2020) Polyaniline-decorated supramolecular hydrogel with tough, fatigue-resistant, and self-healable performances for all-in-one flexible supercapacitors. ACS Appl Mater Interfaces 12(8):9736–9745. https://doi.org/10.1021/acsami.9b2057

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

National Natural Science Foundation of China (51801065), Science and Technology Project of Guangdong Province (2015A030310488, 2014B090915003, and 2015B090901052), the Scientific Cultivation and Innovation Fund Project of Jinan University (21617427), and Guangdong Tobacco Monopoly Administration Science and Technology programs (No.2019011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Zhang or Zhenrui Huang.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 126 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, L., Huang, S., Lai, F. et al. Sucrose in situ physically cross-linked of polyaniline and polyvinyl alcohol to prepare three-dimensional nanocomposite hydrogel with flexibility and high capacitance. Ionics 27, 3431–3441 (2021). https://doi.org/10.1007/s11581-021-04010-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04010-3

Keywords

Navigation